Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 25, Issue 3

Issues

Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography

Luc Zimmer
  • Corresponding author
  • University of Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center (CRNL), Lyon, France
  • Hospices Civils de Lyon, 59 Boulevard Pinel, 69003 Lyon, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thierry Billard
Published Online: 2014-02-05 | DOI: https://doi.org/10.1515/revneuro-2014-0003

Abstract

Serotonin and its various receptors are involved in numerous brain functions and neuropsychiatric disorders. Of the 14 known serotoninergic receptors, the 5-HT7 receptor is the most recently identified and characterized. It is closely involved in the pathogenesis of depression, anxiety, epilepsy and pain and is therefore an important target for drug therapy. It is a crucial target in neuroscience, and there is a clear need for radioligands for in vitro and in vivo visualization and quantification, first in animal models and ultimately in humans. This review focuses on the main radioligands suggested for in vitro and in vivo imaging of the 5-HT7 receptor.

Keywords: autoradiography; 5-HT7; neurotransmission; positron emission tomography; radiopharmaceutical

References

  • Andriès, J., Lemoine, L., Mouchel-Blaisot, A., Tang, S., Verdurand, M., Le Bars, D., Zimmer, L., and Billard, T. (2010). Looking for a 5-HT7 radiotracer for positron emission tomography. Bioorg. Med. Chem. Lett. 20, 3730–3733.CrossrefGoogle Scholar

  • Andries, J., Lemoine, L., Le Bars, D., Zimmer, L., and Billard, T. (2011). Synthesis and radiolabelling of potent 5 HT7 receptor PET radiotracers. Eur. J. Med. Chem. 46, 3455–3461.Google Scholar

  • Bard, J.A., Zgombick, J., Adham, N., Vaysse, P., Branchek, T.A., and Weinshank, R.L. (1993). Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J. Biol. Chem. 268, 23422–23426.Google Scholar

  • Bonaventure, P., Nepomuceno, D., Kwok, A., Chai, W., Langlois, X., Hen, R., Stark, K., Carruthers, N., and Lovenberg, T.W. (2002). Reconsideration of 5-hydroxytryptamine (5-HT)7 receptor distribution using [3H]5-CT and [3H]8-hydroxy-2-(di-n-propylamino)tetraline: analysis in brain of 5-HT1A knockout and 5-HT1A/1B double-knockout mice. J. Pharmacol. Exp. Ther. 302, 240–248.Google Scholar

  • Bonaventure, P., Kelly, L., Aluisio, L., Shelton, J., Lord, B., Galici, R., Miller, K., Atack, J., Lovenberg, T.W., and Dugovic, C. (2007). Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J. Pharmacol. Exp. Ther. 321, 690–698.Google Scholar

  • Bourson, A., Kapps, V., Zwingelstein, C., Rudler, A., Boess, F.G., and Sleight, A.J. (1997). Correlation between 5-HT7 receptor affinity and protection against sound-induced seizures in DBA/2J mice. Naunyn Schmiedebergs Arch. Pharmacol. 356, 820–826.Google Scholar

  • Brenchat, A., Romero, L., García, M., Pujol, M., Burgueño, J., Torrens, A., Hamon, M., Baeyens, J.M., Buschmann, H., Zamanillo, D., et al. (2009). 5-HT7 receptor activation inhibits mechanical hypersensitivity secondary to capsaicin sensitization in mice. Pain 141, 239–247.Google Scholar

  • Colomb, J., Becker, G., Forcellini, E., Meyer, S., Buisson, L., Zimmer, L., and Billard, T. (2014). Synthesis and pharmacological evaluation of a new series of radiolabeled ligands for 5-HT7 receptor PET neuroimaging. Nucl. Med. Biol. In press.CrossrefGoogle Scholar

  • Dean, B., Pavey, G., Thomas, D., and Scarr, E. (2006). Cortical serotonin7, 1D and 1F receptors: effects of schizophrenia, suicide and antipsychotic drug treatment. Schizophr. Res. 88, 265–274.Google Scholar

  • Drew, M.R. and Hen, R. (2007). Adult hippocampal neurogenesis as target for the treatment of depression. CNS Neurol. Disord. Drug Targets 6, 205–218.Google Scholar

