Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in Inorganic Chemistry

Editor-in-Chief: Schulz, Axel

Editorial Board: Aldridge, Simon / Burford, Neil / Cronin, Leroy / Dunbar, Kim / Holthausen, Max / Huppertz, Hubert / Liu, Xiaoming / Rosenthal, Uwe / Schiller, Alexander / Schulz, Stephan / Senker, Jürgen / Hänisch, Carsten / Yoon, Kyung / Zhang, Xian-Ming

4 Issues per year


IMPACT FACTOR 2017: 2.421
5-year IMPACT FACTOR: 2.595

CiteScore 2017: 2.10

SCImago Journal Rank (SJR) 2017: 0.644
Source Normalized Impact per Paper (SNIP) 2017: 0.964

Online
ISSN
2191-0227
See all formats and pricing
More options …
Volume 38, Issue 1

Issues

Progress in the synthesis of Ag nanoparticles having manifold geometric forms

Oleg V. Mikhailov
Published Online: 2018-04-23 | DOI: https://doi.org/10.1515/revic-2017-0016

Abstract

The data on the specific synthesis of elemental silver nanoparticles having the forms of various geometric bodies (pseudo spherical, prismatic, cubic, trigonal-pyramidal, etc.), obtained by various chemical, physicochemical, and biological methods, have been systematized and generalized. This review covers mainly publications published in the current 21st century.

Keywords: Ag-NP; biological method; chemical method; geometric form; physicochemical method; synthesis

References

  • Abid, J. P.; Wark, A. W.; Brevet, P. F.; Girault, H. H. Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem. Commun. 2002, 7, 792–793.Google Scholar

  • Agasti, S. S.; Chompoosor, A.; You, C.-C.; Ghosh, P.; Kim, C. K.; Rotello, V. M. Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc. 2009, 131, 5728–5729.CrossrefPubMedGoogle Scholar

  • Aguilare, M. A. M.; Martin, E. S. M.; Arroyo, L. O.; Portillo, G. C.; Espindola, E. S. J. Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloeosporioides. Nanopart. Res. 2011, 13, 2525–2532.CrossrefGoogle Scholar

  • Ahamed, M.; Alsalhi M. S.; Siddiqui, M. K.; Alsalhi, S. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 1841–1848.PubMedCrossrefGoogle Scholar

  • Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005–2016.CrossrefGoogle Scholar

  • Ahmad, A.; Mukherjee, P.; Senapati, S.; Mandal, D.; Islam Khan, M.; Kumar, R.; Sastry, M. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B 2003, 28, 313–318.CrossrefGoogle Scholar

  • Al-Obaidi, A. H. R.; Rigbi, S. J.; McGarvey, J. J.; Wamsley, D. G.; Smith, K. W.; Hellemans, I.; Snauwaert, J. Microstructural and spectroscopies studies of metal liquid-like films of silver and gold. J. Phys. Chem. 1994, 98, 11163–11168.CrossrefGoogle Scholar

  • Al-Thabaiti, S. A.; Malik, M. A.; Al-Youbi, A. A. O.; Khan, Z.; Hussain, J. I. Effects of surfactant and polymer on the morphology of advanced nanomaterials in aqueous solution. Int. J. Electrochem. Sci. 2013, 8, 204–218.Google Scholar

  • Ameen, K. B.; Rajasekar, K.; Rajasekharan, T. Silver nanoparticles in mesoporous aerogel exhibiting selective catalytic oxidation of benzene in CO2 free air. Catal. Lett. 2007, 119, 289–295.CrossrefGoogle Scholar

  • Asharani, P. V.; Wu, Y. L.; Gong, Z.; Valiyaveettil, S. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 2008, 19, 255102.PubMedCrossrefGoogle Scholar

  • Ashkarran, A. A. A novel method for synthesis of colloidal silver nanoparticles by arc discharge in liquid. Curr. Appl. Phys. 2010, 10, 1442–1447.CrossrefGoogle Scholar

  • AshRani, P. V.; Low Kah Mun, G.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2008, 3, 279–290.Google Scholar

  • Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Annealed silver-island films for applications in metal-enhanced fluorescence: interpretation in terms of radiating plasmons. J. Fluorescence 2005a, 15, 643–654.CrossrefGoogle Scholar

  • Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. Fast and slow deposition of silver nanorods on planar surfaces: application to metal-enhanced fluorescence. J. Phys. Chem. B 2005b, 109, 3157–3162.CrossrefGoogle Scholar

  • Aslan, K.; Holley, P.; Geddes, C. D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J. Mater. Chem. 2006, 16, 2846–2852.CrossrefGoogle Scholar

  • Bastys, V.; Pastoriza-Santos, I.; Rodríguez-González, B.; Vaisnoras, R.; Liz-Marza’n, L. M. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater. 2006, 16, 766–773.CrossrefGoogle Scholar

