Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 24, Issue 5

Issues

The role of the actin cytoskeleton in regulating Drosophila behavior

Shamsideen A. Ojelade
  • Department of Psychiatry, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
  • Program in Neuroscience, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Summer F. Acevedo / Adrian Rothenfluh
  • Corresponding author
  • Department of Psychiatry, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
  • Program in Neuroscience, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-09-28 | DOI: https://doi.org/10.1515/revneuro-2013-0017

Abstract

Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.

Keywords: actin; behavior; Drosophila; genetics

References

  • Ackermann, M. and Matus, A. (2003). Activity-induced targeting of profilin and stabilization of dendritic spine morphology. Nat. Neurosci. 6, 1194–2000.PubMedCrossrefGoogle Scholar

  • Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F., et al. (2000). The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.Google Scholar

  • Allansson, L., Khatibi, S., Olsson, T., and Hansson, E. (2001). Acute ethanol exposure induces [Ca2+]i transients, cell swelling and transformation of actin cytoskeleton in astroglial primary cultures. J. Neurochem. 76, 472–479.Google Scholar

  • Antar, L.N., Dictenberg, J.B., Plociniak, M., Afroz, R., and Bassell, G.J. (2005). Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav. 4, 350–359.PubMedCrossrefGoogle Scholar

  • Bahr, B.A., Staubli, U., Xiao, P., Chun, D., Ji, Z.X., Esteban, E.T., and Lynch, G. (1997). Arg-Gly-Asp-Ser-selective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of a candidate matrix receptor. J. Neurosci. 17, 1320–1329.Google Scholar

  • Bellen, H.J., Tong, C., and Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11, 514–522.CrossrefPubMedGoogle Scholar

  • Berger, K.H., Kong, E.C., Dubnau, J., Tully, T., Moore, M.S., and Heberlein, U. (2008). Ethanol sensitivity and tolerance in long-term memory mutants of Drosophila melanogaster. Alcohol Clin. Exp. Res. 32, 895–908.CrossrefGoogle Scholar

  • Bhandari, P., Kendler, K.S., Bettinger, J.C., Davies, A.G., and Grotewiel, M. (2009). An assay for evoked locomotor behavior in Drosophila reveals a role for integrins in ethanol sensitivity and rapid ethanol tolerance. Alcohol Clin. Exp. Res. 33, 1794–1805.PubMedCrossrefGoogle Scholar

  • Bolduc, F.V., Bell, K., Rosenfelt, C., Cox, H., and Tully, T. (2010). Fragile x mental retardation 1 and filamin a interact genetically in Drosophila long-term memory. Front Neural Circuits 3, 22.Google Scholar

  • Bourne, J.N. and Harris, K.M. (2008). Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67.CrossrefPubMedGoogle Scholar

  • Brand, A.H. and Perrimon, N. (1993). Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.Google Scholar

  • Brunton, V.G., MacPherson, I.R., and Frame, M.C. (2004). Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim. Biophys. Acta 1692, 121–144.Google Scholar

  • Bushey, D. and Cirelli, C. (2011). From genetics to structure to function: exploring sleep in Drosophila. Int. Rev. Neurobiol. 99, 213–244.Google Scholar

  • Bushey, D., Tononi, G., and Cirelli, C. (2009). The Drosophila fragile X mental retardation gene regulates sleep need. J. Neurosci. 29, 1948–1961.CrossrefGoogle Scholar

  • Bushey, D., Tononi, G., and Cirelli, C. (2011). Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332, 1576–1581.Google Scholar

  • Castets, M., Schaeffer, C., Bechara, E., Schenck, A., Khandjian, E.W., Luche, S., Moine, H., Rabilloud, T., Mandel, J.-L., and Bardoni, B. (2005). FMRP interferes with the Rac1 pathway and controls actin cytoskeleton dynamics in murine fibroblasts. Hum. Mol. Genet. 14, 835–844.Google Scholar

  • Chan, C.-C., Scoggin, S., Wang, D., Cherry, S., Dembo, T., Greenberg, B., Jin, E.J., Kuey, C., Lopez, A., Mehta, S.Q., et al. (2011). Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Curr. Biol. 21, 1704–1715.CrossrefGoogle Scholar