  • Duncan, M.J. and Franklin, K.M. (2007). Expression of 5-HT7 receptor mRNA in the hamster brain: effect of aging and association with calbindin-D28K expression. Brain Res. 1143, 70–77.Google Scholar

  • Duncan, M.J., Short, J., and Wheeler D.L. (1999). Comparison of the effects of aging on 5-HT7 and 5-HT1A receptors in discrete regions of the circadian timing system in hamsters. Brain Res. 829, 39–45.Google Scholar

  • Faure, C., Mnie-Filali, O., Scarna, H., Debonnel, G., and Haddjeri, N. (2006). Effects of the 5-HT7 receptor antagonist SB-269970 on rat hormonal and temperature responses to the 5-HT1A/7 receptor agonist 8-OH-DPAT. Neurosci Lett. 404, 122–126.Google Scholar

  • Forbes, I.T., Dabbs, S., Duckworth, D.M., Jennings, A.J., King, F.D., Lovell, P.J., Collin, L., Brown, A.M., Hagan, J.J., Middlemiss, D.N., et al. (1998). (R)-3,N-Dimethyl-N-[1-methyl-3-(4-methylpiperidin-1-yl)propyl]benzene sulfonamide: the first selective 5-HT7 receptor antagonist. J. Med. Chem. 41, 655–657.CrossrefGoogle Scholar

  • Freret, T., Paizanis, E., Beaudet, G., Gusmao-Montaigne, A., Nee, G., Dauphin, F., Bouet, V., and Boulouard, M. (2014). Modulation of 5-HT7 receptor: effect on object recognition performances in mice. Psychopharmacology 231, 393–400.Google Scholar

  • Graf, M., Jakus, R., Kantor, S., Levay, G., and Bagdy, G. (2004). Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci. Lett. 359, 45–48.Google Scholar

  • Guscott, M., Bristow, L.J., Hadingham, K., Rosahl, T.W., Beer, M.S., Stanton, J.A., Bromidge, F., Owens, A.P., Huscroft, I., Myers, J., et al. (2005). Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48, 492–502.CrossrefGoogle Scholar

  • Gustafson, E.L., Durkin, M.M., Bard, J.A., Zgombick, J., and Branchek, T.A. (1996). A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-HT7 receptor in rat brain. Br. J. Pharmacol. 117, 657–666.Google Scholar

  • Halldin, C., Gulyás, B., Langer, O., and Farde, L. (2001). Brain radioligands – state of the art and new trends. Q. J. Nucl. Med. 45, 139–152.Google Scholar

  • Hagan, J.J., Price, G.W., Jeffrey, P., Deeks, N.J., Stean, T., Piper, D., Smith, M.I., Upton, N., Medhurst, A.D., Middlemiss, D.N., et al. (2000). Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. Br. J. Pharmacol. 130, 539–548.Google Scholar

  • Heckl, S., Pipkorn, R., Nägele, T., Vogel, U., Küker, W., and Voight, K. (2004). Molecular imaging: Bridging the gap between neuroradiology and neurohistology. Histol. Histopathol. 19, 651–668.PubMedGoogle Scholar

  • Hedlund, P.B. (2009). The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology 206, 345–354.Google Scholar

  • Hedlund, P.B. and Sutcliffe, J.G. (2004). Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol. Sci. 25, 481–486.CrossrefGoogle Scholar

  • Hedlund, P.B., Huitron-Resendiz, S., Henriksen, S.J., and Sutcliffe, J.G. (2005). 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol. Psychiatry 58, 831–837.Google Scholar

  • Hemedah, M., Coupar, I.M., and Mitchelson, F.J. (1999). [3H]Mesulergine labels 5-HT7 sites in rat brain and guinea-pig ileum but not rat jejunum. Br. J. Pharmacol. 126, 179–188.Google Scholar

  • Herth, M.M., Volk, B., Pallagi, K., Kofoed Bech, L., Antoni, F.A., Knudsen, G.M., and Kristensen, J.L. (2012a). Synthesis and in vitro evaluation of oxindole derivatives as potential radioligands for 5-HT7 receptor imaging with PET. ACS Chem. Neuroscience 3, 1002–1007.CrossrefGoogle Scholar

