Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 24, Issue 5


Baptisms of fire or death knells for acute-slice physiology in the age of ‘omics’ and light?

Sukant Khurana / Wen-Ke Li
Published Online: 2013-09-28 | DOI: https://doi.org/10.1515/revneuro-2013-0028


With increasing use of various techniques to record optically and electrophysiologically from awake behaving animals and the growing developments of brain-machine interfaces, one might wonder if the use of acute-slice physiology is on its deathbed. Have we actually arrived at a stage where we can abandon the use of acute slices, with most of the information about brain functions coming from in vivo experiments? We do not believe that this is the case, given that our understanding of the nuts and bolts of the nervous system, such as ion channels and transporters in near-native state, neuronal compartmentalization, and single-neuron computation, is far from complete. We believe that in the foreseeable future, questions in these fields will still be best addressed by acute-slice physiology. We approach this review from the perspective of improving acute-slice physiology so it can continue to provide relevant and valuable contributions to neuroscience. We conclude that the death of acute-slice physiology is an obituary prematurely written, merely due to waxing and waning trends in science and the shortsightedness of investigators. Acute-slice physiology has at least one more life to live after the hype around new techniques has passed, but it needs to reinvent itself in light of current knowledge.

Keywords: acute slice; aerobic respiration; artificial cerebrospinal fluid; electrophysiology; energetics; injury


  • Aguzzi, A., Barres, B.A., and Bennett, M.L. (2013). Microglia: scapegoat, saboteur, or something else? Science 339, 156–161.Google Scholar

  • Andersen, P. (1981). Brain slices – A neurobiological tool of increasing usefulness. Trends Neurosci. 4, 53–56.CrossrefGoogle Scholar

  • Becker, M., Nothwang, H.G., and Friauf, E. (2003). Differential expression pattern of chloride transporters NCC, NKCC2, KCC1, KCC3, KCC4, and AE3 in the developing rat auditory brainstem. Cell Tissue Res. 312, 155–165.Google Scholar

  • Bernstein, J.G. and Boyden, E.S. (2011). Optogenetic tools for analyzing the neural circuits of behavior. Trends Cogn. Sci. 15, 592–600.Google Scholar

  • Bourne, J. and Harris, K.M. (2007). Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol. 17, 381–386.PubMedCrossrefGoogle Scholar

  • Bragin, A., Hetke, J., Wilson, C.L., Anderson, D.J., Engel, J., and Buzsáki, G. (2000). Multiple site silicon-based probes for chronic recordings in freely moving rats: Implantation, recording and histological verification. J. Neurosci. Methods 98, 77–82.CrossrefGoogle Scholar

  • Burns, B.D. (1950). Some properties of the cat’s isolated cerebral cortex. J. Physiol. 111, 50–68.Google Scholar

  • Buzsáki, G. (2006). Rhythms of the Brain (New York, NY, USA: Oxford University Press).Google Scholar

  • Chen, J., Tan, Z., Zeng, L., Zhang, X., He, Y., Gao, W., Wu, X., Li, Y., Bu B., Wang W., et al. (2013). Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 61, 178–191.Google Scholar

  • Chorev, E., Epsztein, J., Houweling, A.R., Lee, A.K., and Brecht, M. (2009). Electrophysiological recordings from behaving animals – Going beyond spikes. Curr. Opin. Neurobiol. 19, 513–519.CrossrefPubMedGoogle Scholar

  • Colbert, C.M. and Johnston, D. (1996). Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686.Google Scholar

  • Colwell, C.S., Altemus, K.L., Cepeda, C., and Levine, M.S. (1996). Regulation of N-methyl-d-aspartate-induced toxicity in the neostriatum: a role for metabotropic glutamate receptors? Proc. Natl. Acad. Sci. USA 93, 1200–1204.CrossrefGoogle Scholar

  • Conn, P.M. (2010). Essential Ion Channel Methods (Burlington, MA, USA: Academic Press).Google Scholar