  • Chang, L., Kreko, T., Davison, H., Cusmano, T., Wu, Y., Rothenfluh, A., and Eaton, B.A. (2013). Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin. Mol. Biol. Cell. 24, 1749–1764.CrossrefPubMedGoogle Scholar

  • Cheng, Y., Endo, K., Wu, K., Rodan, A.R., Heberlein, U., and Davis, R.L. (2001). Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell 105, 757–768.Google Scholar

  • Chien, S., Reiter, L.T., Bier, E., and Gribskov, M. (2002). Homophila: human disease gene cognates in Drosophila. Nucleic. Acids Res. 30, 149–151.CrossrefGoogle Scholar

  • Cingolani, L.A. and Goda, Y. (2008). Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat. Rev. Neurosci. 9, 344–356.PubMedCrossrefGoogle Scholar

  • Comery, T.A., Harris, J.B., Willems, P.J., Oostra, B.A., Irwin, S.A., Weiler, I.J., and Greenough, W.T. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404.CrossrefGoogle Scholar

  • Corl, A.B., Berger, K.H., Ophir-Shohat, G., Gesch, J., Simms, J.A., Bartlett, S.E., and Heberlein, U. (2009). Happyhour, a Ste20 family kinase, implicates EGFR signaling in ethanol-induced behaviors. Cell 137, 949–960.Google Scholar

  • Delgado, R., Maureira, C., Oliva, C., Kidokoro, Y., and Labarca, P. (2000). Size of vesicle pools, rates of mobilization, and recycling at neuromuscular synapses of a Drosophila mutant, shibire. Neuron 28, 941–953.Google Scholar

  • Devineni, A.V. and Heberlein, U. (2009). Preferential ethanol consumption in Drosophila models features of addiction. Curr. Biol. 19, 2126–2132.PubMedCrossrefGoogle Scholar

  • Dietz, D.M., Sun, H., Lobo, M.K., Cahill, M.E., Chadwick, B., Gao, V., Koo, J.W., Mazei-Robison, M.S., Dias, C., Maze, I., et al. (2012). Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat. Neurosci. 15, 891–896.PubMedGoogle Scholar

  • Dietzl, G., Chen, D., Schnorrer, F., Su, K.-C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156.Google Scholar

  • Dillon, C. and Goda, Y. (2005). The actin cytoskeleton: integrating form and function at the synapse. Annu. Rev. Neurosci. 28, 25–55.CrossrefPubMedGoogle Scholar

  • Dityatev, A., Bukalo, O., and Schachner, M. (2008). Modulation of synaptic transmission and plasticity by cell adhesion and repulsion molecules. Neuron Glia Biol. 4, 197–209.PubMedCrossrefGoogle Scholar

  • Dockendorff, T.C., Su, H.S., McBride, S.M.J., Yang, Z., Choi, C.H., Siwicki, K.K., Sehgal, A., and Jongens, T.A. (2002). Drosophila lacking dfmr1 activity show defects in Circadian output and fail to maintain courtship interest. Neuron 34, 973–984.CrossrefGoogle Scholar

  • Eddison, M., Guarnieri, D.J., Cheng, L., Liu, C.H., Moffat, K.G., Davis, G., and Heberlein, U. (2011). arouser reveals a role for synapse number in the regulation of ethanol sensitivity. Neuron 70, 979–990.PubMedCrossrefGoogle Scholar

  • Fedulov, V., Rex, C.S., Simmons, D.A., Palmer, L., Gall, C.M., and Lynch, G. (2007). Evidence that long-term potentiation occurs within individual hippocampal synapses during learning. J. Neurosci. 27, 8031–8039.CrossrefGoogle Scholar

  • Galy, A., Schenck, A., Sahin, H.B., Qurashi, A., Sahel, J.A., Diebold, C., and Giangrande, A. (2011). CYFIP dependent actin remodeling controls specific aspects of Drosophila eye morphogenesis. Dev. Biol. 359, 37–46.Google Scholar

  • Gilestro, G.F., Tononi, G., and Cirelli, C. (2009). Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324, 109–112.Google Scholar