  • Bhatt, J. S. A. Heralding a new future – nanotechnology. Curr. Sci. 2003, 85, 147–154.Google Scholar

  • Bohr, M. T. Nanotechnology goals and challenges for electronic applications. Nanotechnol. IEEE Trans. 2002, 1, 56–62.CrossrefGoogle Scholar

  • Cai, X.; Zhai, A. Preparation of microsized silver crystals with different morphologies by a wet-chemical method. Rare Metals 2010, 29, 407.CrossrefGoogle Scholar

  • Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications; World Scientific Publishing Co. Pte. Ltd., Imperial College Press: London, 2004.Google Scholar

  • Chang, S.; Chen, K.; Hua, Q.; Ma, Y.; Huang, W. Evidence for the growth mechanisms of silver nanocubes and nanowires. J. Phys. Chem. C 2011a, 115, 7979–7986.CrossrefGoogle Scholar

  • Chang, Y.; Lu, Y.; Chou, K. Diameter control of silver nanowires by chloride ions and its application as transparent conductive coating. Chem. Lett. 2011b, 40, 1352–1353.CrossrefGoogle Scholar

  • Chen, D.; Qiao, X.; Qiu, X.; Chen, J.; Jiang, R. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method. Nanotechnology 2010, 21, 025607.CrossrefGoogle Scholar

  • Chen, H. M.; Liu, R. S. Architecture of metallic nanostructures: synthesis strategy and specific aplications. J. Phys. Chem. C 2011, 115, 3513–3527.CrossrefGoogle Scholar

  • Chimentao, R.; Kirm, I.; Medina, F.; Rodriguez, X.; Cesteros, Y.; Salagre, P.; Sueiras, J. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase. Chem. Commun. 2004, 4, 846–847.Google Scholar

  • Chowdhury, M. H.; Aslan, K.; Malyn, S. N.; Lakowicz, J. R.; Geddes, C. D. Metal-enhanced chemiluminescence. J. Fluorescence 2006, 16, 295–299.CrossrefGoogle Scholar

  • Cong, F.; Wei, H.; Tian, X.; Xu, H. A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering. Front. Phys. 2012, 7, 521–526.CrossrefGoogle Scholar

  • Creighton, J. A.; Blatchford, G. G.; Albrecht, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2. 1979, 75, 790–798.CrossrefGoogle Scholar

  • D’Agostino, S.; Sala, F. D. Silver nanourchins in plasmonics: theoretical investigation on the optical properties of the branches. J. Phys. Chem. C 2011, 115, 11934–11940.CrossrefGoogle Scholar

  • Darmanin, T.; Nativo, P.; Gilliland, D.; Ceccone, G.; Pascual, C.; Berardis, B. D.; Guittard, F.; Rossi, F. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a “modified polyol process”. Colloids Surf. A 2012, 395, 145–151.CrossrefGoogle Scholar

  • Dong, X.; Ji, X.; Wu, H.; Zhao, L.; Li, J.; Yang, W. Shape control of silver nanoparticles by stepwise citrate reduction. J. Phys. Chem. C 2009, 113, 6573–6576.CrossrefGoogle Scholar

  • Dong, X.; Ji, X.; Jing, J.; Li, M.; Li, J.; Yang, W. Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate. J. Phys. Chem. C 2010, 114, 2070–2074.CrossrefGoogle Scholar

  • El-Kheshen, A. A.; El-Rab, S. F. G. Effect of reducing and protecting agents on size of silver nanoparticles and their antibacterial activity. Pharm. Chem. 2012, 4, 53–65.Google Scholar

  • Ershov, B. G.; Henglein, A. Reduction of Ag+ on polyacrilate chains in aqueous solutions. J. Phys. Chem. B 1998, 102, 10663–10666.CrossrefGoogle Scholar

  • Fayaz, A. M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P. T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 2010, 6, 103–109.CrossrefPubMedGoogle Scholar

  • Fodale, V.; Pierobon, M.; Liotta, L.; Petricoin, E. Mechanism of cell adaptation: when and how do cancer cells develop chemoresistance? Cancer J. 2011, 17, 89–95.PubMedCrossrefGoogle Scholar

  • Fu, H.; Yang, X.; Jiang, X.; Yu, A. Bimetallic Ag-Au nanowires: synthesis, growth mechanism, and catalytic properties. Langmuir 2013, 29, 7134–7142.PubMedCrossrefGoogle Scholar

  • Ghorbani, H. R.; Safekordi, A. A.; Attar, H.; Rezayat Sorkhabadi, S. M. Biological and non-biological methods for silver nanoparticles synthesis. Chem. Biochem. Eng. Quart. 2011, 25, 317–326.Google Scholar

  • Ghosh, S. K.; Kundu, S.; Mandal, M.; Nath, S.; Pal, T. Studies on the evolution of silver nanoparticles in micelle by UV-photoactivation. J. Nanopart. Res. 2003, 5, 577–583.CrossrefGoogle Scholar