  • Dingledine, R. (1984). Brain Slices (New York, NY, USA: Plenum Press).Google Scholar

  • Eliades, S.J. and Wang, X. (2008). Chronic multi-electrode neural recording in free-roaming monkeys. J. Neurosci. Methods 172, 201–214.Google Scholar

  • Favilla, C.G., Topiol, D.D., Zesiewicz, T.A., Wagle Shukla, A., Foote, K.D., Jacobson, C.E., and Okun, M.S. (2013). Impact of discontinuing tremor suppressing medications following thalamic deep brain stimulation. Parkinsonism Relat. Disord. 19, 171–175.Google Scholar

  • Fenno, L., Yizhar, O., and Deisseroth, K. (2011). The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412.CrossrefPubMedGoogle Scholar

  • Ferster, D. and Jagadeesh, B. (1992). EPSP-IPSP interactions in cat visual cortex studied with in vivo whole-cell patch recording. J. Neurosci. 12, 1262–1274.Google Scholar

  • Fishman, H.M., Tewari, K.P., and Stein, P.G. (1990). Injury-induced vesiculation and membrane redistribution in squid giant axon. Biochim. Biophys. 1023, 421–435.Google Scholar

  • Frégnac, Y., Borg-Graham, L.J., and Monier, C. (1998). Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373.Google Scholar

  • Garthwaite, J., Woodhams, P.L., Collins, M.J., and Balazs, R. (1979). On the preparation of brain slices: Morphology and cyclic nucleotides. Brain Res. 173, 373–377.CrossrefPubMedGoogle Scholar

  • Gentet, L.J., Avermann, M., Matyas, F., Staiger, J.F., and Petersen, C.C.H. (2010). Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65, 422–435.Google Scholar

  • Ghazanfar, A.A. and Nicolelis, M. (1997). Nonlinear processing of tactile information in the thalamocortical loop. J. Neurophysiol. 78, 506–510.Google Scholar

  • Golding, N.L. and Spruston, N. (1998). Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200.Google Scholar

  • Grabenhorst, F., Hernádi, I., and Schultz, W. (2012). Prediction of economic choice by primate amygdala neurons. Proc. Natl. Acad. Sci. USA 109, 18950–18955.CrossrefGoogle Scholar

  • Grace, A.A. and Bunney, B.S. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons – 1. Identification and characterization. Neuroscience 10, 301–315.PubMedCrossrefGoogle Scholar

  • Grace, A.A. and Bunney, B.S. (1984). The control of firing pattern in nigral dopamine neurons: Single spike firing. J. Neurosci. 4, 2866–2876.Google Scholar

  • Haas, H.L., Schaerer, B., and Vosmansky, M. (1979). A simple perfusion chamber for the study of nervous tissue slices in vitro. J. Neurosci. Methods 1, 323–325.Google Scholar

  • Habets, R.L.P. and Borst, J.G.G. (2005). Post-tetanic potentiation in the rat calyx of Held synapse. J. Physiol. 564, 173–187.Google Scholar

  • Hahn, U. (2011). The problem of circularity in evidence, argument, and explanation. Perspect. Psychol. Sci. 6, 172–182.CrossrefGoogle Scholar

  • Haider, B., Duque, A., Hasenstaub, A.R., and McCormick, D.A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545.CrossrefGoogle Scholar

  • Haider, B., Häusser, M., and Carandini, M. (2013). Inhibition dominates sensory responses in the awake cortex. Nature 493, 97–100.Google Scholar

  • Hájos, N. and Mody, I. (2009). Establishing a physiological environment for visualized in vitro brain slice recordings by increasing oxygen supply and modifying aCSF content. J. Neurosci. Methods 183, 107–113.Google Scholar

