Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board Member: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Eichenbaum, Howard / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year

IMPACT FACTOR 2016: 2.546
5-year IMPACT FACTOR: 3.191

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.249
Source Normalized Impact per Paper (SNIP) 2016: 0.983

See all formats and pricing
More options …
Volume 25, Issue 5 (Oct 2014)


Fetal alcohol spectrum disorders and cognitive functions of young children

Ioannis Bakoyiannis
  • Corresponding author
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eleana Gkioka
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vasileios Pergialiotis
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ioanna Mastroleon
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anastasia Prodromidou
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Georgios D. Vlachos
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Despina Perrea
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-28 | DOI: https://doi.org/10.1515/revneuro-2014-0029


Fetal alcohol spectrum disorder (FASD) is one of the main causes of mental retardation worldwide. Nearly 1% of children in North America are affected from antenatal exposure to ethanol. Its economic burden in industrialized countries is increasing. It is estimated that, in the United States, 4.0 billion dollars are annually expended in the treatment and rehabilitation of these patients. As a pathologic entity, they present with a broad symptomatology. Fetal alcohol syndrome (FAS) is the most readily recognized clinical manifestation of these disorders. Various factors seem to contribute in the pathogenesis of FASD-related cognitive disorders. During the last 20 years, several potential pretranslational and posttranslational factors have been extensively studied in various experimental animal models. Research has specifically focused on several neurotransmitters, insulin resistance, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, abnormal glycosylation of several proteins, oxidative stress, nutritional antioxidants, and various epigenetic factors. The purpose of the present review is to summarize the clinical manifestations of this disorder during childhood and adolescence and to summarize the possible pathophysiologic and epigenetic pathways that have been implicated in the pathophysiology of FASD.

Keywords: alcohol; cognitive; FASD


  • Amini, S.A., Dunstan, R.H., Dunkley, P.R., and Murdoch, R.N. (1996). Oxidative stress and the fetotoxicity of alcohol consumption during pregnancy. Free Radic. Biol. Med. 21, 357–365.Google Scholar

  • Aronne, M.P., Evrard, S.G., Mirochnic, S., and Brusco, A. (2008). Prenatal ethanol exposure reduces the expression of the transcriptional factor Pax6 in the developing rat brain. Ann. NY Acad. Sci. 1139, 478–498.Google Scholar

  • Becker, M., Warr-Leeper, G.A., and Leeper, H.A., Jr. (1990). Fetal alcohol syndrome: a description of oral motor, articulatory, short-term memory, grammatical, and semantic abilities. J. Commun. Disord. 23, 97–124.CrossrefGoogle Scholar

  • Bell, S.H., Stade, B., Reynolds, J.N., Rasmussen, C., Andrew, G., Hwang, P.A., and Carlen, P.L. (2010). The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 34, 1084–1089.CrossrefPubMedGoogle Scholar

  • Bergamini, C.M., Gambetti, S., Dondi, A., and Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 10, 1611–1626.PubMedCrossrefGoogle Scholar

  • Berman, R.F. and Hannigan, J.H. (2000). Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy. Hippocampus 10, 94–110.PubMedCrossrefGoogle Scholar

  • Binkhorst, M., Wortmann, S.B., Funke, S., Kozicz, T., Wevers, R.A., and Morava, E. (2012). Glycosylation defects underlying fetal alcohol spectrum disorder: a novel pathogenetic model. ‘When the wine goes in, strange things come out’ – S.T. Coleridge, The Piccolomini. J. Inherit. Metab. Dis. 35, 399–405.CrossrefGoogle Scholar

  • Brocardo, P.S., Gil-Mohapel, J., and Christie, B.R. (2011). The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res. Rev. 67, 209–225.CrossrefPubMedGoogle Scholar

  • Burd, L. and Martsolf, J.T. (1989). Fetal alcohol syndrome: diagnosis and syndromal variability. Physiol. Behav. 46, 39–43.PubMedCrossrefGoogle Scholar

  • Burden, M.J., Jacobson, S.W., and Jacobson, J.L. (2005). Relation of prenatal alcohol exposure to cognitive processing speed and efficiency in childhood. Alcohol Clin. Exp. Res. 29, 1473–1483.CrossrefPubMedGoogle Scholar

