Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 25, Issue 6

Issues

Long-term depression at distinct glutamatergic synapses in the basal ganglia

Julien P. Dupuis
  • Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo Saignat, F-33000 Bordeaux, France
  • CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
  • Université Bordeaux and CNRS, Institut Interdisciplinaire de Neurosciences, UMR 5297, F-33000 Bordeaux, France
  • CNRS, Institut Interdisciplinaire de Neurosciences, UMR 5297, F-33000 Bordeaux, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernard H. Bioulac
  • Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo Saignat, F-33000 Bordeaux, France
  • CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jérôme Baufreton
  • Corresponding author
  • Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo Saignat, F-33000 Bordeaux, France
  • CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-07-19 | DOI: https://doi.org/10.1515/revneuro-2014-0024

Abstract

Long-term adaptations of synaptic transmission are believed to be the cellular basis of information storage in the brain. In particular, long-term depression of excitatory neurotransmission has been under intense investigation since convergent lines of evidence support a crucial role for this process in learning and memory. Within the basal ganglia, a network of subcortical nuclei forming a key part of the extrapyramidal motor system, plasticity at excitatory synapses is essential to the regulation of motor, cognitive, and reward functions. The striatum, the main gateway of the basal ganglia, receives convergent excitatory inputs from cortical areas and transmits information to the network output structures and is a major site of activity-dependent plasticity. Indeed, long-term depression at cortico-striatal synapses modulates the transfer of information to basal ganglia output structures and affects voluntary movement execution. Cortico-striatal plasticity is thus considered as a cellular substrate for adaptive motor control. Downstream in this network, the subthalamic nucleus and substantia nigra nuclei also receive glutamatergic innervation from the cortex and the subthalamic nucleus, respectively. Although these connections have been less investigated, recent studies have started to unravel the molecular mechanisms that contribute to adjustments in the strength of cortico-subthalamic and subthalamo-nigral transmissions, revealing that adaptations at these synapses governing the output of the network could also contribute to motor planning and execution. Here, we review our current understanding of long-term depression mechanisms at basal ganglia glutamatergic synapses and emphasize the common and unique plastic features observed at successive levels of the network in healthy and pathological conditions.

Keywords: dopamine; Parkinson’s disease; subthalamic nucleus; substantia nigra pars reticulata; striatum; synaptic plasticity

References

  • Aceves, J.J., Rueda-Orozco, P.E., Hernandez-Martinez, R., Galarraga, E., and Bargas, J. (2011). Bidirectional plasticity in striatonigral synapses: a switch to balance direct and indirect basal ganglia pathways. Learn. Mem. 18, 764–773.CrossrefPubMedGoogle Scholar

  • Ade, K.K. and Lovinger, D.M. (2007). Anandamide regulates postnatal development of long-term synaptic plasticity in the rat dorsolateral striatum. J. Neurosci. 27, 2403–2409.CrossrefGoogle Scholar

  • Adermark, L. and Lovinger, D.M. (2007a). Retrograde endocannabinoid signaling at striatal synapses requires a regulated postsynaptic release step. Proc. Natl. Acad. Sci. USA 104, 20564–20569.Google Scholar

  • Adermark, L. and Lovinger, D.M. (2007b). Combined activation of L-type Ca2+ channels and synaptic transmission is sufficient to induce striatal long-term depression. J. Neurosci. 27, 6781–6787.CrossrefGoogle Scholar

  • Albin, R.L. (1995). The pathophysiology of chorea/ballism and Parkinsonism. Parkinsonism Relat. Disord. 1, 3–11.Google Scholar

  • Alexander, G.E. and Crutcher, M.D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271.CrossrefPubMedGoogle Scholar

  • Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.CrossrefPubMedGoogle Scholar

  • Arcangeli, S., Tozzi, A., Tantucci, M., Spaccatini, C., de Iure, A., Costa, C., Di Filippo, M., Picconi, B., Giampa, C., Fusco, F.R., et al. (2013). Ischemic-LTP in striatal spiny neurons of both direct and indirect pathway requires the activation of D1-like receptors and NO/soluble guanylate cyclase/cGMP transmission. J. Cereb. Blood Flow Metab. 33, 278–286.PubMedGoogle Scholar