  • Hermann, J., Pecka, M., Gersdorff von, H., Grothe, B., and Klug, A. (2007). Synaptic transmission at the calyx of Held under in vivo like activity levels. J. Neurophysiol. 98, 807–820.CrossrefGoogle Scholar

  • Hille, B. (1992). Ionic Channels of Excitable Membranes (Sunderland, MA, USA: Sinauer Associates).Google Scholar

  • Hochberg, L.R., Bacher, D., Jarosiewicz, B., Masse, N.Y., Simeral, J.D., Vogel, J., Haddadin, S., Liu, J., Cash, S.S., and van der Smagt, P. (2012). Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375.Google Scholar

  • Hoogerwerf, A.C. and Wise, K.D. (1994). A three-dimensional microelectrode array for chronic neural recording. IEEE Trans. Biomed. Eng. 41, 1136–1146.CrossrefPubMedGoogle Scholar

  • Hu, W., Tian, C., Li, T., Yang, M., Hou, H., and Shu, Y. (2009). Distinct contributions of Nav1. 6 and Nav1. 2 in action potential initiation and backpropagation. Nat. Neurosci. 12, 996–1002.Google Scholar

  • Hubel, D.H. (1957). Tungsten microelectrode for recording from single units. Science 125, 549–550.Google Scholar

  • Huchzermeyer, C., Albus, K., Gabriel, H.-J., Otáhal, J., Taubenberger, N., Heinemann, U., Kovács, R., and Kann, O. (2008). Gamma oscillations and spontaneous network activity in the hippocampus are highly sensitive to decreases in pO2 and concomitant changes in mitochondrial redox state. J. Neurosci. 28, 1153–1162.CrossrefGoogle Scholar

  • Huchzermeyer, C., Berndt, N., Holzhütter, H.-G., and Kann, O. (2013). Oxygen consumption rates during three different neuronal activity states in the hippocampal CA3 network. J. Cereb. Blood Flow Metab. 33, 263–271.Google Scholar

  • Hwang, E.J., Bailey, P.M., and Andersen, R.A. (2013). Volitional control of neural activity relies on the natural motor repertoire. Curr. Biol. 23, 353–361.CrossrefPubMedGoogle Scholar

  • Hyder, F., Rothman, D.L., and Bennett, M.R. (2013). Cortical energy demands of signaling and nonsignaling components in brain are conserved across mammalian species and activity levels. Proc. Natl. Acad. Sci. USA 110, 3549–3554.CrossrefGoogle Scholar

  • Ivanov, A. and Zilberter, Y. (2011). Critical state of energy metabolism in brain slices: The principal role of oxygen delivery and energy substrates in shaping neuronal activity. Front. Neuroenergetics 3, 9.PubMedCrossrefGoogle Scholar

  • Jagadeesh, B., Gray, C.M., and Ferster, D. (1992). Visually evoked oscillations of membrane potential in cells of cat visual cortex. Science 257, 552–554.Google Scholar

  • Ji, J., Najafi, K., and Wise, K.D. (1989). A scaled electronically-configurable multichannel recording array. Sens. Actuators, A 22, 589–591.Google Scholar

  • Kann, O. (2011). The energy demand of fast neuronal network oscillations: Insights from brain slice preparations. Front. Pharmacol. 2, 90.PubMedGoogle Scholar

  • Kawasaki, H., Adolphs, R., Kaufman, O., Damasio, H., Damasio, A.R., Granner, M., Bakken, H., Hori, T., and Howard, M.A. 3rd (2001). Single-neuron responses to emotional visual stimuli recorded in human ventral prefrontal cortex. Nat. Neurosci. 4, 15–16.Google Scholar

  • Khaliq, Z.M. and Raman, I.M. (2006). Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J. Neurosci. 26, 1935–1944.CrossrefGoogle Scholar

  • Khurana, S., Remme, M.W.H., Rinzel, J., and Golding, N.L. (2011). Dynamic interaction of Ih and IK-LVA during trains of synaptic potentials in principal neurons of the medial superior olive. J. Neurosci. 31, 8936–8947.CrossrefGoogle Scholar