  • Herth, M.M., Hansen, H.D., Ettrup, A., Dyssegaard, A., Lehel, S., Kristensen, J., and Knudsen, G.M. (2012b). Synthesis and evaluation of [¹¹C]Cimbi-806 as a potential PET ligand for 5-HT7 receptor imaging. Bioorg. Med. Chem. 20, 4574–4581.Google Scholar

  • Horisawa, T., Ishiyama, T., Ono, M., Ishibashi, T., and Taiji, M. (2013). Binding of lurasidone, a novel antipsychotic, to rat 5-HT7 receptor: analysis by [3H]SB-269970 autoradiography. Prog. Neuropsychopharmacol. Biol. Psychiatry 40, 132–137.CrossrefGoogle Scholar

  • Irving, H.R., Tan, Y.Y., Tochon-Danguy, N., Liu, H., Chetty, N., Desmond, P.V., Pouton, C.W., and Coupar, I.M. (2007). Comparison of 5-HT4 and 5-HT7 receptor expression and function in the circular muscle of the human colon. Life Sci. 80, 1198–1205.CrossrefGoogle Scholar

  • IUPAHR Database. (2013). Available at http://www.iuphar-db.org/index.jsp. Accessed November 2013.

  • Jones, B.J. and Blackburn, T.P. (2002). The medical benefit of 5-HT research. Pharmacol. Biochem. Behav. 71, 555–568.CrossrefGoogle Scholar

  • Kikuchi, C., Ando, T., Watanabe, T., Nagaso, H., Okuno, M., Hiranuma, T., and Koyama, M. (2002). 2a-[4-(Tetrahydropyridoindol-2-yl)butyl]tetrahydrobenzindole derivatives: new selective antagonists of the 5-hydroxytryptamine7 receptor. J. Med. Chem. 45, 2197–2206.CrossrefGoogle Scholar

  • Kinsey, A.M., Wainwright, A., Heavens, R., Sirinathsinghji, D.J., and Oliver, K.R. (2001). Distribution of 5-HT5A, 5-HT5B, 5-HT6 and 5-HT7 receptor mRNAs in the rat brain. Brain Res. Mol. Brain Res. 88, 194–198.Google Scholar

  • Krobert, K.A., Bach, T., Syversveen, T., Kvingedal, A.M., and Levy, F.O. (2001). The cloned human 5-HT7 receptor splice variants: a comparative characterization of their pharmacology, function and distribution. Naunyn Schmiedebergs Arch. Pharmacol. 363, 620–632.Google Scholar

  • Lancelot, S. and Zimmer, L. (2010). Small animal positron emission tomography as a tool for neuropharmacology. Trends Pharmacol. Sci. 31, 411–417.PubMedCrossrefGoogle Scholar

  • Leopoldo, M., Lacivita, E., De Giorgio, P., Fracasso, C., Guzzetti, S., Caccia, S., Contino, M., Colabufo, N.A., Berardi, F., and Perrone, R. (2008). Structural modifications of N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamides: influence on lipophilicity and 5-HT7 receptor activity. J. Med. Chem. 51, 5813–5822.CrossrefGoogle Scholar

  • Leopoldo, M., Lacivita, E., Colabufo, N., De Giorgio, P., Berardi, F., and Perrone, R. (2012). New 1-arylpiperazinic ligands of 5-HT7 receptors and use thereof. World Intellectual Property Organization. WO 2012/159662 A1.Google Scholar

  • Lemoine, L., Andries, J., Le Bars, D., Billard, T., and Zimmer, L. (2011). Comparison of 4 radiolabeled antagonists for serotonin 5-HT7 receptor neuroimaging: toward the first PET radiotracer. J. Nucl. Med. 52, 1811–1818.CrossrefGoogle Scholar

  • Lovell, P.J., Bromidge, S., Dabbs, D.M., Duckworth, I.T., Forbes, A.J., Jennings, F.D., King, D.N., Middlemiss, S.K., Rahman, D.V., Saunders, L.L., et al. (2000). A novel, potent, and selective 5-HT7 antagonist: (R)-3-(2-(2-(4-methylpiperidin-yl)ethyl)pyrrolidine-1-sulfonyl)phenol (SB-269970). J. Med. Chem. 43, 342–345.CrossrefGoogle Scholar

