Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 24, Issue 4

Issues

Does extracellular proteolysis control mammalian cognition?

Hideki Tamura
  • Corresponding author
  • Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yasuyuki Ishikawa
  • Department of Systems Life Engineering, Maebashi Institute of Technology, Maebashi, Gunma 371-0816, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sadao Shiosaka
  • Corresponding author
  • Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-15 | DOI: https://doi.org/10.1515/revneuro-2013-0007

Abstract

Recent advances in neuroscience techniques for analyzing synaptic functions, have revealed that even in a fully developed nervous system, dynamic structural changes in synapses can modify a variety of interactions between the presynaptic and postsynaptic neuron. Accumulating evidence suggests that extracellular proteases are involved in the structural modification of synapses through various pathways, including proteolytic cleavage at specific amino acid residues of the extracellular matrix proteins, cell adhesion molecules, and neurotrophic factors. Limited proteolysis induces changes in the properties of substrate proteins or releases functional domains (such as ligands) of the substrate proteins, which activate a signal transduction cascade, and hence could serve to initiate a variety of physiological functions. Such morphological and functional synaptic plasticity might underlie cognitive processes, including learning and memory in animals and humans. Here, we review potential molecular mechanisms of cognition-related focal proteolysis in the hippocampus. In addition, we developed a novel screening method to identify the physiological substrate for proteases.

Keywords: hippocampus; learning and memory; long-term potentiation; matrix metalloproteinase; serine protease; synaptic plasticity

References

  • Attwood, B.K., Bourgognon, J.-M., Patel, S., Mucha, M., Schiavon, E., Skrzypiec, A.E., Young, K.W., Shiosaka, S., Korostynski, M., Piechota, M., et al. (2011). Neuropsin cleaves EphB2 in the amygdala to control anxiety. Nature 473, 372–375.Google Scholar

  • Baranes, D., Lederfein, D., Huang, Y.Y., Chen, M., Bailey, C.H., and Kandel, E.R. (1998). Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21, 813–825.Google Scholar

  • Barr, D.S., Hoyt, K.L., Moore, S.D., and Wilson, W.A. (1997). Post-ictal depression transiently inhibits induction of LTP in area CA1 of the rat hippocampal slice. Epilepsy Res. 27, 111–118.CrossrefGoogle Scholar

  • Barrett, A.J. and Rawlings, N.D. (1995). Families and clans of serine peptidases. Arch. Biochem. Biophys. 318, 247–250.Google Scholar

  • Berretta, S. (2012). Extracellular matrix abnormalities in schizophrenia. Neuropharmacology 62, 1584–1597.Google Scholar

  • Bliss, T.V. and Collingridge, G.L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 361, 31–39.Google Scholar

  • Bliss, T., Errington, M., Fransen, E., Godfraind, J.M., Kauer, J.A., Kooy, R.F., Maness, P.F., and Furley, A.J. (2000). Long-term potentiation in mice lacking the neural cell adhesion molecule L1. Curr. Biol. 10, 1607–1610.Google Scholar

  • Bozdagi, O., Nagy, V., Kwei, K.T., and Huntley, G.W. (2007). In vivo roles for matrix metalloproteinase-9 in mature hippocampal synaptic physiology and plasticity. J. Neurophysiol. 98, 334–344.Google Scholar

  • Chen, Z.L. and Strickland, S. (1997). Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925.Google Scholar

  • Chen, Z., Yoshida, S., Kato, K., Momota, Y., Suzuki, J., Tanaka, T., Ito, J., Nishino, H., Aimoto, S., Kiyama, H., et al. (1995). Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. J. Neurosci. 15, 5088–5097.Google Scholar

  • Corfas, G., Roy, K., and Buxbaum, J.D. (2004). Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat. Neurosci. 7, 575–580.CrossrefGoogle Scholar

  • Coughlin, S.R. (2000). Thrombin signalling and protease-activated receptors. Nature 407, 258–264.Google Scholar

  • Denny, J.B., Polan-Curtain, J., Ghuman, A., Wayner, M.J., and Armstrong, D.L. (1990). Calpain inhibitors block long-term potentiation. Brain Res. 534, 317–320.Google Scholar

