Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board Member: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Eichenbaum, Howard / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2016: 2.546
5-year IMPACT FACTOR: 3.191

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2015: 1.605
Source Normalized Impact per Paper (SNIP) 2015: 0.912

Online
ISSN
2191-0200
See all formats and pricing
In This Section
Volume 25, Issue 5 (Oct 2014)

Issues

Fetal alcohol spectrum disorders and cognitive functions of young children

Ioannis Bakoyiannis
  • Corresponding author
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
  • Email:
/ Eleana Gkioka
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
/ Vasileios Pergialiotis
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
/ Ioanna Mastroleon
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
/ Anastasia Prodromidou
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
/ Georgios D. Vlachos
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
/ Despina Perrea
  • Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece
Published Online: 2014-06-28 | DOI: https://doi.org/10.1515/revneuro-2014-0029

Abstract

Fetal alcohol spectrum disorder (FASD) is one of the main causes of mental retardation worldwide. Nearly 1% of children in North America are affected from antenatal exposure to ethanol. Its economic burden in industrialized countries is increasing. It is estimated that, in the United States, 4.0 billion dollars are annually expended in the treatment and rehabilitation of these patients. As a pathologic entity, they present with a broad symptomatology. Fetal alcohol syndrome (FAS) is the most readily recognized clinical manifestation of these disorders. Various factors seem to contribute in the pathogenesis of FASD-related cognitive disorders. During the last 20 years, several potential pretranslational and posttranslational factors have been extensively studied in various experimental animal models. Research has specifically focused on several neurotransmitters, insulin resistance, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, abnormal glycosylation of several proteins, oxidative stress, nutritional antioxidants, and various epigenetic factors. The purpose of the present review is to summarize the clinical manifestations of this disorder during childhood and adolescence and to summarize the possible pathophysiologic and epigenetic pathways that have been implicated in the pathophysiology of FASD.

Keywords: alcohol; cognitive; FASD

References

  • Amini, S.A., Dunstan, R.H., Dunkley, P.R., and Murdoch, R.N. (1996). Oxidative stress and the fetotoxicity of alcohol consumption during pregnancy. Free Radic. Biol. Med. 21, 357–365.

  • Aronne, M.P., Evrard, S.G., Mirochnic, S., and Brusco, A. (2008). Prenatal ethanol exposure reduces the expression of the transcriptional factor Pax6 in the developing rat brain. Ann. NY Acad. Sci. 1139, 478–498.

  • Becker, M., Warr-Leeper, G.A., and Leeper, H.A., Jr. (1990). Fetal alcohol syndrome: a description of oral motor, articulatory, short-term memory, grammatical, and semantic abilities. J. Commun. Disord. 23, 97–124. [Crossref]

  • Bell, S.H., Stade, B., Reynolds, J.N., Rasmussen, C., Andrew, G., Hwang, P.A., and Carlen, P.L. (2010). The remarkably high prevalence of epilepsy and seizure history in fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 34, 1084–1089. [Crossref] [PubMed]

  • Bergamini, C.M., Gambetti, S., Dondi, A., and Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des. 10, 1611–1626. [PubMed] [Crossref]

  • Berman, R.F. and Hannigan, J.H. (2000). Effects of prenatal alcohol exposure on the hippocampus: spatial behavior, electrophysiology, and neuroanatomy. Hippocampus 10, 94–110. [PubMed] [Crossref]

  • Binkhorst, M., Wortmann, S.B., Funke, S., Kozicz, T., Wevers, R.A., and Morava, E. (2012). Glycosylation defects underlying fetal alcohol spectrum disorder: a novel pathogenetic model. ‘When the wine goes in, strange things come out’ – S.T. Coleridge, The Piccolomini. J. Inherit. Metab. Dis. 35, 399–405. [Crossref]

  • Brocardo, P.S., Gil-Mohapel, J., and Christie, B.R. (2011). The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res. Rev. 67, 209–225. [Crossref] [PubMed]

  • Burd, L. and Martsolf, J.T. (1989). Fetal alcohol syndrome: diagnosis and syndromal variability. Physiol. Behav. 46, 39–43. [PubMed] [Crossref]

  • Burden, M.J., Jacobson, S.W., and Jacobson, J.L. (2005). Relation of prenatal alcohol exposure to cognitive processing speed and efficiency in childhood. Alcohol Clin. Exp. Res. 29, 1473–1483. [Crossref] [PubMed]

  • Chen, Y., Ozturk, N.C., and Zhou, F.C. (2013). DNA methylation program in developing hippocampus and its alteration by alcohol. PLoS One 8, e60503.