  • Giri, N.; Natarajan, R. K.; Gunasekaran, S.; Shreemathi, S. NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles. Arch. Appl. Sci. Res. 2011, 3, 624–630.Google Scholar

  • Gu, X.; Nie, C.; Lai, Y.; Lin, C. Synthesis of silver nanorods and nanowires by tartrate-reduced route in aqueous solutions. Mater. Chem. Phys. 2006, 96, 217–222.CrossrefGoogle Scholar

  • Gurunathan, S.; Kalishwaralal, K. V.; Aidyanathan, R.; Deepak, V.; Pandian, S.; Muniyandi, J. Purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B 2009, 74, 328–335.CrossrefGoogle Scholar

  • He, B.; Tan, J.; Liew, K.; Liu, H. Synthesis of size controlled Ag nanoparticles. J. Mol. Catal. Chem. 2004, 221, 121–126.CrossrefGoogle Scholar

  • Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Revs. 1989, 89, 1861–1873.CrossrefGoogle Scholar

  • Hill, W. R.; Pillsbury, D. M. Argyria: The Pharmacology of Silver; Md. Williams & Wilkins Co.: Baltimore, 1939; pp. 128–132.Google Scholar

  • Hirai, T.; Yoshioka, Y.; Ichihashi, K.; Mori, T.; Nishijima, N.; Handa, T.; Takahashi, H.; Tsunoda, S.; Higashisaka, K.; Tsutsumi, Y. Silver nanoparticles induce silver nanoparticle-specific allergic responses (HYP6P.274). J. Immunology 2014, 192, Issue 1 Supplement, 118.19.Google Scholar

  • Hong, R.; Han, G.; Fernández, J. M.; Kim, B.; Forbes, N. S.; Rotello, V. M. Glutathione mediated delivery and release using monolayer protected nanoparticle carriers. J. Am. Chem. Soc. 2006, 128, 1078–1079.PubMedCrossrefGoogle Scholar

  • Hsieh, C. T.; Tzou, D. Y.; Pan, C.; Chen, W. Y. Microwaveassisted deposition, scalable coating, and wetting behavior of silver nanowire layers. Surf. Coat. Technol. 2012, 207, 11–18.CrossrefGoogle Scholar

  • Hu, J. Q.; Chen, Q.; Xie, Z. X.; Han, G. B.; Wang, R. H.; Ren, B.; Zhang, Y.; Yang, Z. L.; Tian, Z. Q. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv. Funct. Mater. 2004, 14, 183–189.CrossrefGoogle Scholar

  • Hu, Z. S.; Hung, F. Y.; Chang, S. J.; Hsieh, W. K.; Chen, K. J. Align Ag nanorods via oxidation reduction growth using RF sputtering. J. Nanomater. 2012, 2012, 345086, 6 pages.Google Scholar

  • Huang, L.; Zhai, M. L.; Long, D. W.; Peng, J.; Xu, L.; Wu, G. Z.; Li, J. Q.; Wei, G. S. UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution. J. Nanopart. Res. 2008, 10, 1193–1202.CrossrefGoogle Scholar

  • Hussain, S.; Pal, A. K. Incorporation of nanocrystalline silver on carbon nanotubes by electrodeposition technique. Mater. Lett. 2008, 62, 1874–1877.CrossrefGoogle Scholar

  • Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 2005, 44, 2154–2157.CrossrefGoogle Scholar

  • Ino, S. Epitaxial growth of metals on rock-salt faces cleaved in vacuum. II. orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Japan, 1966, 21, 346–362.CrossrefGoogle Scholar

  • Ino, S.; Ogava, D. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J. Phys. Soc. Japan 1967, 22, 1365–1374.CrossrefGoogle Scholar

  • James, T. H. The Theory of Photographic Process; Macmillan Publishing Co.: New York, 1977.Google Scholar

  • James, E. M. Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 1999, 78, 125–139.CrossrefGoogle Scholar

  • Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Commun. 2001, 7, 617–618.Google Scholar

  • Jiang, P.; Li, S.; Xie, S.; Gao, Y.; Song, L. Machinable long PVP- stabilized silver nanowires. Chem. Eur. J. 2004, 10, 4817–4821.CrossrefGoogle Scholar

  • Jiang, X. C.; Chen, W. M.; Chen, C. Y.; Xiong, S. X.; Yu, A. B. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 2011, 6, 32.PubMedGoogle Scholar

  • Jiang, Z.-J.; Liu, C.-Y.; Sun, L.-W. Catalytic properties of silver nanoparticles supported on silica spheres. J. Phys. Chem. B 2005, 109, 1730–1735.PubMedCrossrefGoogle Scholar

  • Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294(5548), 1901–1903.CrossrefPubMedGoogle Scholar

  • Kairemo, K.; Erba, P.; Bergström, K.; Pauwels, E. K. J. Nanoparticles in cancer. Curr. Radiopharmaceuticals 2010, 1, 30–36.Google Scholar