  • Dickinson, D., Ramsey, M.E., and Gold, J.M. (2007). Overlooking the obvious: a meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Arch. Gen. Psych. 64, 532–542.CrossrefGoogle Scholar

  • Dityatev, A., Schachner, M., and Sonderegger, P. (2010). The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat. Rev. Neurosci. 11, 735–746.CrossrefPubMedGoogle Scholar

  • Engert, F. and Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70.Google Scholar

  • Fernández-Monreal, M., López-Atalaya, J.P., Benchenane, K., Cacquevel, M., Dulin, F., Le Caer, J.-P., Rossier, J., Jarrige, A.-C., Mackenzie, E.T., Colloc’h, N., et al. (2004). Arginine 260 of the amino-terminal domain of NR1 subunit is critical for tissue-type plasminogen activator-mediated enhancement of N-methyl-D-aspartate receptor signaling. J. Biol. Chem. 279, 50850–50856.Google Scholar

  • Fisahn, A., Neddens, J., Yan, L., and Buonanno, A. (2009). Neuregulin-1 modulates hippocampal gamma oscillations: implications for schizophrenia. Cereb. Cortex. 19, 612–618.PubMedGoogle Scholar

  • Grammer, M., Kuchay, S., Chishti, A., and Baudry, M. (2005). Lack of phenotype for LTP and fear conditioning learning in calpain 1 knock-out mice. Neurobiol. Learn. Mem. 84, 222–227.PubMedGoogle Scholar

  • Hall, J., Whalley, H.C., Job, D.E., Baig, B.J., McIntosh, A.M., Evans, K.L., Thomson, P.A., Porteous, D.J., Cunningham-Owens, D.G., Johnstone, E.C., et al. (2006). A neuregulin 1 variant associated with abnormal cortical function and psychotic symptoms. Nat. Neurosci. 9, 1477–1478.PubMedGoogle Scholar

  • Harrison, P.J. and Weinberger, D.R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry. 10, 40–68.CrossrefPubMedGoogle Scholar

  • Hilgenberg, L.G., Su, H., Gu, H., O’Dowd, D.K., and Smith, M.A. (2006). Alpha3Na+/K+-ATPase is a neuronal receptor for agrin. Cell 125, 359–369.Google Scholar

  • Horii, Y., Yamasaki, N., Miyakawa, T., and Shiosaka, S. (2008). Increased anxiety-like behavior in neuropsin (kallikrein-related peptidase 8) gene-deficient mice. Behav. Neurosci. 122, 498–504.Google Scholar

  • Huang, Y.Y., Bach, M.E., Lipp, H.P., Zhuo, M., Wolfer, D.P., Hawkins, R.D., Schoonjans, L., Kandel, E.R., Godfraind, J.M., Mulligan, R., et al. (1996). Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704.Google Scholar

  • Izumi, A., Iijima, Y., Noguchi, H., Numakawa, T., Okada, T., Hori, H., Kato, T., Tatsumi, M., Kosuga, A., Kamijima, K., et al. (2008). Genetic variations of human neuropsin gene and psychiatric disorders: polymorphism screening and possible association with bipolar disorder and cognitive functions. Neuropsychopharmacology 33, 3237–3245.Google Scholar

  • Keifer, J., Sabirzhanov, B.E., Zheng, Z., Li, W., and Clark, T.G. (2009). Cleavage of proBDNF to BDNF by a tolloid-like metalloproteinase is required for acquisition of in vitro eyeblink classical conditioning. J. Neurosci. 29, 14956–14964.CrossrefGoogle Scholar

  • Kishi, T., Kato, M., Shimizu, T., Kato, K., Matsumoto, K., Yoshida, S., Shiosaka, S., and Hakoshima, T. (1999). Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. J. Biol. Chem. 274, 4220–4224.Google Scholar

  • Kishi, T., Matsuhashi, H., Bird, P.I., and Kato, K. (2002). Distribution of serine proteinase inhibitor, clade B, member 6 (Serpinb6) in the adult mouse brain. Brain Res. Gene Expr. Patterns. 1, 175–180.CrossrefGoogle Scholar