  • Chu, J., Tong, M., and de la Monte, S.M. (2007). Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol. 113, 659–673. [PubMed] [Crossref]

  • Clarren, S.K. and Smith, D.W. (1978). The fetal alcohol syndrome. Lamp 35, 4–7. [PubMed]

  • Coggins, T.E., Timler, G.R., and Olswang, L.B. (2007). A state of double jeopardy: impact of prenatal alcohol exposure and adverse environments on the social communicative abilities of school-age children with fetal alcohol spectrum disorder. Lang. Speech Hear. Serv. Sch. 38, 117–127. [Crossref] [PubMed]

  • Cooper, J.D. and Rudeen, P.K. (1988). Alterations in regional catecholamine content and turnover in the male rat brain in response to in utero ethanol exposure. Alcohol Clin. Exp. Res. 12, 282–285. [Crossref] [PubMed]

  • de la Monte, S.M. and Wands, J.R. (2002). Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. Cell Mol. Life Sci. 59, 882–893. [PubMed]

  • de la Monte, S.M. and Wands, J.R. (2005). Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J. Alzheimers Dis. 7, 45–61.

  • de la Monte, S.M. and Wands, J.R. (2010). Role of central nervous system insulin resistance in fetal alcohol spectrum disorders. J. Popul. Ther. Clin. Pharmacol. 17, e390–e404.

  • de la Monte, S.M., Ganju, N., Tanaka, S., Banerjee, K., Karl, P.J., Brown, N.V., and Wands, J.R. (1999). Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin. Exp. Res. 23, 770–777. [PubMed]

  • de la Monte, S.M., Ganju, N., Banerjee, K., Brown, N.V., Luong, T., and Wands, J.R. (2000). Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin. Exp. Res. 24, 716–726. [PubMed]

  • de la Monte, S.M., Neely, T.R., Cannon, J., and Wands, J.R. (2001). Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol. Life Sci. 58, 1950–1960. [PubMed]

  • Detering, N., Collins, R., Hawkins, R.L., Ozand, P.T., and Karahasan, A.M. (1980). The effects of ethanol on developing catecholamine neurons. Adv. Exp. Med. Biol. 132, 721–727. [PubMed]

  • Diaz de Leon-Guerrero, S., Pedraza-Alva, G., and Perez-Martinez, L. (2011). In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur. J. Neurosci. 33, 1563–1574. [Crossref]

  • Dong, J., Sulik, K.K., and Chen, S.Y. (2010). The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol. Lett. 193, 94–100. [PubMed] [Crossref]

  • Downing, C., Johnson, T.E., Larson, C., Leakey, T.I., Siegfried, R.N., Rafferty, T.M., and Cooney, C.A. (2011). Subtle decreases in DNA methylation and gene expression at the mouse Igf2 locus following prenatal alcohol exposure: effects of a methyl-supplemented diet. Alcohol 45, 65–71. [Crossref]

  • Druse, M.J., Tajuddin, N., Kuo, A., and Connerty, M. (1990). Effects of in utero ethanol exposure on the developing dopaminergic system in rats. J. Neurosci. Res. 27, 233–240. [Crossref]

  • Dudek, H., Datta, S.R., Franke, T.F., Birnbaum, M.J., Yao, R., Cooper, G.M., Segal, R.A., Kaplan, D.R., and Greenberg, M.E. (1997). Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665. [PubMed] [Crossref]

  • Fast, D.K. and Conry, J. (2009). Fetal alcohol spectrum disorders and the criminal justice system. Dev. Disabil. Res. Rev. 15, 250–257. [Crossref] [PubMed]

  • Flak, A.L., Su, S., Bertrand, J., Denny, C.H., Kesmodel, U.S., and Cogswell, M.E. (2014). The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: a meta-analysis. Alcohol Clin. Exp. Res. 38, 214–226. [Crossref] [PubMed]

  • Floyd, R.A. and Carney, J.M. (1992). Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 32, S22–S27. [PubMed] [Crossref]