  • Godenschwege, T.A., Reisch, D., Diegelmann, S., Eberle, K., Funk, N., Heisenberg, M., Hoppe, V., Hoppe, J., Klagges, B.R.E., Martin, J.-R., et al. (2004). Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. Eur. J. Neurosci. 20, 611–622.CrossrefPubMedGoogle Scholar

  • Grashoff, C., Thievessen, I., Lorenz, K., Ussar, S., and Fassler, R. (2004). Integrin-linked kinase: integrin’s mysterious partner. Curr. Opin. Cell. Biol. 16, 565–571.PubMedCrossrefGoogle Scholar

  • Grotewiel, M.S., Beck, C.D., Wu, K.H., Zhu, X.R., and Davis, R.L. (1998). Integrin-mediated short-term memory in Drosophila. Nature 391, 455–460.Google Scholar

  • Guasch, R.M., Tomas, M., Minambres, R., Valles, S., Renau-Piqueras, J., and Guerri, C. (2003). RhoA and lysophosphatidic acid are involved in the actin cytoskeleton reorganization of astrocytes exposed to ethanol. J. Neurosci. Res. 72, 487–502.Google Scholar

  • Haditsch, U., Leone, D.P., Farinelli, M., Chrostek-Grashoff, A., Brakebusch, C., Mansuy, I.M., McConnell, S.K., and Palmer, T.D. (2009). A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol. Cell. Neurosci. 41, 409–419.CrossrefGoogle Scholar

  • Halpain, S. (2000). Actin and the agile spine: how and why do dendritic spines dance? Trends Neurosci. 23, 141–146.CrossrefPubMedGoogle Scholar

  • Heasman, S.J. and Ridley, A.J. (2008). Mammalian RhoGTPases: new insights into their function from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701.CrossrefGoogle Scholar

  • Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., and Pack, A.I. (2000). Rest in Drosophila is a sleep-like state. Neuron 25, 129–138.PubMedCrossrefGoogle Scholar

  • Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., Yamada, Y., Chiba, H., and Hirohashi, S. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and invasion. J. Cell. Biol. 143, 277–277.Google Scholar

  • Hotulainen, P. and Hoogenraad, C.C. (2010). Actin in dendritic spines: connecting dynamics to function. J. Cell. Biol. 189, 619–629.CrossrefGoogle Scholar

  • Huang, W., Zhu, P.J., Zhang, S., Zhou, H., Stoica, L., Galiano, M., Krnjevic, K., Roman, G., and Costa-Mattioli, M. (2013). mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat. Neurosci. 16, 441–448.Google Scholar

  • Huber, R., Ghilardi, M.F., Massimini, M., and Tononi, G. (2004). Local sleep and learning. Nature 430, 78–81.Google Scholar

  • Hyman, S.E. (2005). Addiction: a disease of learning and memory. Am. J. Psychiatry 162, 1414–1422.Google Scholar

  • Impey, S., Davare, M., Lesiak, A., Fortin, D., Ando, H., Varlamova, O., Obrietan, K., Soderling, T.R., Goodman, R.H., and Wayman, G.A. (2010). An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol. Cell. Neurosci. 43, 146–156.Google Scholar

  • Irie, F. and Yamaguchi, Y. (2002). EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118.CrossrefGoogle Scholar

  • Ja, W.W., Carvalho, G.B., Mak, E.M., de la Rosa, N.N., Fang, A.Y., Liong, J.C., Brummel, T., and Benzer, S. (2007). Prandiology of Drosophila and the CAFE assay. Proc. Natl. Acad. Sci. USA 104, 8253–8256.CrossrefGoogle Scholar

  • Jensen, V., Walaas, S.I., Hilfiker, S., Ruiz, A., and Hvalby, O. (2007). A delayed response enhancement during hippocampal presynaptic plasticity in mice. J. Physiol. 583, 129–143.Google Scholar

  • Kadrmas, J.L., Smith, M.A., Clark, K.A., Pronovost, S.M., Muster, N., Yates, J.R., and Beckerle, M.C. (2004). The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1. J. Cell. Biol. 167, 1019–1024.Google Scholar

  • Korobova, F. and Svitkina, T. (2010). Molecular architecture of synaptic actin cytoskeleton in hippocampal neurons reveals a mechanism of dendritic spine morphogenesis. Mol. Biol. Cell 21, 165–176.PubMedCrossrefGoogle Scholar