  • Komai, S., Matsuyama, T., Matsumoto, K., Kato, K., Kobayashi, M., Imamura, K., Yoshida, S., Ugawa, S., and Shiosaka, S. (2000). Neuropsin regulates an early phase of schaffer-collateral long-term potentiation in the murine hippocampus. Eur. J. Neurosci. 12, 1479–1486.PubMedCrossrefGoogle Scholar

  • Krug, A., Markov, V., Eggermann, T., Krach, S., Zerres, K., Stöcker, T., Shah, N.J., Schneider, F., Nöthen, M.M., Treutlein, J., et al. (2008). Genetic variation in the schizophrenia-risk gene neuregulin1 correlates with differences in frontal brain activation in a working memory task in healthy individuals. NeuroImage 42, 1569–1576.Google Scholar

  • La Marca, R., Cerri, F., Horiuchi, K., Bachi, A., Feltri, M.L., Wrabetz, L., Blobel, C.P., Quattrini, A., Salzer, J.L., and Taveggia, C. (2011). TACE (ADAM17) inhibits Schwann cell myelination. Nat. Neurosci. 14, 857–865.CrossrefGoogle Scholar

  • Lee, Y-S. and Silva, A.J. (2009). The molecular and cellular biology of enhanced cognition. Nat. Rev. Neurosci. 10, 126–140.CrossrefPubMedGoogle Scholar

  • Loeb, J.A. and Fischbach, G.D. (1995). ARIA can be released from extracellular matrix through cleavage of a heparin-binding domain. J. Cell Biol. 130, 127–135.Google Scholar

  • Lüthl, A., Laurent, J.P., Figurov, A., Muller, D., and Schachner, M. (1994). Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779.Google Scholar

  • Maletic-Savatic, M., Malinow, R., and Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927.Google Scholar

  • Matsumoto-Miyai, K., Ninomiya, A., Yamasaki, H., Tamura, H., Nakamura, Y., and Shiosaka, S. (2003). NMDA-dependent proteolysis of presynaptic adhesion molecule L1 in the hippocampus by neuropsin. J. Neurosci. 23, 7727–7736.Google Scholar

  • Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., and Kasai, H. (2004). Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766.Google Scholar

  • Matys, T. and Strickland, S. (2003). Tissue plasminogen activator and NMDA receptor cleavage. Nat. Med. 9, 371–372.PubMedCrossrefGoogle Scholar

  • Matzel, L.D., Babiarz, J., Townsend, D.A., Grossman, H.C., and Grumet, M. (2008). Neuronal cell adhesion molecule deletion induces a cognitive and behavioral phenotype reflective of impulsivity. Genes Brain Behav. 7, 470–480.CrossrefPubMedGoogle Scholar

  • Mizoguchi, H., Nakade, J., Tachibana, M., Ibi, D., Someya, E., Koike, H., Kamei, H., Nabeshima, T., Itohara, S., Takuma, K., et al. (2011). Matrix metalloproteinase-9 contributes to kindled seizure development in pentylenetetrazole-treated mice by converting pro-BDNF to mature BDNF in the hippocampus. J. Neurosci. 31, 12963–12971.CrossrefGoogle Scholar

  • Mizutani, A., Tanaka, T., Saito, H., and Matsuki, N. (1997). Postsynaptic blockade of inhibitory postsynaptic currents by plasmin in CA1 pyramidal cells of rat hippocampus. Brain Res. 761, 93–96.Google Scholar

  • Molinari, F., Rio, M., Meskenaite, V., Encha-Razavi, F., Augé, J., Bacq, D., Briault, S., Vekemans, M., Munnich, A., Attié-Bitach, T., et al. (2002). Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science 298, 1779–1781.Google Scholar

  • Moore, S.D., Barr, D.S., and Wilson, W.A. (1993). Seizure-like activity disrupts LTP in vitro. Neurosci. Lett. 163, 117–119.Google Scholar

  • Murase, S. and Schuman, E.M. (1999). The role of cell adhesion molecules in synaptic plasticity and memory. Curr. Opin. Cell Biol. 11, 549–553.CrossrefPubMedGoogle Scholar

  • Murray, A.J., Sauer, J.-F., Riedel, G., McClure, C., Ansel, L., Cheyne, L., Bartos, M., Wisden, W., and Wulff, P. (2011). Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat. Neurosci. 14, 297–299.CrossrefGoogle Scholar