  • Chen, Y., Ozturk, N.C., and Zhou, F.C. (2013). DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 8, e60503.Google Scholar

  • Chu, J., Tong, M., and de la Monte, S.M. (2007). Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol. 113, 659–673.PubMedCrossrefGoogle Scholar

  • Clarren, S.K. and Smith, D.W. (1978). The fetal alcohol syndrome. Lamp 35, 4–7.PubMedGoogle Scholar

  • Coggins, T.E., Timler, G.R., and Olswang, L.B. (2007). A state of double jeopardy: impact of prenatal alcohol exposure and adverse environments on the social communicative abilities of school-age children with fetal alcohol spectrum disorder. Lang. Speech Hear. Serv. Sch. 38, 117–127.CrossrefPubMedGoogle Scholar

  • Cooper, J.D. and Rudeen, P.K. (1988). Alterations in regional catecholamine content and turnover in the male rat brain in response to in utero ethanol exposure. Alcohol Clin. Exp. Res. 12, 282–285.CrossrefPubMedGoogle Scholar

  • de la Monte, S.M. and Wands, J.R. (2002). Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol. Life Sci. 59, 882–893.PubMedGoogle Scholar

  • de la Monte, S.M. and Wands, J.R. (2005). Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J. Alzheimers Dis. 7, 45–61.Google Scholar

  • de la Monte, S.M. and Wands, J.R. (2010). Role of central nervous system insulin resistance in fetal alcohol spectrum disorders. J. Popul. Ther. Clin. Pharmacol. 17, e390–e404.Google Scholar

  • de la Monte, S.M., Ganju, N., Tanaka, S., Banerjee, K., Karl, P.J., Brown, N.V., and Wands, J.R. (1999). Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin. Exp. Res. 23, 770–777.PubMedGoogle Scholar

  • de la Monte, S.M., Ganju, N., Banerjee, K., Brown, N.V., Luong, T., and Wands, J.R. (2000). Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin. Exp. Res. 24, 716–726.PubMedGoogle Scholar

  • de la Monte, S.M., Neely, T.R., Cannon, J., and Wands, J.R. (2001). Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol. Life Sci. 58, 1950–1960.PubMedGoogle Scholar

  • Detering, N., Collins, R., Hawkins, R.L., Ozand, P.T., and Karahasan, A.M. (1980). The effects of ethanol on developing catecholamine neurons. Adv. Exp. Med. Biol. 132, 721–727.PubMedGoogle Scholar

  • Diaz de Leon-Guerrero, S., Pedraza-Alva, G., and Perez-Martinez, L. (2011). In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur. J. Neurosci. 33, 1563–1574.CrossrefGoogle Scholar

  • Dong, J., Sulik, K.K., and Chen, S.Y. (2010). The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol. Lett. 193, 94–100.PubMedCrossrefGoogle Scholar

  • Downing, C., Johnson, T.E., Larson, C., Leakey, T.I., Siegfried, R.N., Rafferty, T.M., and Cooney, C.A. (2011). Subtle decreases in DNA methylation and gene expression at the mouse Igf2 locus following prenatal alcohol exposure: effects of a methyl-supplemented diet. Alcohol 45, 65–71.CrossrefGoogle Scholar

  • Druse, M.J., Tajuddin, N., Kuo, A., and Connerty, M. (1990). Effects of in utero ethanol exposure on the developing dopaminergic system in rats. J. Neurosci. Res. 27, 233–240.CrossrefGoogle Scholar

  • Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665.PubMedCrossrefGoogle Scholar

  • Fast, D.K. and Conry, J. (2009). Fetal alcohol spectrum disorders and the criminal justice system. Dev. Disabil. Res. Rev. 15, 250–257.CrossrefPubMedGoogle Scholar

  • Flak, A.L., Su, S., Bertrand, J., Denny, C.H., Kesmodel, U.S., and Cogswell, M.E. (2014). The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: a meta-analysis. Alcohol Clin. Exp. Res. 38, 214–226.CrossrefPubMedGoogle Scholar

  • Floyd, R.A. and Carney, J.M. (1992). Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 32, S22–S27.PubMedCrossrefGoogle Scholar