  • Lovenberg, T.W., Erlander, M.G., Baron, B.M., and Sutcliffe, J.G. (1993). Cloning of new 5-HT receptors. Int. Clin. Psychopharmacol. 8, 19–23.CrossrefGoogle Scholar

  • Malberg, J.E., Eisch, A.J., Nestler, E.J., and Duman, R.S. (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110.Google Scholar

  • Martín-Cora, F.J. and Pazos, A. (2004). Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br. J. Pharmacol. 141, 92–104.Google Scholar

  • Matthys, A., Haegeman, G., Van Craenenbroeck, K., and Vanhoenacker, P. (2011). Role of the 5-HT7 receptor in the central nervous system: from current status to future perspectives. Mol. Neurobiol. 43, 228–253.CrossrefGoogle Scholar

  • Meneses, A. (1999). 5-HT system and cognition. Neurosci. Biobehav. Rev. 23, 1111–1125.CrossrefGoogle Scholar

  • Meneses, A. (2004). Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task. Behav. Brain Res. 155, 275–282.Google Scholar

  • Mengod, G., Vilaro, M.T., Raurich, A., Lopez-Gimenez, J.F., Cortes, R., and Palacios, J.M. (1996). 5-HT receptors in mammalian brain: receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem. J. 28, 747–758.CrossrefGoogle Scholar

  • Mnie-Filali, O., Lambás-Señas, L., Zimmer, L., and Haddjeri, N. (2007). 5-HT7 receptor antagonists as a new class of antidepressants. Drug News Perspect. 20, 613–618.CrossrefGoogle Scholar

  • Mnie-Filali, O., Faure, C., Lambás-Señas, L., El Mansari, M., Belblidia, H., Gondard, E., Etiévant, A., Scarna, H., Didier, A., Berod, A., et al. (2011). Pharmacological blockade of 5-HT7 receptors as a putative fast acting antidepressant strategy. Neuropsychopharmacology 36, 1275–1288.CrossrefGoogle Scholar

  • Neumaier, J.F., Sexton, T.J., Yracheta, J., Diaz, A.M., and Brownfield, M. (2001). Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridization and agonist stimulated cFos expression. J. Chem. Neuroanat. 21, 63–73.CrossrefGoogle Scholar

  • Paillet-Loilier, M., Fabis, F., Lepailleur, A., Bureau, R., Butt-Gueulle, S., Dauphin, F., Lesnard, A., Delarue, C., Vaudry, H., and Rault, S. (2007). Novel aminoethylbiphenyls as 5-HT7 receptor ligands. Bioorg. Med. Chem. Lett. 17, 3018–3022.CrossrefGoogle Scholar

  • Pien, H.H., Fischman, A.J., Thrall, J.H., and Sorensen, A.G. (2005). Using imaging biomarkers to accelerate drug development and clinical trials. Drug Discov. Today 10, 259–266.PubMedCrossrefGoogle Scholar

  • Plassat, J.L., Amlaiky, N., and Hen, R. (1993). Molecular cloning of a mammalian serotonin receptor that activates adenylate cyclase. Mol. Pharmacol. 44, 229–236.PubMedGoogle Scholar

  • Pérez-García, G., Gonzalez-Espinosa, C., and Meneses, A. (2006). An mRNA expression analysis of stimulation and blockade of 5-HT7 receptors during memory consolidation. Behav. Brain Res. 169, 83–92.Google Scholar

  • Pittalà, V., Salerno, L., Modica, M., Siracusa, M.A., and Romeo, G. (2007). 5-HT7 Receptor ligands: recent developments and potential therapeutic applications. Mini-Rev. Med. Chem. 7, 945–960.CrossrefGoogle Scholar

  • Rocha-González, H.I., Meneses, A., Carlton, S.M., and Granados-Soto, V. (2005). Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain 117, 182–192.Google Scholar

  • Roberts, A.J., Krucker, T., Levy, C.L., Salina, K.A., Sutcliffe, J.G., and Hedlund, P.B. (2004). Mice lacking 5-HT receptors show specific impairments in contextual learning. Eur. J. Neurosci. 19, 1913–1922.CrossrefGoogle Scholar