  • Khurana, S., Liu, Z., Lewis, A.S., Rosa, K., Chetkovich, D., and Golding, N.L. (2012). An essential role for modulation of hyperpolarization-activated current in the development of binaural temporal precision. J. Neurosci. 32, 2814–2823.CrossrefGoogle Scholar

  • Kim, S., Guzman, S.J., Hu, H., and Jonas, P. (2012). Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons. Nat. Neurosci. 15, 600–606.CrossrefGoogle Scholar

  • Kinney, G.A. (2005). GAT-3 transporters regulate inhibition in the neocortex. J. Neurophysiol. 94, 4533–4537.CrossrefGoogle Scholar

  • Kirischuk, S., Parpura, V., and Verkhratsky, A. (2012). Sodium dynamics: Another key to astroglial excitability? Trends Neurosci. 35, 497–506.CrossrefPubMedGoogle Scholar

  • Kirov, S.A., Petrak, L.J., Fiala, J.C., and Harris, K.M. (2004). Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127, 69–80.Google Scholar

  • Kita, H. and Kitai, S.T. (1986). Electrophysiology of rat thalamo-cortical relay neurons: An in vivo intracellular recording and labeling study. Brain Res. 371, 80–89.Google Scholar

  • Kitamura, K., Judkewitz, B., Kano, M., Denk, W., and Häusser, M. (2008). Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat. Methods 5, 61–67.Google Scholar

  • Kochubey, O., Lou, X., and Schneggenburger, R. (2011). Regulation of transmitter release by Ca2+ and synaptotagmin: insights from a large CNS synapse. Trends Neurosci. 34, 237–246.PubMedCrossrefGoogle Scholar

  • Koerner, J.F. and Cotman, C.W. (1983). A microperfusion chamber for brain slice pharmacology. J. Neurosci. Methods 7, 243–251.CrossrefGoogle Scholar

  • Kreiman, G., Koch, C., and Fried, I. (2000a). Category-specific visual responses of single neurons in the human medial temporal lobe. Nat. Neurosci. 3, 946–953.PubMedGoogle Scholar

  • Kreiman, G., Koch, C., and Fried, I. (2000b). Imagery neurons in the human brain. Nature 408, 357–361.Google Scholar

  • Kriegeskorte, N., Simmons, W.K., and Bellgowan, P. (2009). Circular analysis in systems neuroscience: The dangers of double dipping. Nature 12, 535–540.Google Scholar

  • Krüger, J., Caruana, F., Volta, R.D., and Rizzolatti, G. (2010). Seven years of recording from monkey cortex with a chronically implanted multiple microelectrode. Front. Neuroeng. 3, 6.PubMedCrossrefGoogle Scholar

  • Laubach, M., Wessberg, J., and Nicolelis, M.A. (2000). Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task. Nature 405, 567–571.Google Scholar

  • Lee, A.K., Epsztein, J., and Brecht, M. (2009). Head-anchored whole-cell recordings in freely moving rats. Nat. Protoc. 4, 385–392.CrossrefPubMedGoogle Scholar

  • Lewis, A.S., Schwartz, E., Chan, C.S., Noam, Y., Shin, M., Wadman, W.J., Surmeier, D.J., Baram, T.Z., Macdonald, R.L., and Chetkovich, D.M. (2009). Alternatively spliced isoforms of TRIP8b differentially control h channel trafficking and function. J. Neurosci. 29, 6250–6265.CrossrefGoogle Scholar

  • Li, C.L. and McIlwain, H. (1957). Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J. Physiol. 139, 178–190.Google Scholar

  • Libet, B. and Gerard, R.W. (1939). Control of the potential rhythm of the isolated frog brain. J. Neurophysiol. 2, 153–169.Google Scholar