  • Atherton, J.F. and Bevan, M.D. (2005). Ionic mechanisms underlying autonomous action potential generation in the somata and dendrites of GABAergic substantia nigra pars reticulata neurons in vitro. J. Neurosci. 25, 8272–8281.CrossrefGoogle Scholar

  • Atwood, B.K., Kupferschmidt, D.A., and Lovinger, D.M. (2014). Opioids induce dissociable forms of long-term depression of excitatory inputs to the dorsal striatum. Nat. Neurosci. 17, 540–548.PubMedCrossrefGoogle Scholar

  • Bagetta, V., Picconi, B., Marinucci, S., Sgobio, C., Pendolino, V., Ghiglieri, V., Fusco, F.R., Giampa, C., and Calabresi, P. (2011). Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: implications for Parkinson’s disease. J. Neurosci. 31, 12513–12522.CrossrefGoogle Scholar

  • Balleine, B.W., Delgado, M.R., and Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165.CrossrefGoogle Scholar

  • Bar-Gad, I., Elias, S., Vaadia, E., and Bergman, H. (2004). Complex locking rather than complete cessation of neuronal activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primate in response to pallidal microstimulation. J. Neurosci. 24, 7410–7419.Google Scholar

  • Bartlett, T.E., Bannister, N.J., Collett, V.J., Dargan, S.L., Massey, P.V., Bortolotto, Z.A., Fitzjohn, S.M., Bashir, Z.I., Collingridge, G.L., and Lodge, D. (2007). Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52, 60–70.Google Scholar

  • Belluscio, M.A., Kasanetz, F., Riquelme, L.A., and Murer, M.G. (2003). Spreading of slow cortical rhythms to the basal ganglia output nuclei in rats with nigrostriatal lesions. Eur. J. Neurosci. 17, 1046–1052.CrossrefPubMedGoogle Scholar

  • Benazzouz, A., Gross, C., Feger, J., Boraud, T., and Bioulac, B. (1993). Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur. J. Neurosci. 5, 382–389.CrossrefPubMedGoogle Scholar

  • Bergman, H., Wichmann, T., and DeLong, M.R. (1990). Reversal of experimental Parkinsonism by lesions of the subthalamic nucleus. Science 249, 1436–1438.Google Scholar

  • Bergman, H., Wichmann, T., Karmon, B., and DeLong, M.R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J. Neurophysiol. 72, 507–520.Google Scholar

  • Bertran-Gonzalez, J., Herve, D., Girault, J.A., and Valjent, E. (2010). What is the degree of segregation between striatonigral and striatopallidal projections? Front. Neuroanat. 4, 1–9.Google Scholar

  • Blythe, S.N., Wokosin, D., Atherton, J.F., and Bevan, M.D. (2009). Cellular mechanisms underlying burst firing in substantia nigra dopamine neurons. J. Neurosci. 29, 15531–15541.CrossrefGoogle Scholar

  • Bonifati, V. (2007). Genetics of Parkinsonism. Parkinsonism Relat. Disord. 13(suppl 3), S233–S241.Google Scholar

  • Bonsi, P., Martella, G., Cuomo, D., Platania, P., Sciamanna, G., Bernardi, G., Wess, J., and Pisani, A. (2008). Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J. Neurosci. 28, 6258–6263.CrossrefGoogle Scholar

  • Bradfield, L.A., Bertran-Gonzalez, J., Chieng, B., and Balleine, B.W. (2013). The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron 79, 153–166.Google Scholar

  • Brazhnik, E., Cruz, A.V., Avila, I., Wahba, M.I., Novikov, N., Ilieva, N.M., McCoy, A.J., Gerber, C., and Walters, J.R. (2012). State-dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats. J. Neurosci. 32, 7869–7880.CrossrefGoogle Scholar