  • Kapoor, S. Surface modification of silver particles. Langmuir 1998, 14, 1021–1025.CrossrefGoogle Scholar

  • Kelly, J. M.; Keegan, G.; Brennan-Fournet, M. E. Triangular silver nanoparticles: their preparation functionalisation and properties. Acta Phys. Pol. A 2012, 122, 337–348.CrossrefGoogle Scholar

  • Kim, F.; Song, J. H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002, 124, 14316–14317.CrossrefPubMedGoogle Scholar

  • Kittler, S.; Greulich, C.; Diendorf, J.; Köller, M.; Epple, M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 2010, 22, 4548–4554.CrossrefGoogle Scholar

  • Klasen, H. J. A historical review of the use of silver in the treatment of burns. Burns 2000, 26, 117–130.PubMedCrossrefGoogle Scholar

  • Korte, K. E.; Skrabalak, S. E.; Xia, Y. Rapid synthesis of silver nanowires through a CuCl or CuCl2 mediated polyol process. J. Mater. Chem. 2008, 18, 437–441.CrossrefGoogle Scholar

  • Kou, J.; Varma, R. S. Speedy fabrication of diameter-controlled Ag nanowires using glycerol under microwave irradiation conditions. Chem. Commun. 2013, 49, 692–694.CrossrefGoogle Scholar

  • Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett. 2012, 76, 18–20.CrossrefGoogle Scholar

  • Krutyakov, Y. A.; Kudrinskiy, A. A.; Olenin, A. Y.; Lisichkin, G. V. Synthesis and properties of silver nanoparticles: advances and prospects. Russ. Chem. Revs. 2008, 77, 233–257.CrossrefGoogle Scholar

  • Laban, G.; Nies, L. F.; Turco, R. F.; Bickham, J. W.; Sepulveda, M. S. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 2009, 19, 185–195.Google Scholar

  • Lakowicz, J. R.; Maliwal, B. P.; Malicka, J.; Gryczynski, Z.; Gryczynski, I. Effects of silver island films on the luminescent intensity and decay times of lanthanide chelates. J. Fluorescence 2002, 12, 431–437.CrossrefGoogle Scholar

  • Ledwith, D. M.; Whelan, A. M.; Kelly, J. M. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mater. Chem. 2007, 17, 2459–2464.CrossrefGoogle Scholar

  • Lee, P. C.; Meisel, D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395.CrossrefGoogle Scholar

  • Lee, I-Y. S.; Suzuki, H.; Ito, K.; Yasuda, Y. Surface-enhanced fluorescence and reverse saturable absorption on silver nanoparticles. J. Phys. Chem. B 2004, 108, 19368–19372.CrossrefGoogle Scholar

  • Li, Y.; Li, Z.; Gao, Y.; Gong, A.; Zhang, Y.; Hosmane, N. S.; Zheyu Shen, Z.; Wu, A. “Red-to-blue” colorimetric detection of cysteine via anti-etching of silver nanoprisms. Nanoscale 2014, 6, 10631–10637.CrossrefPubMedGoogle Scholar

  • Liang, H.; Wang, W.; Huang, Y.; Zhang, S.; Wei, H.; Xu, H. Controlled synthesis of uniform silver nanospheres. J. Phys. Chem. C 2010, 114, 7427–7431.CrossrefGoogle Scholar

  • Linnert, T.; Mulvaney, P.; Henglein, A.; Weller, H. Long-lived nonmetallic silver clusters in aqueous solution: preparation and photolysis. J. Am. Chem. Soc. 1990, 112, 4657–4664.CrossrefGoogle Scholar

  • Liu, M.; Guyot-Sionnest, P. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 2005, 109, 22192–22200.CrossrefGoogle Scholar

  • Liu, S.; Yue, J.; Gedanken, A. Synthesis of long silver nanowires from AgBr nanocrystals. Adv. Mater. 2001, 13, 656–658.CrossrefGoogle Scholar

  • Liu, Q.; Yin, G.; Han, M.; Liu, H.; Zhu, J.; Liang, Y.; Xu, Z. Large-scale synthesis of single crystal silver nanowires by a sodium diphenylamine sulfonate reduction process. J. Nanosci. Nanotechnol. 2006, 6, 231–234.PubMedGoogle Scholar

  • Lue, J. T. A review characterization and physical property studies of metallic nanoparticles. Phys. Chem. Solids 2001, 62, 1599–1612.CrossrefGoogle Scholar

  • Manna, A.; Imae, T.; Iida, M.; Hisamatsu, N. Formation of silver nanoparticles from a N-hexadecylethylenediamine silver nitrate complex. Langmuir 2001, 17, 6000–6004.CrossrefGoogle Scholar

  • Marks, L. D. Experimental studies of small particle structures. Rep. Progr. Phys. 1994, 57, 603–609.CrossrefGoogle Scholar