  • Lynch, G. and Schubert, P. (1980). The use of in vitro brain slices for multidisciplinary studies of synaptic function. Annu. Rev. Neurosci. 3, 1–22.CrossrefGoogle Scholar

  • Magee, J.C. and Johnston, D. (1995). Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487, 67–90.Google Scholar

  • Maidment, N.T., Martin, K.F., Ford, A.P.D.W., and Marsden, C.A. (1990). In vivo voltammetry: The use of carbon-fiber electrodes to monitor amines and their metabolites. Neurophysiol. Tech. 14, 321–384.CrossrefGoogle Scholar

  • Margrie, T.W., Meyer, A.H., Caputi, A., Monyer, H., Hasan, M.T., Schaefer, A.T., Denk, W., and Brecht, M. (2003). Targeted whole-cell recordings in the mammalian brain in vivo. Neuron 39, 911–918.Google Scholar

  • Mc Laughlin, M., van der Heijden, M., and Joris, P.X. (2008). How secure is in vivo synaptic transmission at the calyx of Held? J. Neurosci. 28, 10206–10219.CrossrefGoogle Scholar

  • McNaughton, B.L., O’Keefe, J., and Barnes, C.A. (1983). The stereotrode: A new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J. Neurosci. Methods 8, 391–397.CrossrefGoogle Scholar

  • Medvedeva, Y.V., Lin, B., Shuttleworth, C.W., and Weiss, J.H. (2009). Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J. Neurosci. 29, 1105–1114.Google Scholar

  • Miyakawa, H., Nakamura, T., Takagi, H., Watanabe, S., and Hirasawa, T. (1996). Observation of brain slice using infra-red differential interference contrast (IR-DIC) video microscopy. Nihon seirigaku zasshi 58, 301–306. In Japanese.Google Scholar

  • Murphy, M.P. (2012). Modulating mitochondrial intracellular location as a redox signal. Sci. Signal. 5, pe39.Google Scholar

  • Nedden zur, S., Hawley, S., Pentland, N., Hardie, D.G., Doney, A.S., and Frenguelli, B.G. (2011). Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors. J. Neurosci. 31, 6221–6234.CrossrefGoogle Scholar

  • Neher, E. (2007). Short-term plasticity turns plastic. Focus on “synaptic transmission at the calyx of held under in vivo-like activity levels”. J. Neurophysiol. 98, 577–578.CrossrefGoogle Scholar

  • Nicolelis, M.A.L. (2012). Mind in motion. Sci. Am. 307, 58–63.PubMedCrossrefGoogle Scholar

  • Nicolelis, M.A., Baccala, L.A., Lin, R.C., and Chapin, J.K. (1995). Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. Science 268, 1353–1358.Google Scholar

  • Nicolelis, M.A.L., Ghazanfar, A.A., Faggin, B.M., Votaw, S., and Oliveira, L.M.O. (1997). Reconstructing the engram: Simultaneous, multisite, many single neuron recordings. Neuron 18, 529–537.CrossrefPubMedGoogle Scholar

  • Nicoll, R.A. and Alger, B.E. (1981). A simple chamber for recording from submerged brain slices. J. Neurosci. Methods 4, 153–156.CrossrefGoogle Scholar

  • Njagi, J., Chernov, M.M., Leiter, J.C., and Andreescu, S. (2010). Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 82, 989–996.CrossrefGoogle Scholar

  • Obeid, I., Morizio, J.C., Moxon, K.A., Nicolelis, M.A.L., and Wolf, P.D. (2003). Two multichannel integrated circuits for neural recording and signal processing. IEEE Trans. Biomed. Eng. 50, 255–258.PubMedCrossrefGoogle Scholar

  • Ogden, D. and Stanfield, P. (1994). Patch clamp techniques for single channel and whole-cell recording. Microelectrode Techniques: The Plymouth Workshop Handbook. D. Ogden, ed. Vol. 2. (Cambridge, UK: Company of Biologists), pp. 53–78.Google Scholar