  • Fryer, S.L., McGee, C.L., Matt, G.E., Riley, E.P., and Mattson, S.N. (2007). Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure. Pediatrics 119, e733–e741.CrossrefGoogle Scholar

  • Fuglestad, A.J., Fink, B.A., Eckerle, J.K., Boys, C.J., Hoecker, H.L., Kroupina, M.G., Zeisel, S.H., Georgieff, M.K., and Wozniak, J.R. (2013). Inadequate intake of nutrients essential for neurodevelopment in children with fetal alcohol spectrum disorders (FASD). Neurotoxicol. Teratol. 39, 128–132.CrossrefGoogle Scholar

  • Ge, Y., Belcher, S.M., Pierce, D.R., and Light, K.E. (2004). Altered expression of Bcl2, Bad and Bax mRNA occurs in the rat cerebellum within hours after ethanol exposure on postnatal day 4 but not on postnatal day 9. Brain Res. Mol. Brain Res. 129, 124–134.Google Scholar

  • Gillespie, R.A., Eriksen, J., Hao, H.L., and Druse, M.J. (1997). Effects of maternal ethanol consumption and buspirone treatment on dopamine and norepinephrine reuptake sites and D1 receptors in offspring. Alcohol Clin. Exp. Res. 21, 452–459.Google Scholar

  • Gold, P.E. (2003). Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol. Learn. Mem. 80, 194–210.PubMedCrossrefGoogle Scholar

  • Goodrich-Hunsaker, N.J., Livingstone, S.A., Skelton, R.W., and Hopkins, R.O. (2010). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus 20, 481–491.Google Scholar

  • Gordon, A.S., Collier, K., and Diamond, I. (1986). Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc. Natl. Acad. Sci. USA 83, 2105–2108.CrossrefGoogle Scholar

  • Green, C.R., Mihic, A.M., Nikkel, S.M., Stade, B.C., Rasmussen, C., Munoz, D.P., and Reynolds, J.N. (2009). Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the Cambridge Neuropsychological Tests Automated Battery (CANTAB). J. Child Psychol. Psychiatry. 50, 688–697.Google Scholar

  • Guizzetti, M. and Costa, L.G. (2007). Cholesterol homeostasis in the developing brain: a possible new target for ethanol. Hum. Exp. Toxicol. 26, 355–360.CrossrefGoogle Scholar

  • Guizzetti, M., Moore, N.H., Giordano, G., VanDemark, K.L., and Costa, L.G. (2010). Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors. Glia 58, 1395–1406.PubMedGoogle Scholar

  • Haley, D.W., Handmaker, N.S., and Lowe, J. (2006). Infant stress reactivity and prenatal alcohol exposure. Alcohol Clin. Exp. Res. 30, 2055–2064.CrossrefPubMedGoogle Scholar

  • Hamilton, D.A., Driscoll, I., and Sutherland, R.J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav. Brain Res. 129, 159–170.CrossrefGoogle Scholar

  • Hanson, J.W., Jones, K.L., and Smith, D.W. (1976). Fetal alcohol syndrome. Experience with 41 patients. J. Am. Med. Assoc. 235, 1458–1460.CrossrefGoogle Scholar

  • Haycock, P.C. and Ramsay, M. (2009). Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol. Reprod. 81, 618–627.CrossrefGoogle Scholar

  • Hellemans, K.G., Sliwowska, J.H., Verma, P., and Weinberg, J. (2010). Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci. Biobehav. Rev. 34, 791–807.PubMedCrossrefGoogle Scholar

  • Idrus, N.M., Happer, J.P., and Thomas, J.D. (2013). Cholecalciferol attenuates perseverative behavior associated with developmental alcohol exposure in rats in a dose-dependent manner. J. Steroid Biochem. Mol. Biol. 136, 146–149.CrossrefGoogle Scholar

  • Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Price, M.T., Stefovska, V., Horster, F., Tenkova, T., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056–1060.Google Scholar

  • Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., and Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatr. 57, 229–238.CrossrefGoogle Scholar

  • Kelly, G.M., Druse, M.J., Tonetti, D.A., and Oden, B.G. (1986). Maternal ethanol consumption: binding of L-glutamate to synaptic membranes from whole brain, cortices, and cerebella of offspring. Exp. Neurol. 91, 219–228.PubMedCrossrefGoogle Scholar