  • Roth, B.L., Craig, S.C., Choudhary, M.S., Uluer, A., Monsma, F.J. Jr., Shen, Y., Meltzer, H.Y., and Sibley, D.R. (1994). Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5 hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 268, 1403–1410.Google Scholar

  • Ruocco, L.A., Romano, E., Treno, C., Lacivita, E., Claudio, A., Gironi-Carnevale, U.A., Travaglini, D., Leopoldo, M., Laviola, G., Sadile, A.G., et al. (2014). Emotional and risk seeking behavior after prepuberal subchronic or adult acute stimulation of 5-HT7-Rs in naples high excitability rats. Synapse. In press.CrossrefGoogle Scholar

  • Schoeffter, P., Ullmer, C., Bobirnac, I., Gabbiani, G., and Lübbert, H. (1996). Functional, endogenously expressed 5-hydroxytryptamine 5-ht7 receptors in human vascular smooth muscle cells. Br. J. Pharmacol. 117, 993–994.Google Scholar

  • Shimoda, Y., Yui, J., Xie, L., Fujinaga, M., Yamasaki, T., Ogawa, M., Nengaki, N., Kumata, K., Hatori, A., Kawamura, K., et al. (2013). Synthesis and evaluation of 1-[2-(4-[11C]methoxyphenyl)phenyl]piperazine for imaging of the serotonin 5-HT7 receptor in the rat brain. Bioorg. Med. Chem. 21, 5316–5322.CrossrefGoogle Scholar

  • Stowe, R.L. and Barnes, N.M. (1998). Selective labeling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine. Neuropharmacology 37, 1611–1619.CrossrefGoogle Scholar

  • Thomas, D.R., Atkinson, P.A., Ho, M., Bromidge, S.M., Lovell, P.J., Hagan, J.J., Middlemiss, D.N., and Price, G.W. (2000). [3H]-SB-269970 – a selective antagonist radioligand for 5-HT7 receptors. Br. J. Pharmacol. 130, 409–417.Google Scholar

  • Thomas, D.R., Atkinson, P.J., Hastie, P.G., Roberts, J.C., Middlemiss, D.N., and Price, G.W. (2002). [3H]-SB-269970 radiolabels 5-HT7 receptors in rodent, pig and primate brain tissues. Neuropharmacology 42, 74–81.Google Scholar

  • To, Z.P., Bonhaus, D.W., Eglen, R.M., and Jakeman, L.B. (1995).Characterization and distribution of putative 5-HT7 receptors in guinea-pig brain. Br. J. Pharmacol. 115, 107–116.Google Scholar

  • Varnäs, K., Thomas, D.R., Tupala, E., Tiihonen, J., and Hall, H. (2004). Distribution of 5-HT7 receptors in the human brain: a preliminary autoradiographic study using [3H]SB-269970. Neurosci. Lett. 367, 313–316.Google Scholar

  • Volk, B., Barkoczy, J., Hegedus, E., Udvari, S., Gacsalyi, I., Mezei, T., Pallagi, K., Kompagne, H., Levay, G., Egyed, A., et al. (2008). Phenylpiperazinyl-butyl)oxindoles as selective 5-HT7 receptor antagonists. J. Med. Chem. 51, 2522−2532.Google Scholar

  • Volk, B., Gacsalyi, I., Pallagi, K., Poszavacz, L., Gyonos, I., Szabo, E., Bako, T., Spedding, M., Simig, G., and Szenasi, G. (2011). Optimization of (arylpiperazinylbutyl)oxindoles exhibiting selective 5-HT7 receptor antagonist activity. J. Med. Chem. 54, 6657−6669.CrossrefGoogle Scholar

  • Waeber, C. and Moskowitz, M.A. (1995). Autoradiographic visualisation of [3H]5-carboxamidotryptamine binding sites in the guinea pig and rat brain. Eur. J. Pharmacol. 283, 31–46.Google Scholar

  • Wesołowska, A., Nikiforuk, A., Stachowicz, K., and Tatarczyńska, E. (2006). Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51, 578–586.Google Scholar