  • Nagy, V., Bozdagi, O., Matynia, A., Balcerzyk, M., Okulski, P., Dzwonek, J., Costa, R.M., Silva, A.J., Kaczmarek, L., and Huntley, G.W. (2006). Matrix metalloproteinase-9 is required for hippocampal late-phase long-term potentiation and memory. J. Neurosci. 26, 1923–1934.CrossrefGoogle Scholar

  • Nakamura, Y., Tamura, H., Horinouchi, K., and Shiosaka, S. (2006). Role of neuropsin in formation and maturation of Schaffer-collateral L1cam-immunoreactive synaptic boutons. J. Cell Sci. 119, 1341–1349.CrossrefGoogle Scholar

  • Neddens, J. and Buonanno, A. (2010). Selective populations of hippocampal interneurons express ErbB4 and their number and distribution is altered in ErbB4 knockout mice. Hippocampus 20, 724–744.Google Scholar

  • Ng, K.S., Leung, H.W., Wong, P.T., and Low, C.M. (2012). Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor. J. Biol. Chem. 287, 25520–25529.Google Scholar

  • Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E.T., Vivien, D., and Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64.PubMedGoogle Scholar

  • Norris, E.H. and Strickland, S. (2007). Modulation of NR2B-regulated contextual fear in the hippocampus by the tissue plasminogen activator system. Proc. Natl. Acad. Sci. USA 104, 13473–13478.Google Scholar

  • Nyman-Huttunen, H., Tian, L., Ning, L., and Gahmberg, C.G. (2006). Alpha-actinin-dependent cytoskeletal anchorage is important for ICAM-5-mediated neuritic outgrowth. J. Cell Sci. 119, 3057–3066.CrossrefGoogle Scholar

  • O’Donnell, C., Nolan, M.F., and Van Rossum, M.C.W. (2011). Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. J. Neurosci. 31, 16142–16156.CrossrefGoogle Scholar

  • O’Dushlaine, C., Kenny, E., Heron, E., Donohoe, G., Gill, M., Morris, D., and Corvin, A. (2011). Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility. Mol. Psych. 16, 286–292.CrossrefGoogle Scholar

  • Oka, T., Hakoshima, T., Itakura, M., Yamamori, S., Takahashi, M., Hashimoto, Y., Shiosaka, S., and Kato, K. (2002). Role of loop structures of neuropsin in the activity of serine protease and regulated secretion. J. Biol. Chem. 277, 14724–14730.Google Scholar

  • Oliver, M.W., Baudry, M., and Lynch, G. (1989). The protease inhibitor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res. 505, 233–238.Google Scholar

  • Pankonin, M.S., Sohi, J., Kamholz, J., and Loeb, J.A. (2009). Differential distribution of neuregulin in human brain and spinal fluid. Brain Res. 1258, 1–11.Google Scholar

  • Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W-H., Hempstead, B.L., and Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491.Google Scholar

  • Park, H. and Poo, M. (2012). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23.CrossrefGoogle Scholar

  • Peixoto, R.T., Kunz, P.A., Kwon, H., Mabb, A.M., Sabatini, B.L., Philpot, B.D., and Ehlers. M.D. (2012). Transsynaptic signaling by activity-dependent cleavage of neuroligin-1. Neuron 76, 396–409.Google Scholar

  • Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J-E., and Woolfrey, K.M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Nat. Neurosci. 14, 285–293.CrossrefPubMedGoogle Scholar

  • Puente, X.S., Sánchez, L.M., Overall, C.M., and López-Otín, C. (2003). Human and mouse proteases: a comparative genomic approach. Nat. Rev. Genet. 4, 544–558.PubMedCrossrefGoogle Scholar

  • Qian, Z., Gilbert, M.E., Colicos, M.A., Kandel, E.R., and Kuhl, D. (1993). Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361, 453–457.Google Scholar

  • Rybakowski, J.K., Skibinska, M., Kapelski, P., Kaczmarek, L., and Hauser, J. (2009). Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr. Res. 109, 90–93.CrossrefGoogle Scholar