  • Kramár, E.A., Lin, B., Rex, C.S., Gall, C.M., and Lynch, G. (2006). Integrin-driven actin polymerization consolidates long-term potentiation. Proc. Natl. Acad. Sci. USA 103, 5579–5584.Google Scholar

  • Kuromi, H. and Kidokoro, Y. (1998). Two distinct pools of synaptic vesicles in single presynaptic boutons in a temperature-sensitive Drosophila mutant, shibire. Neuron 20, 917–925.CrossrefGoogle Scholar

  • Lamprecht, R. and LeDoux, J. (2004). Structural plasticity and memory. Nat. Rev. Neurosci. 5, 45–54.CrossrefPubMedGoogle Scholar

  • Lamprecht, R., Farb, C.R., Rodrigues, S.M., and LeDoux, J.E. (2006). Fear conditioning drives profilin into amygdala dendritic spines. Nat. Neurosci. 9, 481–483.CrossrefPubMedGoogle Scholar

  • Legate, K.R., Montanez, E., Kudlacek, O., and Fussler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell. Biol. 7, 20–31.CrossrefPubMedGoogle Scholar

  • Leiss, F., Koper, E., Hein, I., Fouquet, W., Lindner, J., Sigrist, S., and Tavosanis, G. (2009). Characterization of dendritic spines in the Drosophila central nervous system. Dev. Neurobiol. 69, 221–234.PubMedCrossrefGoogle Scholar

  • Leyssen, M. and Hassan, B.A. (2007). A fruitfly’s guide to keeping the brain wired. EMBO Rep. 8, 46–50.PubMedCrossrefGoogle Scholar

  • Loo, D.T., Kanner, S.B., and Aruffo, A. (1998). Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J. Biol. Chem. 273, 23304–23312.Google Scholar

  • Malinow, R., Schulman, H., and Tsien, R.W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.Google Scholar

  • Matus, M., Ackermann, M., Pehling, P., Byers, H.R., and Fujiwara, K. (1982). High actin concentrations in brain dendritic spines and postsynaptic densities. Proc. Natl. Acad. Sci. USA 79, 7590–7594.CrossrefGoogle Scholar

  • McBride, S.M., Choi, C.H., Wang, Y., Liebelt, D., Braunstein, E., Ferreiro, D., Sehgal, A., Siwicki, K.K., Dockendorff, T.C., Nguyen, H.T., et al. (2005). Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753–764.Google Scholar

  • McClure, K.D., French, R.L., and Heberlein, U. (2011). A Drosophila model for fetal alcohol syndrome disorders: role for the insulin pathway. Dis. Model Mech. 4, 335–346.CrossrefGoogle Scholar

  • McGuire, S.E., Le, P.T., Osborn, A.J., Matsumoto, K., and Davis, R.L. (2003). Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768.Google Scholar

  • Michaelsen, K., Murk, K., Zagrebelsky, M., Dreznjak, A., Jockusch, B.M., Rothkegel, M., and Korte, M. (2010). Fine-tuning of neuronal architecture requires two profilin isoforms. Proc. Natl. Acad. Sci. 107, 15780–15785.CrossrefGoogle Scholar

  • Michels, B., Chen, Y.-C., Saumweber, T., Mishra, D., Tanimoto, H., Schmid, B., Engmann, O., and Gerber, B. (2011). Cellular site and molecular mode of synapsin action in associative learning. Learn. Mem. 18, 332–344.PubMedCrossrefGoogle Scholar

  • Morales, J., Hiesinger, P.R., Schroeder, A.J., Kume, K., Verstreken, P., Jackson, F.R., Nelson, D.L., and Hassan, B.A. (2002). Drosophila fragile X protein, DFXR, regulates neuronal morphology and function in the brain. Neuron 34, 961–972.PubMedCrossrefGoogle Scholar

  • Mortillo, S., Elste, A., Ge, Y., Patil, S.B., Hsiao, K., Huntley, G.W., Davis, R.L., and Benson, D.L. (2012). Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic beta1-integrin. J. Comp. Neurol. 520, 2041–2052.Google Scholar