  • Kim, K.C., Go, H.S., Bak, H.R., Choi, C.S., Choi, I., Kim, P., Han, S.H., Han, S.M., Shin, C.Y., and Ko, K.H. (2010). Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells. J. Biomed. Sci. 17, 85.CrossrefGoogle Scholar

  • Kim, P., Park, J.H., Choi, C.S., Choi, I., Joo, S.H., Kim, M.K., Kim, S.Y., Kim, K.C., Park, S.H., Kwon, K.J., et al. (2013). Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and MeCP2 expression in rodent offspring. Neurochem. Res. 38, 620–631.CrossrefGoogle Scholar

  • Kleiber, M.L., Laufer, B.I., Wright, E., Diehl, E.J., and Singh, S.M. (2012). Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res. 1458, 18–33.CrossrefGoogle Scholar

  • Koppel, J., Acker, C., Davies, P., Lopez, O.L., Jimenez, H., Azose, M., Greenwald, B.S., Murray, P.S., Kirkwood, C.M., Kofler, J., et al. (2014). Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol. Aging S0197-4580, 00237-1.Google Scholar

  • Kot-Leibovich, H. and Fainsod, A. (2009). Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis. Model Mech. 2, 295–305.Google Scholar

  • Lebel, C., Rasmussen, C., Wyper, K., Walker, L., Andrew, G., Yager, J., and Beaulieu, C. (2008). Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcohol Clin. Exp. Res. 32, 1732–1740.PubMedCrossrefGoogle Scholar

  • Li, Y.X., Yang, H.T., Zdanowicz, M., Sicklick, J.K., Qi, Y., Camp, T.J., and Diehl, A.M. (2007). Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling. Lab. Invest. 87, 231–240.CrossrefPubMedGoogle Scholar

  • Light, K.E., Serbus, D.C., and Santiago, M. (1989). Exposure of rats to ethanol from postnatal days 4 to 8: alterations of cholinergic neurochemistry in the cerebral cortex and corpus striatum at day 20. Alcohol Clin. Exp. Res. 13, 29–35.CrossrefGoogle Scholar

  • Lovinger, D.M., White, G., and Weight, F.F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243, 1721–1724.PubMedCrossrefGoogle Scholar

  • Luo, J. and Miller, M.W. (1997). Differential sensitivity of human neuroblastoma cell lines to ethanol: correlations with their proliferative responses to mitogenic growth factors and expression of growth factor receptors. Alcohol Clin. Exp. Res. 21, 1186–1194.PubMedGoogle Scholar

  • Luo, J. and Miller, M.W. (1998). Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain Res. Brain Res. Rev. 27, 157–167.CrossrefPubMedGoogle Scholar

  • Lupton, C., Burd, L., and Harwood, R. (2004). Cost of fetal alcohol spectrum disorders. Am. J. Med. Genet. C Semin. Med. Genet. 15, 42–50.CrossrefGoogle Scholar

  • Marcus, J.C. (1987). Neurological findings in the fetal alcohol syndrome. Neuropediatrics 18, 158–160.CrossrefPubMedGoogle Scholar

  • Mattson, S.N., Roesch, S.C., Fagerlund, A., Autti-Ramo, I., Jones, K.L., May, P.A., Adnams, C.M., Konovalova, V., and Riley, E.P. (2010). Toward a neurobehavioral profile of fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 34, 1640–1650.CrossrefPubMedGoogle Scholar

  • May, P.A., Gossage, J.P., Kalberg, W.O., Robinson, L.K., Buckley, D., Manning, M., and Hoyme, H.E. (2009). Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev. Disabil. Res. Rev. 15, 176–192.PubMedCrossrefGoogle Scholar

  • May, P.A., Blankenship, J., Marais, A.S., Gossage, J.P., Kalberg, W.O., Joubert, B., Cloete, M., Barnard, R., De Vries, M., Hasken, J., et al. (2013). Maternal alcohol consumption producing fetal alcohol spectrum disorders (FASD): quantity, frequency, and timing of drinking. Drug Alcohol Depend. 133, 502–512.PubMedGoogle Scholar