  • Calabresi, P., Maj, R., Mercuri, N.B., and Bernardi, G. (1992a). Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci. Lett. 142, 95–99.CrossrefPubMedGoogle Scholar

  • Calabresi, P., Pisani, A., Mercuri, N.B., and Bernardi, G. (1992b). Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. Eur. J. Neurosci. 4, 929–935.CrossrefPubMedGoogle Scholar

  • Calabresi, P., Maj, R., Pisani, A., Mercuri, N.B., and Bernardi, G. (1992c). Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J. Neurosci. 12, 4224–4233.Google Scholar

  • Calabresi, P., Saiardi, A., Pisani, A., Baik, J.H., Centonze, D., Mercuri, N.B., Bernardi, G., and Borrelli, E. (1997). Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J. Neurosci. 17, 4536–4544.Google Scholar

  • Calabresi, P., Gubellini, P., Centonze, D., Sancesario, G., Morello, M., Giorgi, M., and Pisani, A., and Bernardi, G. (1999). A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J. Neurosci. 19, 2489–2499.Google Scholar

  • Calabresi, P., Picconi, B., Tozzi, A., and Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–219.CrossrefPubMedGoogle Scholar

  • Centonze, D., Grande, C., Saulle, E., Martin, A.B., Gubellini, P., Pavon, N., Pisani, A., Bernardi, G., Moratalla, R., and Calabresi, P. (2003). Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J. Neurosci. 23, 8506–8512.Google Scholar

  • Charpier, S. and Deniau, J.M. (1997). In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. Proc. Natl. Acad. Sci. USA 94, 7036–7040.CrossrefGoogle Scholar

  • Chevalier, G. and Deniau, J.M. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci. 13, 277–280.PubMedCrossrefGoogle Scholar

  • Choi, S. and Lovinger, D.M. (1997a). Decreased frequency but not amplitude of quantal synaptic responses associated with expression of corticostriatal long-term depression. J. Neurosci. 17, 8613–8620.Google Scholar

  • Choi, S. and Lovinger, D.M. (1997b). Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl. Acad. Sci. USA 94, 2665–2670.CrossrefGoogle Scholar

  • Chou, J.S., Chen, C.Y., Chen, Y.L., Weng, Y.H., Yeh, T.H., Lu, C.S., Chang, Y.M., and Wang, H.L. (2014). (G2019S) LRRK2 causes early-phase dysfunction of SNpc dopaminergic neurons and impairment of corticostriatal long-term depression in the PD transgenic mouse. Neurobiol. Dis. 68C, 190–199.Google Scholar

  • Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. (2013). Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242.Google Scholar

  • de Jesus Aceves, J., Rueda-Orozco, P.E., Hernandez, R., Plata, V., Ibanez-Sandoval, O., Galarraga, E., and Bargas, J. (2011). Dopaminergic presynaptic modulation of nigral afferents: its role in the generation of recurrent bursting in substantia nigra pars reticulata neurons. Front. Syst. Neurosci. 5, 6.CrossrefGoogle Scholar

  • DeLong, M.R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.CrossrefPubMedGoogle Scholar

  • Deniau, J.M., Mailly, P., Maurice, N., and Charpier, S. (2007). The pars reticulata of the substantia nigra: a window to basal ganglia output. Prog. Brain Res. 160, 151–172.CrossrefPubMedGoogle Scholar

  • Ding, J.B., Guzman, J.N., Peterson, J.D., Goldberg, J.A., and Surmeier, D.J. (2010). Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67, 294–307.Google Scholar

  • Dupuis, J.P., Feyder, M., Miguelez, C., Garcia, L., Morin, S., Choquet, D., Hosy, E., Bezard, E., Fisone, G., Bioulac, B.H., et al. (2013). Dopamine-dependent long-term depression at subthalamo-nigral synapses is lost in experimental Parkinsonism. J. Neurosci. 33, 14331–14341.CrossrefGoogle Scholar

  • Ellender, T.J., Harwood, J., Kosillo, P., Capogna, M., and Bolam, J.P. (2013). Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum. J. Physiol. 591, 257–272.Google Scholar