  • Martin, C. R. Nanomaterials: a membrane-based synthetic approach. Science 1994, 266(5193), 1961–1966.CrossrefPubMedGoogle Scholar

  • Mees, K.; James, T. H. The Theory of Photographic Process; Collier Macmillan Ltd.: London, 1973.Google Scholar

  • Meng, X. K.; Tang, S. C.; Vongehr, S. A review on diverse silver nanostructures. J. Mater. Sci. Technol. 2010, 26, 487–522.CrossrefGoogle Scholar

  • Métraux, G. S.; Mirkin, C. A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 2005, 17, 412–415.CrossrefGoogle Scholar

  • Mikhailov, O. V. Enzyme-assisted matrix isolation of novel dithiooxamide complexes of nickel(II). Indian J. Chem. 1991, 30A, 252–254.Google Scholar

  • Mikhailov, O. V. Self-assembly of molecules of metal macrocyclic compounds in nanoreactors on the basis of biopolymer-immobilized matrix systems. Nanotechnol. Russ. 2010, 5, 18–34.CrossrefGoogle Scholar

  • Mikhailov, O. V. Synthesis of 3D-element metalmacrocyclic chelates into polypeptide biopolymer medium and their molecular structures. Inorg. Chim. Acta 2013, 394, 664–684.CrossrefGoogle Scholar

  • Mikhailov, O. V. Molecular nanotechnologies of gelatin-immobilization using macrocyclic metal chelates. Nano Reviews 2014a, 5, 14767–14785.Google Scholar

  • Mikhailov, O. V. Sol-gel technology and template synthesis in thin gelatin films. J. Sol Gel Sci. Technol. 2014b, 72, 314–327.CrossrefGoogle Scholar

  • Mikhailov, O. V. Electron microscopy of elemental silver produced by its reprecipitation in glass-like biopolymer film. Glass Phys. Chem. 2017, 43, 471–474.CrossrefGoogle Scholar

  • Mikhailov, O. V.; Naumkina, N. I. Novel modification of elemental silver formed into Ag4(Fe(CN)6)-gelatin-immobilized matrix implants. Central Eur. J. Chem. 2010, 8, 448–452.Google Scholar

  • Mikhailov, O. V.; Kondakov, A. V.; Krikunenko, R. I. Image intensification in silver halide photographic materials for detection of high-energy radiation by reprecipitation of elemental silver. High Energy Chemistry 2005, 39, 324–329.CrossrefGoogle Scholar

  • Mikhailov, O. V.; Naumkuna, N. I.; Kondakov, A. V.; Lygina, T. Z. On a new phase of elemental silver, appearing on its “reprecipitation” in Ag-gelatin-immobilized matrix systems. Russ. J. Gen. Chem. 2008, 78, 1650–1654.CrossrefGoogle Scholar

  • Mikhailov, O. V.; Naumkina, N. I.; Lygina, T. Z. Novel phase of elemental silver nano-particles formed at combination of complexing and redox-processes into gelatin matrix. J. Character. Develop. Novel Mater. 2013, 5, 167–181.Google Scholar

  • Mikhailov, O. V.; Kazymova, M. A.; Chachkov, D. V. Self-assembly and quantum chemical design of macrotricyclic and macrotetracyclic 3D-element metal chelates formed in the gelatin-immobilized matrix. Russ. Chem. Bull. Int. Edition 2015, 64, 1757–1771.CrossrefGoogle Scholar

  • Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett. 2008, 8, 2526–2529.CrossrefPubMedGoogle Scholar

  • Millstone, J. E.; Hurst, S. J.; Métraux, G. S.; Cutler, J. I.; Mirkin, C. A. Colloidal gold and silver triangular nanoprisms. Small 2009, 5, 646–664.CrossrefPubMedGoogle Scholar

  • Moghimi-Rad, J.; Dallali Isfahani, T.; Hadi, I.; Ghalamdaran, S.; Sabbaghzadeh, J.; Sharif, M. Shape-controlled synthesis of silver particles by surfactant self-assembly under ultrasound radiation. Appl. Nanosci. 2011, 1, 27–35.CrossrefGoogle Scholar

  • Murphy, C. J.; Jana, N. R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82.CrossrefGoogle Scholar

  • Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 2006, 45, 7544–7554.PubMedCrossrefGoogle Scholar

  • Nghia, N.; Truong, N. N. K.; Thong, N. M.; Hung, N. P. Synthesis of nanowire-shaped silver by polyol process of sodium chloride. Int. J. Mater. Chem. 2012, 2, 75–78.CrossrefGoogle Scholar

  • Orendoff, C. J.; Gearheart, L.; Jana, N. R.; Murphy, C. J. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. Phys. Chem. Chem. Phys. 2006, 8, 165–170.CrossrefPubMedGoogle Scholar

  • Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.PubMedCrossrefGoogle Scholar