  • Yoon, J., Yoo, E.A., Kim, J.Y., Pae, A.N., Rhim, H., Park, W.K., Kong, J.Y., and Park Choo, H.Y. (2008). Preparation of piperazine derivatives as 5-HT7 receptor antagonists. Bioorg. Med. Chem. 16, 5405–5412.CrossrefGoogle Scholar

  • Zhang, M.R., Haradahira, T., Maeda, J., Okauchi, T., Kida, T., Obayashi, S., Suzuki, K., and Suhara, T. (2002). Synthesis and preliminary PET study of the 5-HT7 receptor antagonist [11C]DR4446. J. Labelled Comp. Radiopharm. 45, 857–866.CrossrefGoogle Scholar

  • Zimmer, L. and Le Bars, D. (2013). Current status of positron emission tomography radiotracers for serotonin receptors in humans. J. Labelled Comp. Radiopharm. 56, 105–113.Google Scholar

  • Zimmer, L. and Luxen, A. (2012). PET radiotracers for molecular imaging in the brain: past, present and future. Neuroimage 61, 363–670.Google Scholar

About the article

Luc Zimmer

Luc Zimmer received a pharmacist education at the University of Strasbourg (1986–1992); he completed training during his internship and residency in radiopharmacy and radiopharmacology (1993–1999) at the Hospital University of Tours (Nuclear Medicine Department) and at the National Institute for Nuclear Sciences and Technology, Saclay. He received his PharmD in radiopharmacology (1998) and his PhD in neuroscience (1999) from the University of Tours. He is currently professor of pharmacology at the University of Lyon (Université Claude Bernard Lyon 1) and is radiopharmacist at the University Hospital of Lyon (Hospices Civils de Lyon). He is head of the preclinical department of the CERMEP-imaging platform and is in charge of the laboratory ‘Radiopharmaceutical and neurochemical biomarkers’ at the Lyon Neuroscience Research Center (CRNL). His research interests include radiopharmacology and in vivo imaging of neurotransmissions with PET.

Thierry Billard

Thierry Billard, after education in chemistry, completed by an engineer diploma from ‘Institut de Chimie et Physique Industrielles de Lyon’ (now ‘CPE Lyon’) in 1993. He obtained his PhD in organic chemistry from the University of Lyon in 1996. After a post-doctoral internship with Prof. L. Ghosez (Université Catholique de Louvain, Belgium), he was appointed in 1999 as a CNRS permanent researcher. He was promoted Research Director by CNRS in 2008. He is currently in charge of a research team at the Institute of Chemistry and Biochemistry (ICBMS). His research activities focus on fluorine chemistry, medicinal chemistry, radiochemistry and their applications in medical imaging.


Corresponding author: Luc Zimmer, University of Lyon 1, CNRS, INSERM, Lyon Neuroscience Research Center (CRNL), Lyon, France, e-mail: ; and Hospices Civils de Lyon, 59 Boulevard Pinel, 69003 Lyon, France


Received: 2013-11-25

Accepted: 2014-01-09

Published Online: 2014-02-05

Published in Print: 2014-06-01


Citation Information: Reviews in the Neurosciences, Volume 25, Issue 3, Pages 357–365, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0003.

Export Citation

©2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. K. Tiwari, J. Yui, Pooja Pooja, S. Aggarwal, T. Yamasaki, L. Xie, N. Chadha, Y. Zhang, M. Fujinaga, Y. Shimoda, K. Kumata, A. K. Mishra, M. Ogawa, and M.-R. Zhang
RSC Adv., 2015, Volume 5, Number 25, Page 19752
[2]
Nicholas Zareifopoulos and Costas Papatheodoropoulos
Neurobiology of Learning and Memory, 2016, Volume 136, Page 204
[3]
Matthias M. Herth, Valdemar L. Andersen, Hanne D. Hansen, Nikolas Stroth, Balázs Volk, Szabolcs Lehel, Agnete Dyssegaard, Anders Ettrup, Per Svenningsson, Gitte M. Knudsen, and Jesper L. Kristensen
Journal of Medicinal Chemistry, 2015, Volume 58, Number 8, Page 3631

Comments (0)

Please log in or register to comment.
Log in