  • Muller, D., Joly, M., and Lynch, G. (1988). Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242, 1694–1697.Google Scholar

  • Murakoshi, H., Wang, H., and Yasuda, R. (2011). Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472, 100–104.Google Scholar

  • Nestler, E.J. (2002). Common molecular and cellular substrates of addiction and memory. Neurobiol. Learn. Mem. 78, 637–647.CrossrefPubMedGoogle Scholar

  • Ng, J., Nardine, T., Harms, M., Tzu, J., Goldstein, A., Sun, Y., Dietzl, G., Dickson, B.J., and Luo, L. (2002). Rac GTPases control axon growth, guidance and branching. Nature 416, 442–447.Google Scholar

  • Nunes, P., Haines, N., Kuppuswamy, V., Fleet, D.J., and Stewart, B.A. (2006). Synaptic vesicle mobility and presynaptic F-actin are disrupted in a N-ethylmaleimide-sensitive factor allele of Drosophila. Mol. Biol. Cell 17, 4709–4719.CrossrefGoogle Scholar

  • Offenhauser, N., Castelletti, D., Mapelli, L., Soppo, B.E., Regondi, M.C., Rossi, P., D’Angelo, E., Frassoni, C., Amadeo, A., Tocchetti, A., et al. (2006). Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell 127, 213–226.Google Scholar

  • Pandey, U.B. and Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436.CrossrefGoogle Scholar

  • Pavalko, F.M. and Burridge, K. (1991). Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin. J. Cell. Biol. 114, 481–491.CrossrefGoogle Scholar

  • Peru y Colón de Portugal, R.L., Acevedo, S.F., Rodan, A.R., Chang, L.Y., Eaton, B.A., and Rothenfluh, A. (2012). Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J. Neurosci. 32, 17706–17713.Google Scholar

  • Petrucci, T.C. and Morrow, J.S. (1987). Synapsin I: an actin-bundling protein under phosphorylation control. J. Cell. Biol. 105, 1355–1363.CrossrefGoogle Scholar

  • Pielage, J., Bulat, V., Zuchero, J.B., Fetter, R.D., and Davis, G.W. (2011). Hts/Adducin controls synaptic elaboration and elimination. Neuron 69, 1114–1131.Google Scholar

  • Popp, R.L. and Dertien, J.S. (2008). Actin depolymerization contributes to ethanol inhibition of NMDA receptors in primary cultured cerebellar granule cells. Alcohol 42, 525–539.PubMedCrossrefGoogle Scholar

  • Quinn, W.G., Harris, W.A., and Benzer, S. (1974). Conditioned behavior in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 71, 708–712.Google Scholar

  • Rabenstein, R.L., Addy, N.A., Caldarone, B.J., Asaka, Y., Gruenbaum, L.M., Peters, L.L., Gilligan, D.M., Fitzsimonds, R.M., and Picciotto, M.R. (2005). Impaired synaptic plasticity and learning in mice lacking beta-adducin, an actin-regulating protein. J. Neurosci. 25, 2138–2145.PubMedCrossrefGoogle Scholar

  • Reeve, S.P., Bassetto, L., Genova, G.K., Kleyner, Y., Leyssen, M., Jackson, F.R., and Hassan, B.A. (2005). The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr. Biol. 15, 1156–1163.PubMedCrossrefGoogle Scholar

  • Rex, C.S., Chen, L.Y., Sharma, A., Liu, J., Babayan, A.H., Gall, C.M., and Lynch, G. (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J. Cell Biol. 186, 85–97.Google Scholar

  • Rodan, A.R. and Rothenfluh, A. (2010). The genetics of behavioral alcohol responses in Drosophila. Int. Rev. Neurobiol. 91, 25–51.Google Scholar

  • Rohrbough, J., Grotewiel, M.S., Davis, R.L., and Broadie, K. (2000). Integrin-mediated regulation of synaptic morphology, transmission, and plasticity. J. Neurosci. 20, 6868–6878.Google Scholar

  • Rosahl, T.W., Geppert, M., Spillane, D., Herz, J., Hammer, R.E., Malenka, R.C., and Sudhof, T.C. (1993). Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670.Google Scholar