  • Fryer, S.L., McGee, C.L., Matt, G.E., Riley, E.P., and Mattson, S.N. (2007). Evaluation of psychopathological conditions in children with heavy prenatal alcohol exposure. Pediatrics 119, e733–e741. [Crossref]

  • Fuglestad, A.J., Fink, B.A., Eckerle, J.K., Boys, C.J., Hoecker, H.L., Kroupina, M.G., Zeisel, S.H., Georgieff, M.K., and Wozniak, J.R. (2013). Inadequate intake of nutrients essential for neurodevelopment in children with fetal alcohol spectrum disorders (FASD). Neurotoxicol. Teratol. 39, 128–132. [Crossref]

  • Ge, Y., Belcher, S.M., Pierce, D.R., and Light, K.E. (2004). Altered expression of Bcl2, Bad and Bax mRNA occurs in the rat cerebellum within hours after ethanol exposure on postnatal day 4 but not on postnatal day 9. Brain Res. Mol. Brain Res. 129, 124–134.

  • Gillespie, R.A., Eriksen, J., Hao, H.L., and Druse, M.J. (1997). Effects of maternal ethanol consumption and buspirone treatment on dopamine and norepinephrine reuptake sites and D1 receptors in offspring. Alcohol Clin. Exp. Res. 21, 452–459.

  • Gold, P.E. (2003). Acetylcholine modulation of neural systems involved in learning and memory. Neurobiol. Learn. Mem. 80, 194–210. [PubMed] [Crossref]

  • Goodrich-Hunsaker, N.J., Livingstone, S.A., Skelton, R.W., and Hopkins, R.O. (2010). Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus 20, 481–491.

  • Gordon, A.S., Collier, K., and Diamond, I. (1986). Ethanol regulation of adenosine receptor-stimulated cAMP levels in a clonal neural cell line: an in vitro model of cellular tolerance to ethanol. Proc. Natl. Acad. Sci. USA 83, 2105–2108. [Crossref]

  • Green, C.R., Mihic, A.M., Nikkel, S.M., Stade, B.C., Rasmussen, C., Munoz, D.P., and Reynolds, J.N. (2009). Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the Cambridge Neuropsychological Tests Automated Battery (CANTAB). J. Child Psychol. Psychiatry. 50, 688–697.

  • Guizzetti, M. and Costa, L.G. (2007). Cholesterol homeostasis in the developing brain: a possible new target for ethanol. Hum. Exp. Toxicol. 26, 355–360. [Crossref]

  • Guizzetti, M., Moore, N.H., Giordano, G., VanDemark, K.L., and Costa, L.G. (2010). Ethanol inhibits neuritogenesis induced by astrocyte muscarinic receptors. Glia 58, 1395–1406. [PubMed]

  • Haley, D.W., Handmaker, N.S., and Lowe, J. (2006). Infant stress reactivity and prenatal alcohol exposure. Alcohol Clin. Exp. Res. 30, 2055–2064. [Crossref] [PubMed]

  • Hamilton, D.A., Driscoll, I., and Sutherland, R.J. (2002). Human place learning in a virtual Morris water task: some important constraints on the flexibility of place navigation. Behav. Brain Res. 129, 159–170. [Crossref]

  • Hanson, J.W., Jones, K.L., and Smith, D.W. (1976). Fetal alcohol syndrome. Experience with 41 patients. J. Am. Med. Assoc. 235, 1458–1460. [Crossref]

  • Haycock, P.C. and Ramsay, M. (2009). Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol. Reprod. 81, 618–627. [Crossref]

  • Hellemans, K.G., Sliwowska, J.H., Verma, P., and Weinberg, J. (2010). Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci. Biobehav. Rev. 34, 791–807. [PubMed] [Crossref]

  • Idrus, N.M., Happer, J.P., and Thomas, J.D. (2013). Cholecalciferol attenuates perseverative behavior associated with developmental alcohol exposure in rats in a dose-dependent manner. J. Steroid Biochem. Mol. Biol. 136, 146–149. [Crossref]

  • Ikonomidou, C., Bittigau, P., Ishimaru, M.J., Wozniak, D.F., Koch, C., Genz, K., Price, M.T., Stefovska, V., Horster, F., Tenkova, T., et al. (2000). Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science 287, 1056–1060.