  • Palmer, C., Cheng, S.-Y., and Seidemann, E. (2007). Linking neuronal and behavioral performance in a reaction-time visual detection task. J. Neurosci. 27, 8122–8137.CrossrefGoogle Scholar

  • Pei, X., Volgushev, M., Vidyasagar, T.R., and Creutzfeldt, O.D. (1991). Whole cell recording and conductance measurements in cat visual cortex in vivo. Neuroreport 2, 485–488.Google Scholar

  • Pei, X., Vidyasagar, T.R., Volgushev, M., and Creutzfeldt, O.D. (1994). Receptive field analysis and orientation selectivity of postsynaptic potentials of simple cells in cat visual cortex. J. Neurosci. 14, 7130–7140.Google Scholar

  • Pluta, M. and Szyjer, M., eds. (1994). Phase Contrast and Differential Interference Contrast Imaging Techniques and Applications (Poland: SPIE-International Society for Optical Engineering).Google Scholar

  • Rasmussen, P., Wyss, M.T., and Lundby, C. (2011). Cerebral glucose and lactate consumption during cerebral activation by physical activity in humans. FASEB J. 25, 2865–2873.PubMedCrossrefGoogle Scholar

  • Robinson, D.L., Venton, B.J., and Heien, M. (2003). Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 49, 1763–1773.PubMedCrossrefGoogle Scholar

  • Roe, A.W. (2010). Imaging the Brain with Optical Methods (New York, NY, USA: Springer).Google Scholar

  • Rose, C.R. and Karus, C. (2013). Two sides of the same coin: Sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61, 1191–1205.Google Scholar

  • Rutherford, E.C., Pomerleau, F., Huettl, P., Strömberg, I., and Gerhardt, G.A. (2007). Chronic second-by-second measures of l-glutamate in the central nervous system of freely moving rats. J. Neurochem. 102, 712–722.CrossrefGoogle Scholar

  • Santoro, B., Wainger, B.J., and Siegelbaum, S.A. (2004). Regulation of HCN channel surface expression by a novel C-terminal protein-protein interaction. J. Neurosci. 24, 10750–10762.CrossrefGoogle Scholar

  • Schurr, A. and Payne, R.S. (2007). Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience 147, 613–619.Google Scholar

  • Scott, L.L., Hage, T.A., and Golding, N.L. (2007). Weak action potential backpropagation is associated with high-frequency axonal firing capability in principal neurons of the gerbil medial superior olive. J. Physiol. 583, 647–661.Google Scholar

  • Siapas, A.G. and Wilson, M.A. (1998). Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21, 1123–1128.CrossrefPubMedGoogle Scholar

  • Skrede, K.K. and Westgaard, R.H. (1971). The transverse hippocampal slice: A well-defined cortical structure maintained in vitro. Brain Res. 35, 589–593.CrossrefPubMedGoogle Scholar

  • Stanika, R.I., Villanueva, I., Kazanina, G., Andrews, S.B., and Pivovarova, N.B. (2012). Comparative impact of voltage-gated calcium channels and NMDA receptors on mitochondria-mediated neuronal injury. J. Neurosci. 32, 6642–6650.CrossrefGoogle Scholar

  • Steriade M. (2001). The Intact and Sliced Brain (Cambridge, MA, USA: A Bradford Book, MIT Press).Google Scholar

  • Stuart, G.J., Dodt, H.U., and Sakmann, B. (1993). Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflug. Arch. Eur. J. Phys. 423, 511–518.CrossrefGoogle Scholar

  • Stuart, G., Schiller, J., and Sakmann, B. (1997). Action potential initiation and propagation in rat neocortical pyramidal neurons. J. Physiol. 505, 617–632.Google Scholar

  • Szymusiak, R. and Nitz, D. (2003). Chronic recording of extracellular neuronal activity in behaving animals. Curr. Protoc. Neurosci. 6.16, 1–24.Google Scholar