  • Fino, E., Glowinski, J., and Venance, L. (2005). Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci. 25, 11279–11287.CrossrefGoogle Scholar

  • Gardoni, F., Mauceri, D., Malinverno, M., Polli, F., Costa, C., Tozzi, A., Siliquini, S., Picconi, B., Cattabeni, F., Calabresi, P., et al. (2009). Decreased NR2B subunit synaptic levels cause impaired long-term potentiation but not long-term depression. J. Neurosci. 29, 669–677.CrossrefGoogle Scholar

  • Gerdeman, G.L., Ronesi, J., and Lovinger, D.M. (2002). Postsynaptic endocannabinoid release is critical to long-term depression in the striatum. Nat. Neurosci. 5, 446–451.Google Scholar

  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., Jr., and Sibley, D.R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.Google Scholar

  • Gertler, T.S., Chan, C.S., and Surmeier, D.J. (2008). Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci. 28, 10814–10824.CrossrefGoogle Scholar

  • Gittis, A.H., Hang, G.B., LaDow, E.S., Shoenfeld, L.R., Atallah, B.V., Finkbeiner, S., and Kreitzer, A.C. (2011). Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71, 858–868.Google Scholar

  • Giuffrida, A., Parsons, L.H., Kerr, T.M., Rodriguez de Fonseca, F., Navarro, M., and Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat. Neurosci. 2, 358–363.Google Scholar

  • Goldberg, M.S., Pisani, A., Haburcak, M., Vortherms, T.A., Kitada, T., Costa, C., Tong, Y., Martella, G., Tscherter, A., Martins, A., et al. (2005). Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron 45, 489–496.Google Scholar

  • Graybiel, A.M. (2005). The basal ganglia: learning new tricks and loving it. Curr. Opin. Neurobiol. 15, 638–644.PubMedCrossrefGoogle Scholar

  • Gubellini, P., Saulle, E., Centonze, D., Bonsi, P., Pisani, A., Bernardi, G., Conquet, F., and Calabresi, P. (2001). Selective involvement of mGlu1 receptors in corticostriatal LTD. Neuropharmacology 40, 839–846.Google Scholar

  • Gureviciene, I., Gurevicius, K., and Tanila, H. (2009). Aging and alpha-synuclein affect synaptic plasticity in the dentate gyrus. J. Neural Transm. 116, 13–22.CrossrefGoogle Scholar

  • Guridi, J., Herrero, M.T., Luquin, M.R., Guillen, J., Ruberg, M., Laguna, J., Vila, M., Javoy-Agid, F., Agid, Y., Hirsch, E., et al. (1996). Subthalamotomy in parkinsonian monkeys. Behavioural and biochemical analysis. Brain 119(pt 5), 1717–1727.Google Scholar

  • Haber, S.N. and Calzavara, R. (2009). The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res. Bull. 78, 69–74.CrossrefGoogle Scholar

  • Harnett, M.T., Bernier, B.E., Ahn, K.C., and Morikawa, H. (2009). Burst-timing-dependent plasticity of NMDA receptor-mediated transmission in midbrain dopamine neurons. Neuron 62, 826–838.Google Scholar

  • Henderson, J.M., Carpenter, K., Cartwright, H., and Halliday, G.M. (2000). Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(pt 7), 1410–1421.Google Scholar

  • Hutchison, W.D., Allan, R.J., Opitz, H., Levy, R., Dostrovsky, J.O., Lang, A.E., and Lozano, A.M. (1998). Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson’s disease. Ann. Neurol. 44, 622–628.PubMedCrossrefGoogle Scholar

  • Ibanez-Sandoval, O., Hernandez, A., Floran, B., Galarraga, E., Tapia, D., Valdiosera, R., Erlij, D., Aceves, J., and Bargas, J. (2006). Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors. J. Neurophysiol. 95, 1800–1811.CrossrefGoogle Scholar

  • Johnson, K.A., Niswender, C.M., Conn, P.J., and Xiang, Z. (2011). Activation of group II metabotropic glutamate receptors induces long-term depression of excitatory synaptic transmission in the substantia nigra pars reticulata. Neurosci. Lett. 504, 102–106.PubMedCrossrefGoogle Scholar