  • Samson, A.L., Nevin, S.T., Croucher, D., Niego, B., Daniel, P.B., Weiss, T.W., Moreno, E., Monard, D., Lawrence, D.A., and Medcalf, R.L. (2011). Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function. J. Neurochem. 107, 1091–1101.Google Scholar

  • Shamir, A., Kwon, O.B., Karavanova, I., Vullhorst, D., Leiva-Salcedo, E., Janssen, M.J., and Buonanno, A. (2012). The importance of the NRG-1/ErbB4 pathway for synaptic plasticity and behaviors associated with psychiatric disorders. J. Neurosci. 32, 2988–2997.CrossrefGoogle Scholar

  • Shimizu, C., Yoshida, S., Shibata, M., Kato, K., Momota, Y., Matsumoto, K., Shiosaka, T., Midorikawa, R., Kamachi, T., Kawabe, A., et al. (1998). Characterization of recombinant and brain neuropsin, a plasticity-related serine protease. J. Biol. Chem. 273, 11189–11196.Google Scholar

  • Shimizu, K., Phan, T., Mansuy, I.M., and Storm, D.R. (2007). Proteolytic degradation of SCOP in the hippocampus contributes to activation of MAP kinase and memory. Cell 128, 1219–1229.Google Scholar

  • Shiosaka, S. (2004). Serine proteases regulating synaptic plasticity. Anat. Sci. Int. 79, 137–144.PubMedCrossrefGoogle Scholar

  • Shiosaka, S. and Ishikawa, Y. (2011). Neuropsin–a possible modulator of synaptic plasticity. J. Chem. Neuroanat. 42, 24–29.CrossrefGoogle Scholar

  • Shors, T.J. and Matzel, L.D. (1997). Long-term potentiation: what’s learning got to do with it? Behav. Brain Sci. 20, 597–614.Google Scholar

  • Slipczuk, L., Bekinschtein, P., Katche, C., Cammarota, M., Izquierdo, I., and Medina, J.H. (2009). BDNF Activates mTOR to regulate GluR1 expression required for memory formation. PLoS One 4, 1–13.Google Scholar

  • Sorensen, S.D., Nicole, O., Peavy, R.D., Montoya, L.M., Lee, C.J., Murphy, T.J., Traynelis, S.F., and Hepler, J.R. (2003). Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol. Pharmacol. 64, 1199–1209.Google Scholar

  • Südhof, T.C. (2012). The presynaptic active zone. Neuron 75, 11–25.Google Scholar

  • Tamura, H., Ishikawa, Y., Hino, N., Maeda, M., Yoshida, S., Kaku, S., and Shiosaka, S. (2006). Neuropsin is essential for early processes of memory acquisition and Schaffer collateral long-term potentiation in adult mouse hippocampus in vivo. J. Physiol. 570, 541–551.Google Scholar

  • Tamura, H., Kawata, M., Hamaguchi, S., Ishikawa, Y., and Shiosaka, S. (2012). Processing of neuregulin-1 by neuropsin regulates GABAergic neuron to control neural plasticity of the mouse hippocampus. J. Neurosci. 32, 12657–12672.CrossrefGoogle Scholar

  • Tian, L., Nyman, H., Kilgannon, P., Yoshihara, Y., Mori, K., Andersson, L.C., Kaukinen, S., Rauvala, H., Gallatin, WM., and Gahmberg, C.G. (2000). Intercellular adhesion molecule-5 induces dendritic outgrowth by homophilic adhesion. J. Cell Biol. 150, 243–252.Google Scholar

  • Tian, L., Stefanidakis, M., Ning, L., Van Lint, P., Nyman-Huttunen, H., Libert, C., Itohara, S., Mishina, M., Rauvala, H., and Gahmberg, C.G. (2007). Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage. J. Cell Biol. 178, 687–700.Google Scholar

  • Toni, N., Buchs, P.A., Nikonenko, I., Bron, C.R., and Muller, D. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425.Google Scholar

  • Traynelis, S.F. and Lipton, S.A. (2001). Is tissue plasminogen activator a threat to neurons? Nat. Med. 7, 17–18.PubMedCrossrefGoogle Scholar

  • Traynelis, S.F. and Trejo, J. (2007). Protease-activated receptor signaling: new roles and regulatory mechanisms. Curr. Opin. Hematol. 14, 230–235.PubMedCrossrefGoogle Scholar