  • Parveen, S.; Misra, R.; Sahoo, S. K. Nanoparticles: a boom to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 2012, 8, 147–166.CrossrefGoogle Scholar

  • Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold nanorods: synthesis, characterization and applications. Coord. Chem. Rev. 2005, 249, 1870–1901.CrossrefGoogle Scholar

  • Poinern, G. E. J.; Chapman, P.; Shah, M.; Fawcett, D. Green biosynthesis of silver nanocubes using the leaf extracts from Eucalyptus macrocarpa. Nano Bull. 2013, 2, 1–7.Google Scholar

  • Pourjavadi, A.; Soleyman, R. Novel silver nano-wedges for killing microorganisms. Mater. Res. Bull. 2011, 46, 1860–1865.CrossrefGoogle Scholar

  • Pugazhenthiran, N.; Anandan, S.; Kathiravan, G.; Udaya Prakash, N. K.; Crawford, S.; Ashokkumar, M. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res. 2009, 11, 1811–1815.CrossrefGoogle Scholar

  • Pyatenko, A.; Yamaguchi, M.; Suzuki, M. Synthesis of spherical silver nanoparticles with controllable sizes in aqueous solutions. J. Phys. Chem. C 2007, 111, 7910–7917.CrossrefGoogle Scholar

  • Qin, Y.; Ji, X.; Jing, J.; Liu, H.; Wu, H.; Yang, W. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf. A 2010, 372, 172–176.CrossrefGoogle Scholar

  • Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.PubMedCrossrefGoogle Scholar

  • Rivero, P. J.; Goicoechea, J.; Urrutia, A.; Arregui, F. J. Effect of both protective and reducing agents in the synthesis of multicolor silver nanoparticles. Nanoscale Res. Lett. 2013, 8, 101.CrossrefPubMedGoogle Scholar

  • Rycenga, M.; McLellan, J. M.; Xia, Y. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.CrossrefGoogle Scholar

  • Saade, J.; de Araújo, C. B. Synthesis of silver nanoprisms: a photochemical approach using light emission diodes. Mater. Chem. Phys. 2014, 148, 1184–1193.CrossrefGoogle Scholar

  • Sagar, G.; Ashok, B. Green synthesis of silver nanoparticles using Aspergillus niger and its efficacy against human pathogens. Eur. J. Exp. Biol. 2010, 2, 1654–1658.Google Scholar

  • Sanjeeb, K. S.; Vinod, L. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003, 8, 1112–1120.CrossrefPubMedGoogle Scholar

  • Satoh, N.; Hasegawa, H.; Tsuji, K.; Kimura, K. Photo-induced coagulation of Ag nanocolloides. J. Phys. Chem. 1994, 98, 2143–2147.CrossrefGoogle Scholar

  • Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.PubMedCrossrefGoogle Scholar

  • Sergeev, B. M.; Kiryukhin, M. V.; Prusov, A. N. Effect of light on the disperse composition of silver hydrosols stabilized by partially decarboxylated polyacrylate. Mendeleev Commun. 2001, 11, 68–69.CrossrefGoogle Scholar

  • Sergeev, B. M.; Lopatina, L. I.; Prusov, A. N.; Sergeev, G. B. Borohydride reduction of AgNO3 in polyacrylate aqueous solutions: two-stage synthesis of “blue silver”. Coll. J. 2005, 67, 213–216.CrossrefGoogle Scholar

  • Shahverdi, A. R.; Fakhimi, A.; Shahverdi, H. Q.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine. 2007, 3, 168–171.PubMedCrossrefGoogle Scholar

  • Shameli, K.; Bin Ahmad, M.; Jaffar Al-Mulla, E. A.; Ibrahim, N. A.; Shabanzadeh, P.; Rustaiyan, A.; Abdollahi, Y.; Bagheri, S.; Abdolmohammadi, S.; Usman, M. S.; Zidan, M. Green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extraction. Molecules 2012, 17, 8506–8517.CrossrefPubMedGoogle Scholar

  • Shervani, Z.; Ikushima, Y.; Sato, M.; Kawanami, H.; Hakuta, Y.; Yokoyama, T.; Nagase, T.; Kuneida, H.; Aramaki, K. Morphology and size-controlled synthesis of silver nanoparticles in aqueous surfactant polymer solutions. Colloid Polym. Sci. 2008, 286, 403–410.CrossrefGoogle Scholar

  • Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 2006. 432, 491–496.PubMedCrossrefGoogle Scholar

  • Sintubin, L.; De Windt, W.; Dick, J.; Mast, J.; van der Ha, D.; Verstraete, W.; Boon, N. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl. Microbiol. Biotechnol. 2009, 84, 741–749.CrossrefPubMedGoogle Scholar

  • Skillman, D. G.; Berry, C. R. Effect of particle shape on the spectral absorption of colloid silver in gelatin. J. Chem. Phys. 1968, 48, 3297–3304.CrossrefGoogle Scholar