  • Jucaite, A., Fernell, E., Halldin, C., Forssberg, H., and Farde, L. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol. Psychiatr. 57, 229–238. [Crossref]

  • Kelly, G.M., Druse, M.J., Tonetti, D.A., and Oden, B.G. (1986). Maternal ethanol consumption: binding of L-glutamate to synaptic membranes from whole brain, cortices, and cerebella of offspring. Exp. Neurol. 91, 219–228. [PubMed] [Crossref]

  • Kim, K.C., Go, H.S., Bak, H.R., Choi, C.S., Choi, I., Kim, P., Han, S.H., Han, S.M., Shin, C.Y., and Ko, K.H. (2010). Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells. J. Biomed. Sci. 17, 85. [Crossref]

  • Kim, P., Park, J.H., Choi, C.S., Choi, I., Joo, S.H., Kim, M.K., Kim, S.Y., Kim, K.C., Park, S.H., Kwon, K.J., et al. (2013). Effects of ethanol exposure during early pregnancy in hyperactive, inattentive and impulsive behaviors and MeCP2 expression in rodent offspring. Neurochem. Res. 38, 620–631. [Crossref]

  • Kleiber, M.L., Laufer, B.I., Wright, E., Diehl, E.J., and Singh, S.M. (2012). Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders. Brain Res. 1458, 18–33. [Crossref]

  • Koppel, J., Acker, C., Davies, P., Lopez, O.L., Jimenez, H., Azose, M., Greenwald, B.S., Murray, P.S., Kirkwood, C.M., Kofler, J., et al. (2014). Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol. Aging S0197-4580, 00237-1.

  • Kot-Leibovich, H. and Fainsod, A. (2009). Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. Dis. Model Mech. 2, 295–305.

  • Lebel, C., Rasmussen, C., Wyper, K., Walker, L., Andrew, G., Yager, J., and Beaulieu, C. (2008). Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcohol Clin. Exp. Res. 32, 1732–1740. [PubMed] [Crossref]

  • Li, Y.X., Yang, H.T., Zdanowicz, M., Sicklick, J.K., Qi, Y., Camp, T.J., and Diehl, A.M. (2007). Fetal alcohol exposure impairs Hedgehog cholesterol modification and signaling. Lab. Invest. 87, 231–240. [Crossref] [PubMed]

  • Light, K.E., Serbus, D.C., and Santiago, M. (1989). Exposure of rats to ethanol from postnatal days 4 to 8: alterations of cholinergic neurochemistry in the cerebral cortex and corpus striatum at day 20. Alcohol Clin. Exp. Res. 13, 29–35. [Crossref]

  • Lovinger, D.M., White, G., and Weight, F.F. (1989). Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243, 1721–1724. [PubMed] [Crossref]

  • Luo, J. and Miller, M.W. (1997). Differential sensitivity of human neuroblastoma cell lines to ethanol: correlations with their proliferative responses to mitogenic growth factors and expression of growth factor receptors. Alcohol Clin. Exp. Res. 21, 1186–1194. [PubMed]

  • Luo, J. and Miller, M.W. (1998). Growth factor-mediated neural proliferation: target of ethanol toxicity. Brain Res. Brain Res. Rev. 27, 157–167. [Crossref] [PubMed]

  • Lupton, C., Burd, L., and Harwood, R. (2004). Cost of fetal alcohol spectrum disorders. Am. J. Med. Genet. C Semin. Med. Genet. 15, 42–50. [Crossref]

  • Marcus, J.C. (1987). Neurological findings in the fetal alcohol syndrome. Neuropediatrics 18, 158–160. [Crossref] [PubMed]

  • Mattson, S.N., Roesch, S.C., Fagerlund, A., Autti-Ramo, I., Jones, K.L., May, P.A., Adnams, C.M., Konovalova, V., and Riley, E.P. (2010). Toward a neurobehavioral profile of fetal alcohol spectrum disorders. Alcohol Clin. Exp. Res. 34, 1640–1650. [Crossref] [PubMed]

  • May, P.A., Gossage, J.P., Kalberg, W.O., Robinson, L.K., Buckley, D., Manning, M., and Hoyme, H.E. (2009). Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev. Disabil. Res. Rev. 15, 176–192. [PubMed] [Crossref]