  • McGee, C.L., Bjorkquist, O.A., Riley, E.P., and Mattson, S.N. (2009). Impaired language performance in young children with heavy prenatal alcohol exposure. Neurotoxicol. Teratol. 31, 71–75.PubMedCrossrefGoogle Scholar

  • Miller, M.W. (2007). Exposure to ethanol during gastrulation alters somatosensory-motor cortices and the underlying white matter in the macaque. Cereb. Cortex 17, 2961–2971.CrossrefPubMedGoogle Scholar

  • Niccols, A. (2007). Fetal alcohol syndrome and the developing socio-emotional brain. Brain Cognit. 65, 135–142.CrossrefGoogle Scholar

  • Nyaradi, A., Li, J., Hickling, S., Foster, J., and Oddy, W.H. (2013). The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 26, 97.Google Scholar

  • O’Hare, E.D., Lu, L.H., Houston, S.M., Bookheimer, S.Y., Mattson, S.N., O’Connor, M.J., and Sowell, E.R. (2009). Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Hum. Brain Mapp. 30, 3200–3208.CrossrefGoogle Scholar

  • Pandey, S.C., Ugale, R., Zhang, H., Tang, L., and Prakash, A. (2008). Brain chromatin remodeling: a novel mechanism of alcoholism. J. Neurosci. 28, 3729–3737.CrossrefGoogle Scholar

  • Patten, A.R., Brocardo, P.S., and Christie, B.R. (2013). Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. J. Nutr. Biochem. 24, 760–769.CrossrefGoogle Scholar

  • Powell, E.M., Campbell, D.B., Stanwood, G.D., Davis, C., Noebels, J.L., and Levitt, P. (2003). Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J. Neurosci. 23, 622–631.Google Scholar

  • Puglia, M.P. and Valenzuela, C.F. (2010). Ethanol acutely inhibits ionotropic glutamate receptor-mediated responses and long-term potentiation in the developing CA1 hippocampus. Alcohol Clin. Exp. Res. 34, 594–606.CrossrefGoogle Scholar

  • Ramachandran, V., Perez, A., Chen, J., Senthil, D., Schenker, S., and Henderson, G.I. (2001). In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin. Exp. Res. 25, 862–871.CrossrefGoogle Scholar

  • Ramadoss, J. and Magness, R.R. (2011). 2-D DIGE uterine endothelial proteomic profile for maternal chronic binge-like alcohol exposure. J. Proteomics 74, 2986–2994.CrossrefGoogle Scholar

  • Rathbun, W. and Druse, M.J. (1985). Dopamine, serotonin, and acid metabolites in brain regions from the developing offspring of ethanol-treated rats. J. Neurochem. 44, 57–62.CrossrefGoogle Scholar

  • Redmond, S.M. and Rice, M.L. (1998). The socioemotional behaviors of children with SLI: social adaptation or social deviance? J. Speech Lang. Hear. Res. 41, 688–700.CrossrefGoogle Scholar

  • Ryan, S.H., Williams, J.K., and Thomas, J.D. (2008). Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res. 27, 91–100.CrossrefGoogle Scholar

  • Sari, Y. and Zhou, F.C. (2004). Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice. Alcohol Clin. Exp. Res. 28, 941–948.PubMedCrossrefGoogle Scholar

  • Sasaoka, T., Wada, T., and Tsuneki, H. (2014). [Insulin resistance and cognitive function]. Nihon Rinsho 72, 633–640.PubMedGoogle Scholar

  • Schneider, M.L., Moore, C.F., Barnhart, T.E., Larson, J.A., DeJesus, O.T., Mukherjee, J., Nickles, R.J., Converse, A.K., Roberts, A.D., and Kraemer, G.W. (2005). Moderate-level prenatal alcohol exposure alters striatal dopamine system function in rhesus monkeys. Alcohol Clin. Exp. Res. 29, 1685–1697.PubMedCrossrefGoogle Scholar

  • Shen, R.Y., Hannigan, J.H., and Kapatos, G. (1999). Prenatal ethanol reduces the activity of adult midbrain dopamine neurons. Alcohol Clin. Exp. Res. 23, 1801–1807.CrossrefPubMedGoogle Scholar