  • Rothenfluh, A., and Cowan, C.W. (2013). Emerging roles of actin cytoskeleton regulating enzymes in drug addiction: actin or reactin? Curr. Opin. Neurobiol. 23, 507–512.PubMedCrossrefGoogle Scholar

  • Rothenfluh, A., Threlkeld, R.J., Bainton, R.J., Tsai, L.T., Lasek, A.W., and Heberlein, U. (2006). Distinct behavioral responses to ethanol are regulated by alternate RhoGAP18B isoforms. Cell 127, 199–211.Google Scholar

  • Rubin, G.M. and Lewis, E.B. (2000). A brief history of Drosophila’s contributions to genome research. Science 287, 2216–2218.Google Scholar

  • Rubin, G.M. and Spradling, A.C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353.Google Scholar

  • Saneyoshi, T. and Hayashi, Y. (2012). The Ca2+ and Rho GTPase signaling pathways underlying activity-dependent actin remodeling at dendritic spines. Cytoskeleton 69, 545–554.Google Scholar

  • Schenck, A., Bardoni, B., Langmann, C., Harden, N., Mandel, J.-L., and Giangrande, A. (2003). CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron 38, 887–898.PubMedGoogle Scholar

  • Schubert, V. and Dotti, C.G. (2007). Transmitting on actin: synaptic control of dendritic architecture. J. Cell. Sci. 120, 205–212.CrossrefGoogle Scholar

  • Scott, E.K., Reuter, J.E., and Luo, L. (2003). Small GTPase Cdc42 is required for multiple aspects of dendritic morphogenesis. J. Neurosci. 23, 3118–3123.Google Scholar

  • Sekino, Y., Kojima, N., and Shirao, T. (2007). Role of actin cytoskeleton in dendritic spine morphogenesis. Neurochem. Int. 51, 92–104.CrossrefPubMedGoogle Scholar

  • Selva, J. and Egea, G. (2011). Ethanol increases p190RhoGAP activity, leading to actin cytoskeleton rearrangements. J. Neurochem. 119, 1306–1316.Google Scholar

  • Sharma, C.P., Ezzell, R.M., and Arnaout, M.A. (1995). Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J. Immunol. 154, 3461–3470.Google Scholar

  • Shi, Y. and Ethell, I.M. (2006). Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization. J. Neurosci. 26, 1813–1822.Google Scholar

  • Shuai, Y., Lu, B., Hu, Y., Wang, L., Sun, K., and Zhong, Y. (2010). Forgetting is regulated through Rac activity in Drosophila. Cell 140, 579–589.Google Scholar

  • Siechen, S., Yang, S., Chiba, A., and Saif, T. (2009). Mechanical tension contributes to clustering of neurotransmitter vesicles at presynaptic terminals. Proc. Natl. Acad. Sci. USA 106, 12611–12616.CrossrefGoogle Scholar

  • Stevens, R.J. and Littleton, J.T. (2011). Synaptic growth: dancing with adducin. Curr. Biol. 21, R402–R405.CrossrefGoogle Scholar

  • Strausfeld, N.J. and Hirth, F. (2013). Deep homology of arthropod central complex and vertebrate basal ganglia. Science 340, 157–161.Google Scholar

  • Tada, T. and Sheng, M. (2006). Molecular mechanisms of dendritic spine morphogenesis. Curr. Opin. Neurobiol. 16, 95–101.CrossrefPubMedGoogle Scholar

  • Tashiro, A., Minden, A., and Yuste, R. (2000). Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 10, 927–938.PubMedCrossrefGoogle Scholar

  • Thalhammer, A. and Cingolani, L.A. (in press). Cell adhesion and homeostatic synaptic plasticity. Neuropharmacology 2013 Mar 28. pii: S0028-3908(13)00111-1. doi: 10.1016/j.neuropharm.2013.03.015.CrossrefGoogle Scholar

  • Tomas, M., Lazaro-Dieguez, F., Duran, J.M., Marin, P., Renau-Piqueras, J., and Egea, G. (2003). Protective effects of lysophosphatidic acid (LPA) on chronic ethanol-induced injuries to the cytoskeleton and on glucose uptake in rat astrocytes. J. Neurochem. 87, 220–229.CrossrefGoogle Scholar