  • May, P.A., Blankenship, J., Marais, A.S., Gossage, J.P., Kalberg, W.O., Joubert, B., Cloete, M., Barnard, R., De Vries, M., Hasken, J., et al. (2013). Maternal alcohol consumption producing fetal alcohol spectrum disorders (FASD): quantity, frequency, and timing of drinking. Drug Alcohol Depend. 133, 502–512. [PubMed]

  • McGee, C.L., Bjorkquist, O.A., Riley, E.P., and Mattson, S.N. (2009). Impaired language performance in young children with heavy prenatal alcohol exposure. Neurotoxicol. Teratol. 31, 71–75. [PubMed] [Crossref]

  • Miller, M.W. (2007). Exposure to ethanol during gastrulation alters somatosensory-motor cortices and the underlying white matter in the macaque. Cereb. Cortex 17, 2961–2971. [Crossref] [PubMed]

  • Niccols, A. (2007). Fetal alcohol syndrome and the developing socio-emotional brain. Brain Cognit. 65, 135–142. [Crossref]

  • Nyaradi, A., Li, J., Hickling, S., Foster, J., and Oddy, W.H. (2013). The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Front. Hum. Neurosci. 26, 97.

  • O’Hare, E.D., Lu, L.H., Houston, S.M., Bookheimer, S.Y., Mattson, S.N., O’Connor, M.J., and Sowell, E.R. (2009). Altered frontal-parietal functioning during verbal working memory in children and adolescents with heavy prenatal alcohol exposure. Hum. Brain Mapp. 30, 3200–3208. [Crossref]

  • Pandey, S.C., Ugale, R., Zhang, H., Tang, L., and Prakash, A. (2008). Brain chromatin remodeling: a novel mechanism of alcoholism. J. Neurosci. 28, 3729–3737. [Crossref]

  • Patten, A.R., Brocardo, P.S., and Christie, B.R. (2013). Omega-3 supplementation can restore glutathione levels and prevent oxidative damage caused by prenatal ethanol exposure. J. Nutr. Biochem. 24, 760–769. [Crossref]

  • Powell, E.M., Campbell, D.B., Stanwood, G.D., Davis, C., Noebels, J.L., and Levitt, P. (2003). Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J. Neurosci. 23, 622–631.

  • Puglia, M.P. and Valenzuela, C.F. (2010). Ethanol acutely inhibits ionotropic glutamate receptor-mediated responses and long-term potentiation in the developing CA1 hippocampus. Alcohol Clin. Exp. Res. 34, 594–606. [Crossref]

  • Ramachandran, V., Perez, A., Chen, J., Senthil, D., Schenker, S., and Henderson, G.I. (2001). In utero ethanol exposure causes mitochondrial dysfunction, which can result in apoptotic cell death in fetal brain: a potential role for 4-hydroxynonenal. Alcohol Clin. Exp. Res. 25, 862–871. [Crossref]

  • Ramadoss, J. and Magness, R.R. (2011). 2-D DIGE uterine endothelial proteomic profile for maternal chronic binge-like alcohol exposure. J. Proteomics 74, 2986–2994. [Crossref]

  • Rathbun, W. and Druse, M.J. (1985). Dopamine, serotonin, and acid metabolites in brain regions from the developing offspring of ethanol-treated rats. J. Neurochem. 44, 57–62. [Crossref]

  • Redmond, S.M. and Rice, M.L. (1998). The socioemotional behaviors of children with SLI: social adaptation or social deviance? J. Speech Lang. Hear. Res. 41, 688–700. [Crossref]

  • Ryan, S.H., Williams, J.K., and Thomas, J.D. (2008). Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res. 27, 91–100. [Crossref]

  • Sari, Y. and Zhou, F.C. (2004). Prenatal alcohol exposure causes long-term serotonin neuron deficit in mice. Alcohol Clin. Exp. Res. 28, 941–948. [PubMed] [Crossref]

  • Sasaoka, T., Wada, T., and Tsuneki, H. (2014). [Insulin resistance and cognitive function]. Nihon Rinsho 72, 633–640. [PubMed]

  • Schneider, M.L., Moore, C.F., Barnhart, T.E., Larson, J.A., DeJesus, O.T., Mukherjee, J., Nickles, R.J., Converse, A.K., Roberts, A.D., and Kraemer, G.W. (2005). Moderate-level prenatal alcohol exposure alters striatal dopamine system function in rhesus monkeys. Alcohol Clin. Exp. Res. 29, 1685–1697. [PubMed] [Crossref]