  • Jouve, L., Salin, P., Melon, C., and Kerkerian-Le Goff, L. (2010). Deep brain stimulation of the center median-parafascicular complex of the thalamus has efficient anti-parkinsonian action associated with widespread cellular responses in the basal ganglia network in a rat model of Parkinson’s disease. J. Neurosci. 30, 9919–9928.CrossrefGoogle Scholar

  • Kheirbek, M.A., Britt, J.P., Beeler, J.A., Ishikawa, Y., McGehee, D.S., and Zhuang, X. (2009). Adenylyl cyclase type 5 contributes to corticostriatal plasticity and striatum-dependent learning. J. Neurosci. 29, 12115–12124.CrossrefGoogle Scholar

  • Kitada, T., Pisani, A., Porter, D.R., Yamaguchi, H., Tscherter, A., Martella, G., Bonsi, P., Zhang, C., Pothos, E.N., and Shen, J. (2007). Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc. Natl. Acad. Sci. USA 104, 11441–11446.Google Scholar

  • Kitada, T., Pisani, A., Karouani, M., Haburcak, M., Martella, G., Tscherter, A., Platania, P., Wu, B., Pothos, E.N., and Shen, J. (2009). Impaired dopamine release and synaptic plasticity in the striatum of parkin-/- mice. J. Neurochem. 110, 613–621.CrossrefGoogle Scholar

  • Klein, C., Lohmann-Hedrich, K., Rogaeva, E., Schlossmacher, M.G., and Lang, A.E. (2007). Deciphering the role of heterozygous mutations in genes associated with Parkinsonism. Lancet neurology 6, 652–662.CrossrefGoogle Scholar

  • Kramer, P.F., Christensen, C.H., Hazelwood, L.A., Dobi, A., Bock, R., Sibley, D.R., Mateo, Y., and Alvarez, V.A. (2011). Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J. Neurosci. 31, 126–132.CrossrefGoogle Scholar

  • Kravitz, A.V., Freeze, B.S., Parker, P.R., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626.Google Scholar

  • Kreitzer, A.C. and Malenka, R.C. (2005). Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J. Neurosci. 25, 10537–10545.CrossrefGoogle Scholar

  • Kreitzer, A.C. and Malenka, R.C. (2007). Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445, 643–647.Google Scholar

  • Kreitzer, A.C. and Malenka, R.C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554.Google Scholar

  • Lee, K.W., Hong, J.H., Choi, I.Y., Che, Y., Lee, J.K., Yang, S.D., Song, C.W., Kang, H.S., Lee, J.H., Noh, J.S., et al. (2002). Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J. Neurosci. 22, 7931–7940.Google Scholar

  • Lerner, T.N. and Kreitzer, A.C. (2011). Neuromodulatory control of striatal plasticity and behavior. Curr. Opin. Neurobiol. 21, 322–327.PubMedCrossrefGoogle Scholar

  • Lerner, T.N. and Kreitzer, A.C. (2012). RGS4 is required for dopaminergic control of striatal LTD and susceptibility to parkinsonian motor deficits. Neuron 73, 347–359.Google Scholar

  • Lerner, T.N., Horne, E.A., Stella, N., and Kreitzer, A.C. (2010). Endocannabinoid signaling mediates psychomotor activation by adenosine A2A antagonists. J. Neurosci. 30, 2160–2164.CrossrefGoogle Scholar

  • Levy, R., Hutchison, W.D., Lozano, A.M., and Dostrovsky, J.O. (2000). High-frequency synchronization of neuronal activity in the subthalamic nucleus of parkinsonian patients with limb tremor. J. Neurosci. 20, 7766–7775.Google Scholar

  • Li, X., Patel, J.C., Wang, J., Avshalumov, M.V., Nicholson, C., Buxbaum, J.D., Elder, G.A., Rice, M.E., and Yue, Z. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J. Neurosci. 30, 1788–1797.Google Scholar

  • Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J.F., Broussolle, E., Perret, J.E., and Benabid, A.L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345, 91–95.Google Scholar

  • Litvak, V., Jha, A., Eusebio, A., Oostenveld, R., Foltynie, T., Limousin, P., Zrinzo, L., Hariz, M.I., Friston, K., and Brown, P. (2011). Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson’s disease. Brain 134, 359–374.Google Scholar

  • Liu, L., Wong, T.P., Pozza, M.F., Lingenhoehl, K., Wang, Y., Sheng, M., Auberson, Y.P., and Wang, Y.T. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024.Google Scholar

  • Luscher, C. and Malenka, R.C. (2011). Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663.Google Scholar

  • Madeo, G., Martella, G., Schirinzi, T., Ponterio, G., Shen, J., Bonsi, P., and Pisani, A. (2012). Aberrant striatal synaptic plasticity in monogenic Parkinsonisms. Neuroscience 211, 126–135.Google Scholar

  • Magill, P.J., Sharott, A., Bevan, M.D., Brown, P., and Bolam, J.P. (2004). Synchronous unit activity and local field potentials evoked in the subthalamic nucleus by cortical stimulation. J. Neurophysiol. 92, 700–714.CrossrefGoogle Scholar

  • Mallet, N., Ballion, B., Le Moine, C., and Gonon, F. (2006). Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J. Neurosci. 26, 3875–3884.CrossrefGoogle Scholar

  • Mallet, N., Pogosyan, A., Marton, L.F., Bolam, J.P., Brown, P., and Magill, P.J. (2008a). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J. Neurosci. 28, 14245–14258.CrossrefGoogle Scholar

  • Mallet, N., Pogosyan, A., Sharott, A., Csicsvari, J., Bolam, J.P., Brown, P., and Magill, P.J. (2008b). Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J. Neurosci. 28, 4795–4806.CrossrefGoogle Scholar

  • Mathur, B.N. and Lovinger, D.M. (2012). Endocannabinoid-dopamine interactions in striatal synaptic plasticity. Front. Pharmacol. 3, 66.PubMedGoogle Scholar

  • Matsumoto, N., Minamimoto, T., Graybiel, A.M., and Kimura, M. (2001). Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J. Neurophysiol. 85, 960–976.Google Scholar

  • Maurice, N., Deniau, J.M., Glowinski, J., and Thierry, A.M. (1998). Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. J. Neurosci. 18, 9539–9546.Google Scholar

  • Mazzone, P., Stocchi, F., Galati, S., Insola, A., Altibrandi, M.G., Modugno, N., Tropepi, D., Brusa, L., and Stefani, A. (2006). Bilateral implantation of centromedian-parafascicularis complex and GPi: a new combination of unconventional targets for deep brain stimulation in severe Parkinson disease. Neuromodulation 9, 221–228.PubMedCrossrefGoogle Scholar

  • Melrose, H.L., Dächsel, J.C., Behrouz, B., Lincoln, S.J., Yue, M., Hinkle, K.M., Kent, C.B., Korvatska, E., Taylor, J.P., Witten, L., et al. (2010). Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol. Dis. 40, 503–517.CrossrefGoogle Scholar

  • Minamimoto, T., Hori, Y., and Kimura, M. (2005). Complementary process to response bias in the centromedian nucleus of the thalamus. Science 308, 1798–1801.Google Scholar

  • Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.PubMedGoogle Scholar

  • Montague, P.R., Hyman, S.E., and Cohen, J.D. (2004). Computational roles for dopamine in behavioural control. Nature 431, 760–767.Google Scholar

  • Muller, T., Albrecht, D., and Gebhardt, C. (2009). Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn. Mem. 16, 395–405.CrossrefGoogle Scholar

  • Murer, M.G., Riquelme, L.A., Tseng, K.Y., and Pazo, J.H. (1997). Substantia nigra pars reticulata single unit activity in normal and 60HDA-lesioned rats: effects of intrastriatal apomorphine and subthalamic lesions. Synapse 27, 278–293.CrossrefGoogle Scholar