  • Skrabalak, S.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.PubMedCrossrefGoogle Scholar

  • Sun, Y.; Xia, Y. N. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002a, 14, 833–837.CrossrefGoogle Scholar

  • Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002b, 298(5601), 2176–2179.CrossrefGoogle Scholar

  • Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. N. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002a, 2, 165–168.CrossrefGoogle Scholar

  • Sun, Y.; Yin, Y.; Mayers, B.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002b, 14, 4736–4745.CrossrefGoogle Scholar

  • Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y. N. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 2003a, 3, 955–960.CrossrefGoogle Scholar

  • Sun, Y.; Mayers, B.; Xia, Y. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett. 2003b, 3, 675–679.CrossrefGoogle Scholar

  • Sun, B.; Jiang, X.; Dai, S.; Du, Z. Single-crystal silver nanowires: preparation and surface-enhanced Raman scattering (SERS) property. Mater. Lett. 2009, 63, 2570–2573.CrossrefGoogle Scholar

  • Suresh, A. K.; Wang, W.; Pelletier, D. A.; Moon, J. W.; Gu, B.; Mortensen, N. P.; Allison, D. P.; Joy, D. C.; Phelps, T. J.; Doktycz, M. J. Silver nanocrystallites: facile biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ. Sci. Technol. 2010, 44, 5210–5215.CrossrefGoogle Scholar

  • Sviridov, V. V.; Kondrat’ev, V. A. Photographic processes with silverless physical development. Uspekhi Nauchn. Fotogr. 1978, 19, 43–64.Google Scholar

  • Taguchi, A.; Fujii, S.; Ichimura, T.; Verma, P.; Inouye, Y.; Kawata, S. Oxygen-assisted shape control in polyol synthesis of silver nanocrystals. Chem. Phys. Lett. 2008, 462, 92–95.CrossrefGoogle Scholar

  • Tang, B.; An, J.; Zheng, X.; Xu, S.; Li, D.; Zhou, J.; Zhao, B.; Xu, W. Silver nanodisks with tunable size by heat aging. J. Phys. Chem. C. 2008, 112, 18361–18367.CrossrefGoogle Scholar

  • Tang, S. C.; Meng, X. K.; Lu, H. B.; Zhu, S. P. PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Mater. Chem. Phys. 2009, 116, 464–468.CrossrefGoogle Scholar

  • Taniguchi, N. On the basic concept of nanotechnology. In Proceedings of the International Conference on Precision Engineering (ICPE), Tokyo, 1974; pp. 18–23.Google Scholar

  • Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.CrossrefGoogle Scholar

  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological synthesis of metallic nanoparticles. Nanomed. NBM 2010, 6, 257–262.CrossrefGoogle Scholar

  • Thiago, V.-B.; Rona, M.-G.; Katarzyna, W.; Adelina, R.-W.;, Jonathan, R. B.; Helmut, E.; Frank, K. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 2014, 8, 2161–2175.PubMedCrossrefGoogle Scholar

  • Tsuji, M.; Matsumoto, K.; Jiang, P.; Matsuo, R.; Hikino, S.; Tang, X. L.; Nor Kamarudin, K. S. The role of adsorption species in the formation of Ag nanostructures by a microwave-polyol route. Bull. Chem. Soc. Jpn. 2008, 81, 393–400.CrossrefGoogle Scholar

  • Tsuji, M.; Gomi, S.; Maeda, Y.; Matsunaga, M.; Hikino, S.; Uto, K.; Tsuji, T.; Kawazumi, H. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Langmuir 2012, 28, 8845–8861.PubMedCrossrefGoogle Scholar

  • Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733–1739.CrossrefGoogle Scholar

  • Wiley, B.; Sun, Y.; Chen, J.; Cang, H.; Li, Z. Y.; Li, X.; Xia, Y. Silver and gold nanostructures with well-controlled shapes. MRS Bull. 2005a, 30, 356–361.CrossrefGoogle Scholar

  • Wiley, B.; Sun, Y. G.; Mayers, B.; Xia, Y. N. Shape-controlled synthesis of metal nano-structures: the case of silver. Chem.– Eur. J. 2005b, 11, 454–463.CrossrefGoogle Scholar

  • Wiley, B.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanostructures: control of product morphology with Fe(II) or Fe(III) species. Langmuir 2005c, 21, 8077–8080.CrossrefGoogle Scholar

  • Wiley, B.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 2006, 110, 15666–17675.PubMedCrossrefGoogle Scholar

  • Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z. Y.; Ginger, D.; Xia, Y. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7, 1032–1036.PubMedCrossrefGoogle Scholar

  • Wu, M.; Lakowicz, J. R.; Geddes, C. D. Enhanced lanthanide luminescence using silver nanostructures: opportunities for a new class of probes with exceptional spectral characteristics. J. Fluorescence 2005, 15, 53–59.CrossrefGoogle Scholar