  • Shen, R.Y., Hannigan, J.H., and Kapatos, G. (1999). Prenatal ethanol reduces the activity of adult midbrain dopamine neurons. Alcohol Clin. Exp. Res. 23, 1801–1807. [Crossref] [PubMed]

  • Shetty, A.K., Burrows, R.C., and Phillips, D.E. (1993). Alterations in neuronal development in the substantia nigra pars compacta following in utero ethanol exposure: immunohistochemical and Golgi studies. Neuroscience 52, 311–322. [Crossref] [PubMed]

  • Soscia, S.J., Tong, M., Xu, X.J., Cohen, A.C., Chu, J., Wands, J.R., and de la Monte, S.M. (2006). Chronic gestational exposure to ethanol causes insulin and IGF resistance and impairs acetylcholine homeostasis in the brain. Cell Mol. Life Sci. 63, 2039–2056. [PubMed] [Crossref]

  • Sowell, E.R., Mattson, S.N., Thompson, P.M., Jernigan, T.L., Riley, E.P., and Toga, A.W. (2001a). Mapping callosal morphology and cognitive correlates: effects of heavy prenatal alcohol exposure. Neurology 57, 235–244. [PubMed] [Crossref]

  • Sowell, E.R., Thompson, P.M., Mattson, S.N., Tessner, K.D., Jernigan, T.L., Riley, E.P., and Toga, A.W. (2001b). Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport 12, 515–523. [PubMed] [Crossref]

  • Sowell, E.R., Thompson, P.M., Peterson, B.S., Mattson, S.N., Welcome, S.E., Henkenius, A.L., Riley, E.P., Jernigan, T.L., and Toga, A.W. (2002). Mapping cortical gray matter asymmetry patterns in adolescents with heavy prenatal alcohol exposure. Neuroimage 17, 1807–1819. [PubMed] [Crossref]

  • Sowell, E.R., Mattson, S.N., Kan, E., Thompson, P.M., Riley, E.P., and Toga, A.W. (2008). Abnormal cortical thickness and brain-behavior correlation patterns in individuals with heavy prenatal alcohol exposure. Cereb. Cortex 18, 136–144. [Crossref] [PubMed]

  • Spencer, T.J., Biederman, J., Madras, B.K., Dougherty, D.D., Bonab, A.A., Livni, E., Meltzer, P.C., Martin, J., Rauch, S., and Fischman, A.J. (2007). Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol. Psychiatry 62, 1059–1061. [PubMed] [Crossref]

  • Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195–231. [PubMed] [Crossref]

  • Stade, B., Ali, A., Bennett, D., Campbell, D., Johnston, M., Lens, C., Tran, S., and Koren, G. (2009). The burden of prenatal exposure to alcohol: revised measurement of cost. Can. J. Clin. Pharmacol. 16, e91–e102.

  • Stouder, C., Somm, E., and Paoloni-Giacobino, A. (2011). Prenatal exposure to ethanol: a specific effect on the H19 gene in sperm. Reprod. Toxicol. 31, 507–512. [Crossref]

  • Sutherland, R.J., McDonald, R.J., and Savage, D.D. (1997). Prenatal exposure to moderate levels of ethanol can have long-lasting effects on hippocampal synaptic plasticity in adult offspring. Hippocampus 7, 232–238. [Crossref] [PubMed]

  • Swanson, D.J., King, M.A., Walker, D.W., and Heaton, M.B. (1995). Chronic prenatal ethanol exposure alters the normal ontogeny of choline acetyltransferase activity in the rat septohippocampal system. Alcohol Clin. Exp. Res. 19, 1252–1260. [PubMed] [Crossref]

  • Tajuddin, N.F. and Druse, M.J. (1993). Treatment of pregnant alcohol-consuming rats with buspirone: effects on serotonin and 5-hydroxyindoleacetic acid content in offspring. Alcohol Clin. Exp. Res. 17, 110–114. [PubMed]

  • Tajuddin, N.F. and Druse, M.J. (1999). In utero ethanol exposure decreased the density of serotonin neurons. Maternal ipsapirone treatment exerted a protective effect. Brain Res. Dev. Brain Res. 117, 91–97. [Crossref] [PubMed]