  • Takeda, A., Sakurada, N., Ando, M., Kanno, S., and Oku, N. (2009). Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus. Neurochem. Int. 55, 376–382.PubMedCrossrefGoogle Scholar

  • Velliste, M., Perel, S., Spalding, M.C., Whitford, A.S., and Schwartz, A.B. (2008). Cortical control of a prosthetic arm for self-feeding. Nature 453, 1098–1101.Google Scholar

  • Wessberg, J., Stambaugh, C.R., Kralik, J.D., Beck, P.D., Laubach, M., Chapin, J.K., Kim, J., Biggs, S.J., Srinivasan, M.A., and Nicolelis, M.A. (2000). Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408, 361–365.Google Scholar

  • Williams, S.R. and Wozny, C. (2011). Errors in the measurement of voltage-activated ion channels in cell-attached patch-clamp recordings. Nat. Commun. 2, 242.PubMedCrossrefGoogle Scholar

  • Wixted, J.T. and Mickes, L. (2013). On the relationship between fMRI and theories of cognition the arrow points in both directions. Perspect. Psychol. Sci. 8, 104–107.CrossrefGoogle Scholar

  • Wyss, M.T., Jolivet, R., Buck, A., Magistretti, P.J., and Weber, B. (2011). In vivo evidence for lactate as a neuronal energy source. J. Neurosci. 31, 7477–7485.CrossrefGoogle Scholar

  • Yamamoto, C. and McIlwain, H. (1966). Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J. Neurochem. 13, 1333–1343.CrossrefGoogle Scholar

  • Yoon, Y. (2005). Regulation of mitochondrial dynamics: Another process modulated by Ca2+ signals? Sci. STKE 2005, pe18.Google Scholar

About the article

Sukant Khurana

Sukant Khurana is interested in neurogenetics, neuroengineering, physiology, behavior, computation, and theoretical neuroscience. He is also involved in both basic and applied research on alcoholism, learning, and memory. He uses both invertebrate and vertebrate model systems, along with human clinical studies, for his research. He is also extensively involved in science outreach (www.brainnart.com).

Wen-Ke Li

Wen-Ke Li is interested in neurogenetics, neuroengineering, network computation, and theoretical neuroscience. Currently, he is using a biologically constrained simulation of the cerebellar cortical network to investigate how the cerebellum can produce well-timed responses and to develop automated tools to measure animal behavior.

Corresponding author: Sukant Khurana, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, e-mail:

Received: 2013-07-28

Accepted: 2013-08-23

Published Online: 2013-09-28

Published in Print: 2013-10-01

Citation Information: Reviews in the Neurosciences, Volume 24, Issue 5, Pages 527–536, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2013-0028.

Export Citation

©2013 by Walter de Gruyter Berlin Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Panayiotis Tsokas, Bruno Rivard, Changchi Hsieh, James Cottrell, André Fenton, and Todd Sacktor
BIO-PROTOCOL, 2019, Volume 9, Number 19
Zsolt Gáll, Károly Orbán-Kis, and Tibor Szilágyi
Archives of Pharmacal Research, 2017, Volume 40, Number 1, Page 112
Celine Loussert Fonta, Andrew Leis, Cliff Mathisen, David S. Bouvier, Willy Blanchard, Andrea Volterra, Ben Lich, and Bruno M. Humbel
Journal of Structural Biology, 2015, Volume 189, Number 1, Page 53
David M. Dorris, Caitlin A. Hauser, Caitlin E. Minnehan, and John Meitzen
Journal of Neuroscience Methods, 2014, Volume 238, Page 1
Yossi Buskila, Paul P. Breen, Jonathan Tapson, André van Schaik, Matthew Barton, and John W. Morley
Scientific Reports, 2015, Volume 4, Number 1

Comments (0)

Please log in or register to comment.
Log in