  • Shetty, A.K., Burrows, R.C., and Phillips, D.E. (1993). Alterations in neuronal development in the substantia nigra pars compacta following in utero ethanol exposure: immunohistochemical and Golgi studies. Neuroscience 52, 311–322.CrossrefPubMedGoogle Scholar

  • Soscia, S.J., Tong, M., Xu, X.J., Cohen, A.C., Chu, J., Wands, J.R., and de la Monte, S.M. (2006). Chronic gestational exposure to ethanol causes insulin and IGF resistance and impairs acetylcholine homeostasis in the brain. Cell Mol. Life Sci. 63, 2039–2056.PubMedCrossrefGoogle Scholar

  • Sowell, E.R., Mattson, S.N., Thompson, P.M., Jernigan, T.L., Riley, E.P., and Toga, A.W. (2001a). Mapping callosal morphology and cognitive correlates: effects of heavy prenatal alcohol exposure. Neurology 57, 235–244.PubMedCrossrefGoogle Scholar

  • Sowell, E.R., Thompson, P.M., Mattson, S.N., Tessner, K.D., Jernigan, T.L., Riley, E.P., and Toga, A.W. (2001b). Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport 12, 515–523.PubMedCrossrefGoogle Scholar

  • Sowell, E.R., Thompson, P.M., Peterson, B.S., Mattson, S.N., Welcome, S.E., Henkenius, A.L., Riley, E.P., Jernigan, T.L., and Toga, A.W. (2002). Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. Neuroimage 17, 1807–1819.PubMedCrossrefGoogle Scholar

  • Sowell, E.R., Mattson, S.N., Kan, E., Thompson, P.M., Riley, E.P., and Toga, A.W. (2008). Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb. Cortex 18, 136–144.CrossrefPubMedGoogle Scholar

  • Spencer, T.J., Biederman, J., Madras, B.K., Dougherty, D.D., Bonab, A.A., Livni, E., Meltzer, P.C., Martin, J., Rauch, S., and Fischman, A.J. (2007). Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol. Psychiatry 62, 1059–1061.PubMedCrossrefGoogle Scholar

  • Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231.PubMedCrossrefGoogle Scholar

  • Stade, B., Ali, A., Bennett, D., Campbell, D., Johnston, M., Lens, C., Tran, S., and Koren, G. (2009). The burden of prenatal exposure to alcohol: revised measurement of cost. Can. J. Clin. Pharmacol. 16, e91–e102.Google Scholar

  • Stouder, C., Somm, E., and Paoloni-Giacobino, A. (2011). Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod. Toxicol. 31, 507–512.CrossrefGoogle Scholar

  • Sutherland, R.J., McDonald, R.J., and Savage, D.D. (1997). Prenatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal synaptic plasticity in adult offspring. Hippocampus 7, 232–238.CrossrefPubMedGoogle Scholar

  • Swanson, D.J., King, M.A., Walker, D.W., and Heaton, M.B. (1995). Chronic prenatal ethanol exposure alters the normal ontogeny of choline acetyltransferase activity in the rat septohippocampal system. Alcohol Clin. Exp. Res. 19, 1252–1260.PubMedCrossrefGoogle Scholar

  • Tajuddin, N.F. and Druse, M.J. (1993). Treatment of pregnant alcohol-consuming rats with buspirone: effects on serotonin and 5-hydroxyindoleacetic acid content in offspring. Alcohol Clin. Exp. Res. 17, 110–114.PubMedGoogle Scholar

  • Tajuddin, N.F. and Druse, M.J. (1999). In utero ethanol exposure decreased the density of serotonin neurons. Maternal ipsapirone treatment exerted a protective effect. Brain Res. Dev. Brain Res. 117, 91–97.CrossrefPubMedGoogle Scholar

  • Takadera, T. and Ohyashiki, T. (2004). Glycogen synthase kinase-3 inhibitors prevent caspase-dependent apoptosis induced by ethanol in cultured rat cortical neurons. Eur. J. Pharmacol. 499, 239–245.CrossrefGoogle Scholar

  • Thorne, J.C., Coggins, T.E., Carmichael Olson, H., and Astley, S.J. (2007). Exploring the utility of narrative analysis in diagnostic decision making: picture-bound reference, elaboration, and fetal alcohol spectrum disorders. J. Speech Lang. Hear. Res. 50, 459–474.CrossrefGoogle Scholar