  • Vanderklish, P., Bednarski, E., and Lynch, G. (1996). Translational suppression of calpain blocks long-term potentiation. Learn. Mem. (Cold Spring Harb.) 3, 209–217.Google Scholar

  • Wang, X., Bozdagi, O., Nikitczuk, J.S., Zhai, Z.W., Zhou, Q., and Huntley, G.W. (2008). Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately. Proc. Natl. Acad. Sci. USA 105, 19520–19525.Google Scholar

  • Woo, R.-S., Li, X-M., Tao, Y., Carpenter-Hyland, E., Huang, Y.Z., Weber, J., Neiswender, H., Dong, X-P., Wu, J., Gassmann, M., et al. (2007). Neuregulin-1 enhances depolarization-induced GABA release. Neuron 54, 599–610.Google Scholar

  • Yoshida, S. and Shiosaka, S. (1999). Plasticity-related serine proteases in the brain (review). Int. J. Mol. Med. 3, 405–409.Google Scholar

About the article

Hideki Tamura

Hideki Tamura received MS and the PhD degrees from the Nara Institute of Science and Technology (NAIST), Japan, in 2003 and 2006, respectively. Since 2006, he has been Assistant Professor at NAIST. His current research interests include the neural basis of cognitive function and dysfunction.

Yasuyuki Ishikawa

Yasuyuki Ishikawa received MS and PhD degrees from Osaka University in 1998 and 2001, respectively. In 2003, he joined the Graduate School of Biological Sciences, Nara Institute of Science and Technology, Japan, as an Assistant Professor. He has been an Associated Professor in Maebashi Institute of Technology, since 2013. His research interest is learning and memory.

Sadao Shiosaka

Sadao Shiosaka received an MS degree from Nagoya University, Japan, in 1977 and a PhD degree from Osaka University, Japan, in 1982. In 1979, he joined the Department of Anatomy, Osaka University Medical School as Assistant Professor. He was appointed an Associated Professor in 1986. He is currently a Professor of Neuroscience at the Nara Institute of Science and Technology. His research interest is in activity-dependent synaptic plasticity via a local extracellular proteolytic activity at the synapse.


Corresponding authors: Hideki Tamura and Sadao Shiosaka, Laboratory of Functional Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan


Received: 2013-03-12

Accepted: 2013-04-14

Published Online: 2013-05-15

Published in Print: 2013-08-01


Citation Information: Reviews in the Neurosciences, Volume 24, Issue 4, Pages 365–374, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2013-0007.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
I. V. Kudryashova
Neurochemical Journal, 2019, Volume 13, Number 1, Page 1
[2]
M Kawata, S Morikawa, S Shiosaka, and H Tamura
Translational Psychiatry, 2017, Volume 7, Number 3, Page e1052
[3]
Manuela Marcoli, Luigi F. Agnati, Francesco Benedetti, Susanna Genedani, Diego Guidolin, Luca Ferraro, Guido Maura, and Kjell Fuxe
Reviews in the Neurosciences, 2015, Volume 26, Number 5
[4]
Silvia Hoirisch-Clapauch and Antonio Nardi
International Journal of Molecular Sciences, 2015, Volume 16, Number 12, Page 27550
[5]
Grzegorz Wiera and Jerzy W. Mozrzymas
Frontiers in Cellular Neuroscience, 2015, Volume 9
[6]
Tomasz Wójtowicz, Patrycja Brzdąk, and Jerzy W. Mozrzymas
Frontiers in Cellular Neuroscience, 2015, Volume 9
[7]
Harumitsu Suzuki, Dai Kanagawa, Hitomi Nakazawa, Yoshie Tawara-Hirata, Yoko Kogure, Chigusa Shimizu-Okabe, Chitoshi Takayama, Yasuyuki Ishikawa, and Sadao Shiosaka
Frontiers in Cellular Neuroscience, 2014, Volume 8
[8]
Peter Sonderegger and Kazumasa Matsumoto-Miyai
Trends in Neurosciences, 2014, Volume 37, Number 8, Page 413

Comments (0)

Please log in or register to comment.
Log in