  • Tully, T. and Quinn, W.G. (1985). Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157, 263–277.Google Scholar

  • Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47.CrossrefGoogle Scholar

  • Uchida, N., Honjo, Y., Johnson, K.R., Wheelock, M.J., and Takeichi, M. (1996). The catenin cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. J. Cell. Biol. 135, 767–779.Google Scholar

  • Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.Google Scholar

  • Vosshall, L.B. (2007). Into the mind of a fly. Nature 450, 193–197.Google Scholar

About the article

Shamsideen A. Ojelade

Shamsideen Ojelade received his B.S. in Biology from the University of Houston. He is presently a graduate student in the neuroscience program and works in the laboratory of Dr. Rothenfluh, Department of Psychiatry, University of Texas-Southwestern Medical Center in Dallas, Texas. He has received funding from NIH through a NIDA institutional grant (T32 DA7290) and currently is completing his thesis dissertation under an F31-NIAAA fellowship (F31 AA021340).

Summer F. Acevedo

Summer F. Acevedo graduated with a B.A. in Biochemistry from the University of Northern Colorado, Greeley, CO and a PhD in Genetics from Texas A&M University, College Station, TX. She then completed a NIDA post-doctoral fellowship in Behavioral Neuroscience at Oregon Health & Science University in Portland, OR, before moving on as faculty in the Department of Pharmacology, Physiology & Toxicology, Program in Psychology at Ponce School of Medicine & Health Sciences in Puerto Rico. She is currently on the faculty in the Department of Psychiatry at UT Southwestern Medical Center, Dallas, TX.

Adrian Rothenfluh

Adrian Rothenfluh received his Diploma in molecular biology from the Biocenter, University of Basel, Switzerland, and his PhD in genetics from Rockefeller University in New York. Following postdoctoral training at UCSF, he became an assistant professor in the Department of Psychiatry at UT Southwestern Medical Center in Dallas, TX in 2007. He is funded by the NIH (R01AA019526), the Brain & Behavior Research Foundation, and the Endowed Scholars Program at UTSW.


Corresponding author: Adrian Rothenfluh, Department of Psychiatry, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA; and Program in Neuroscience, UT Southwestern Medical Center at Dallas, Dallas, TX 75235, USA, e-mail:


Received: 2013-05-18

Accepted: 2013-08-21

Published Online: 2013-09-28

Published in Print: 2013-10-01


Citation Information: Reviews in the Neurosciences, Volume 24, Issue 5, Pages 471–484, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2013-0017.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maayan Kaiser, Ryan Arvidson, Raz Zarivach, Michael E. Adams, and Frederic Libersat
Insect Biochemistry and Molecular Biology, 2018
[2]
Bhagaban Mallik and Vimlesh Kumar
Communicative & Integrative Biology, 2017, Page e1381806
[3]
Annie Park, Alfredo Ghezzi, Thilini P. Wijesekera, and Nigel S. Atkinson
Neuropharmacology, 2017, Volume 122, Page 22
[4]
Michael C Fahey, Alastair H Maclennan, Doris Kretzschmar, Jozef Gecz, and Michael C Kruer
Developmental Medicine & Child Neurology, 2017, Volume 59, Number 5, Page 462
[5]
Shamsideen A. Ojelade, Summer F. Acevedo, Geetha Kalahasti, Aylin R. Rodan, Adrian Rothenfluh, and Gregg Roman
PLOS ONE, 2015, Volume 10, Number 9, Page e0137465
[6]
J.-Y. Zhao, X.-T. Zhao, J.-T. Sun, L.-F. Zou, S.-X. Yang, X. Han, W.-C. Zhu, Q. Yin, and X.-Y. Hong
Insect Molecular Biology, 2017, Volume 26, Number 2, Page 215
[7]
Alexandre S. Cristino, Angel R. Barchuk, Flavia C. P. Freitas, Ramesh K. Narayanan, Stephanie D. Biergans, Zhengyang Zhao, Zila L. P. Simoes, Judith Reinhard, and Charles Claudianos
Nature Communications, 2014, Volume 5, Page 5529

Comments (0)

Please log in or register to comment.
Log in