  • Wu, X.; Redmond, P. L.; Liu, H.; Chen, Y.; Steigerwald, M.; Brus, L. Photovoltage mechanism for room light conversion of citrate stabilized silver nanocrystal seeds to large nanoprisms. J. Am. Chem. Soc. 2008, 130, 9500–9506.PubMedCrossrefGoogle Scholar

  • Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2009, 48, 60–103.CrossrefGoogle Scholar

  • Xu, R.; Wang, D.; Zhang, J.; Li, Y. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893.CrossrefPubMedGoogle Scholar

  • Xu, J.; Cheng, G.; Zheng, R. Controllable synthesis of highly ordered Ag nanorod arrays by chemical deposition method. Appl. Surf. Sci. 2010, 256, 5006–5010.CrossrefGoogle Scholar

  • Xue, C.; Mirkin, C. A. 2007. pH-switchable silver nanoprism growth pathways. Angew. Chem. Int. Ed. 2007, 46, 2036–2038.CrossrefGoogle Scholar

  • Yamamoto, T.; Yin, H.; Wada, Y.; Kitamura, T.; Sakata, T.; Mori, H.; Yanagida, S.; Morphology-control in microwave-assisted synthesis of silver particles in aqueous solutions. Bull. Chem. Soc. Japan 2004, 77, 757–761.CrossrefGoogle Scholar

  • Yan, G.; Wang, L.; Zhang, L. Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and Pt nanotubes from resultant silver nanowires and their applications in conductive adhesive. Rev. Adv. Mater. 2010, 24, 10–25.Google Scholar

  • Yeo, S.; Lee, H.; Jeong, S. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 2003, 38, 2143–2147.CrossrefGoogle Scholar

  • Yonesava, T.; Onoue, S.; Kimizuka, N. Preparation of highly positively charged silver nanoballs and their stability Langmuir 2000, 16, 5218–5220.CrossrefGoogle Scholar

  • Zaheer, Z.; Rafiuddin. Multi-branched flower-like silver nanoparticles: preparation and characterization. Colloids Surf. A 2011, 384, 427–431.CrossrefGoogle Scholar

  • Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z. Y.; Zhang, Q.; Zhu, Y.; Xia, Y. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552–8553.CrossrefPubMedGoogle Scholar

  • Zhang, J.; Chen, P.; Sun, C.; Hu, X. Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system. Appl. Catal. 2004a, A266, 49–54.Google Scholar

  • Zhang, D.; Qi, L.; Yang, J.; Ma, J.; Cheng, H.; Huang, L. Wet chemical synthesis of silver nanowire thin films at ambient temperature. Chem. Mater. 2004b, 16, 872–876.CrossrefGoogle Scholar

  • Zhang, W.; Qiao, X.; Chen, J.; Wang, H. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles. J. Colloid Interface Sci. 2006, 302, 370–373.CrossrefPubMedGoogle Scholar

  • Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y. Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem.– Eur. J. 2010, 16, 10234–10239.CrossrefGoogle Scholar

  • Zheng, X.; Zhao, X.; Guo, D.; Tang, B.; Xu, S.; Zhao, B.; Xu, W.; Lombardi, J. R. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength. Langmuir 2009, 25, 3802–3807.CrossrefPubMedGoogle Scholar

  • Zhu, J. J.; Kan, C. X.; Wan, J. G.; Han, M.; Wang, G. H. High-yield synthesis of uniform Ag nanowires with high aspect ratios by introducing the long-chain PVP in an improved polyol process. J. Nanomater. 2011, 2011, 982547.Google Scholar

About the article

Oleg V. Mikhailov

Oleg V. Mikhailov is the author of more than 1200 scientific publications in nine different languages; among them, there are 15 monographs and books, more than 30 reviews (including 12 in international scientific journals), and about 500 original research articles in authoritative (among them, there are more than 250 articles in 25 international) scientific journals. He has 125 patents on various inventions, too. He is the author of three popular scientific books (without coauthors) and more than 60 articles in popular scientific journals. He received grants from the Russian Foundation of Basic Researches (14 projects, 1996–2016), the International Scientific Soros Education Program (2 projects, 1994–1998), the Russian Ministry of Education (1998–2000 and 2014–2016), and the Academy of Science of Tatarstan Republic (2001–2005). He is an active member of the International New York Academy of Sciences (since 1993), a full member of the Russian Academy of Natural History (since 2013), and a member of the American Chemical Society (since 2008).


Received: 2017-12-24

Accepted: 2018-03-09

Published Online: 2018-04-23

Published in Print: 2018-06-27


Citation Information: Reviews in Inorganic Chemistry, Volume 38, Issue 1, Pages 21–42, ISSN (Online) 2191-0227, ISSN (Print) 0193-4929, DOI: https://doi.org/10.1515/revic-2017-0016.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]

Comments (0)

Please log in or register to comment.
Log in