  • Takadera, T. and Ohyashiki, T. (2004). Glycogen synthase kinase-3 inhibitors prevent caspase-dependent apoptosis induced by ethanol in cultured rat cortical neurons. Eur. J. Pharmacol. 499, 239–245. [Crossref]

  • Thorne, J.C., Coggins, T.E., Carmichael Olson, H., and Astley, S.J. (2007). Exploring the utility of narrative analysis in diagnostic decision making: picture-bound reference, elaboration, and fetal alcohol spectrum disorders. J. Speech Lang. Hear. Res. 50, 459–474. [Crossref]

  • Uban, K.A., Comeau, W.L., Ellis, L.A., Galea, L.A., and Weinberg, J. (2013). Basal regulation of HPA and dopamine systems is altered differentially in males and females by prenatal alcohol exposure and chronic variable stress. Psychoneuroendocrinology 38, 1953–1966. [PubMed] [Crossref]

  • Ungerer, M., Knezovich, J., and Ramsay, M. (2013). In utero alcohol exposure, epigenetic changes, and their consequences. Alcohol Res. 35, 37–46. [PubMed]

  • VanDemark, K.L., Guizzetti, M., Giordano, G., and Costa, L.G. (2009). Ethanol inhibits muscarinic receptor-induced axonal growth in rat hippocampal neurons. Alcohol Clin. Exp. Res. 33, 1945–1955. [Crossref] [PubMed]

  • Vaurio, L., Riley, E.P., and Mattson, S.N. (2011). Neuropsychological comparison of children with heavy prenatal alcohol exposure and an IQ-matched comparison group. J. Int. Neuropsychol. Soc. 17, 463–473. [Crossref]

  • Wadman, R., Durkin, K., and Conti-Ramsden, G. (2008). Self-esteem, shyness, and sociability in adolescents with specific language impairment (SLI). J. Speech Lang. Hear. Res. 51, 938–952. [Crossref]

  • Weinberg, J., Taylor, A.N., and Gianoulakis, C. (1996). Fetal ethanol exposure: hypothalamic-pituitary-adrenal and beta-endorphin responses to repeated stress. Alcohol Clin. Exp. Res. 20, 122–131. [Crossref] [PubMed]

  • Yang, M., Lu, J., Miao, J., Rizak, J., Yang, J., Zhai, R., Zhou, J., Qu, J., Wang, J., Ma, Y., et al. (2014). Alzheimer’s disease and methanol toxicity (part 1): chronic methanol feeding led to memory impairments and tau hyperphosphorylation in mice. J. Alzheimers Dis. doi:10.3233/jad-131529 [E-pub ahead of print]. [Crossref]

  • Zhou, F.C., Sari, Y., and Powrozek, T.A. (2005). Fetal alcohol exposure reduces serotonin innervation and compromises development of the forebrain along the serotonergic pathway. Alcohol Clin. Exp. Res. 29, 141–149. [PubMed] [Crossref]

  • Zhou, D., Lebel, C., Lepage, C., Rasmussen, C., Evans, A., Wyper, K., Pei, J., Andrew, G., Massey, A., Massey, D., et al. (2011). Developmental cortical thinning in fetal alcohol spectrum disorders. Neuroimage 58, 16–25. [Crossref] [PubMed]

About the article

Corresponding author: Ioannis Bakoyiannis, Laboratory of Experimental Surgery and Surgical Research ‘N.S. Christeas’, National and Kapodistrian University of Athens Medical School, Agiou Thoma 15B, GR-11527 Athens, Greece, e-mail:


Received: 2014-04-14

Accepted: 2014-05-29

Published Online: 2014-06-28

Published in Print: 2014-10-01



Citation Information: Reviews in the Neurosciences, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0029. Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
John F. Smiley, Mariko Saito, Cynthia Bleiwas, Kurt Masiello, Babak Ardekani, David N. Guilfoyle, Scott Gerum, Donald A. Wilson, and Csaba Vadasz
Alcohol, 2015
[2]
Mauro Ceccanti, Roberto Coccurello, Valentina Carito, Stefania Ciafrè, Giampiero Ferraguti, Giacomo Giacovazzo, Rosanna Mancinelli, Paola Tirassa, George N. Chaldakov, Esterina Pascale, Marco Ceccanti, Claudia Codazzo, and Marco Fiore
Addiction Biology, 2015, Page n/a

Comments (0)

Please log in or register to comment.
Log in