  • Uban, K.A., Comeau, W.L., Ellis, L.A., Galea, L.A., and Weinberg, J. (2013). Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 38, 1953–1966.PubMedCrossrefGoogle Scholar

  • Ungerer, M., Knezovich, J., and Ramsay, M. (2013). In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res. 35, 37–46.PubMedGoogle Scholar

  • VanDemark, K.L., Guizzetti, M., Giordano, G., and Costa, L.G. (2009). Ethanol inhibits muscarinic receptor-induced axonal growth in rat hippocampal neurons. Alcohol Clin. Exp. Res. 33, 1945–1955.CrossrefPubMedGoogle Scholar

  • Vaurio, L., Riley, E.P., and Mattson, S.N. (2011). Neuropsychological comparison of children with heavy prenatal alcohol exposure and an IQ-matched comparison group. J. Int. Neuropsychol. Soc. 17, 463–473.CrossrefGoogle Scholar

  • Wadman, R., Durkin, K., and Conti-Ramsden, G. (2008). Self-esteem, shyness, and sociability in adolescents with specific language impairment (SLI). J. Speech Lang. Hear. Res. 51, 938–952.CrossrefGoogle Scholar

  • Weinberg, J., Taylor, A.N., and Gianoulakis, C. (1996). Fetal ethanol exposure: hypothalamic-pituitary-adrenal and beta-endorphin responses to repeated stress. Alcohol Clin. Exp. Res. 20, 122–131.CrossrefPubMedGoogle Scholar

  • Yang, M., Lu, J., Miao, J., Rizak, J., Yang, J., Zhai, R., Zhou, J., Qu, J., Wang, J., Ma, Y., et al. (2014). Alzheimer’s disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. J. Alzheimers Dis. doi:10.3233/jad-131529 [E-pub ahead of print].CrossrefGoogle Scholar

  • Zhou, F.C., Sari, Y., and Powrozek, T.A. (2005). Fetal alcohol exposure reduces serotonin innervation and compromises development of the forebrain along the serotonergic pathway. Alcohol Clin. Exp. Res. 29, 141–149.PubMedCrossrefGoogle Scholar

  • Zhou, D., Lebel, C., Lepage, C., Rasmussen, C., Evans, A., Wyper, K., Pei, J., Andrew, G., Massey, A., Massey, D., et al. (2011). Developmental cortical thinning in fetal alcohol spectrum disorders. Neuroimage 58, 16–25.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Ioannis Bakoyiannis, Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece, e-mail:

Received: 2014-04-14

Accepted: 2014-05-29

Published Online: 2014-06-28

Published in Print: 2014-10-01

Citation Information: Reviews in the Neurosciences, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0029.

Export Citation

©2014 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Matthieu Lecuyer, Annie Laquerrière, Soumeya Bekri, Céline Lesueur, Yasmina Ramdani, Sylvie Jégou, Arnaud Uguen, Pascale Marcorelles, Stéphane Marret, and Bruno J. Gonzalez
Acta Neuropathologica Communications, 2017, Volume 5, Number 1
Megumi Inoue, Jennifer Entwistle, Michael Wolf-Branigin, and Karen Wolf-Branigin
Journal of Social Work Practice in the Addictions, 2017, Volume 17, Number 3, Page 275
Ariadna Forray and Dawn Foster
Current Psychiatry Reports, 2015, Volume 17, Number 11
John F. Smiley, Mariko Saito, Cynthia Bleiwas, Kurt Masiello, Babak Ardekani, David N. Guilfoyle, Scott Gerum, Donald A. Wilson, and Csaba Vadasz
Alcohol, 2015, Volume 49, Number 6, Page 571
Mauro Ceccanti, Roberto Coccurello, Valentina Carito, Stefania Ciafrè, Giampiero Ferraguti, Giacomo Giacovazzo, Rosanna Mancinelli, Paola Tirassa, George N. Chaldakov, Esterina Pascale, Marco Ceccanti, Claudia Codazzo, and Marco Fiore
Addiction Biology, 2016, Volume 21, Number 4, Page 776

Comments (0)

Please log in or register to comment.
Log in