  • Nambu, A., Takada, M., Inase, M., and Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J. Neurosci. 16, 2671–2683.Google Scholar

  • Nanda, B., Galvan, A., Smith, Y., and Wichmann, T. (2009). Effects of stimulation of the centromedian nucleus of the thalamus on the activity of striatal cells in awake rhesus monkeys. Eur. J. Neurosci. 29, 588–598.CrossrefPubMedGoogle Scholar

  • Nazzaro, C., Greco, B., Cerovic, M., Baxter, P., Rubino, T., Trusel, M., Parolaro, D., Tkatch, T., Benfenati, F., Pedarzani, P., et al. (2012). SK channel modulation rescues striatal plasticity and control over habit in cannabinoid tolerance. Nat. Neurosci. 15, 284–293.PubMedCrossrefGoogle Scholar

  • Obeso, J.A., Rodriguez-Oroz, M.C., Rodriguez, M., Lanciego, J.L., Artieda, J., Gonzalo, N., and Olanow, C.W. (2000). Pathophysiology of the basal ganglia in Parkinson’s disease. Trends Neurosci. 23, S8–S19.Google Scholar

  • Oh, J.D., Russell, D.S., Vaughan, C.L., and Chase, T.N. (1998). Enhanced tyrosine phosphorylation of striatal NMDA receptor subunits: effect of dopaminergic denervation and L-DOPA administration. Brain Res. 813, 150–159.Google Scholar

  • Oh, J.D., Vaughan, C.L., and Chase, T.N. (1999). Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Res. 821, 433–442.Google Scholar

  • Overton, P.G., Richards, C.D., Berry, M.S., and Clark, D. (1999). Long-term potentiation at excitatory amino acid synapses on midbrain dopamine neurons. NeuroReport 10, 221–226.CrossrefPubMedGoogle Scholar

  • Packard, M.G. and Knowlton, B.J. (2002). Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 25, 563–593.PubMedCrossrefGoogle Scholar

  • Paille, V., Picconi, B., Bagetta, V., Ghiglieri, V., Sgobio, C., Di Filippo, M., Viscomi, M.T., Giampa, C., Fusco, F.R., Gardoni, F., et al. (2010). Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. J. Neurosci. 30, 14182–14193.CrossrefGoogle Scholar

  • Paille, V., Fino, E., Du, K., Morera-Herreras, T., Perez, S., Kotaleski, J.H., and Venance, L. (2013). GABAergic circuits control spike-timing-dependent plasticity. J. Neurosci. 33, 9353–9363.CrossrefGoogle Scholar

  • Picconi, B., Pisani, A., Centonze, D., Battaglia, G., Storto, M., Nicoletti, F., Bernardi, G., and Calabresi, P. (2002). Striatal metabotropic glutamate receptor function following experimental Parkinsonism and chronic levodopa treatment. Brain 125, 2635–2645.Google Scholar

  • Picconi, B., Centonze, D., Hakansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M.A., and Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat. Neurosci. 6, 501–506.Google Scholar

  • Picconi, B., Centonze, D., Rossi, S., Bernardi, G., and Calabresi, P. (2004). Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental Parkinsonism. Brain 127, 1661–1669.PubMedCrossrefGoogle Scholar

  • Prescott, I.A., Dostrovsky, J.O., Moro, E., Hodaie, M., Lozano, A.M., and Hutchison, W.D. (2009). Levodopa enhances synaptic plasticity in the substantia nigra pars reticulata of Parkinson’s disease patients. Brain 132, 309–318.Google Scholar

  • Quintana, A., Sgambato-Faure, V., and Savasta, M. (2012). Effects of L-DOPA and STN-HFS dyskinesiogenic treatments on NR2B regulation in basal ganglia in the rat model of Parkinson’s disease. Neurobiol. Dis. 48, 379–390.CrossrefGoogle Scholar

  • Radnikow, G. and Misgeld, U. (1998). Dopamine D1 receptors facilitate GABAA synaptic currents in the rat substantia nigra pars reticulata. J. Neurosci. 18, 2009–2016.Google Scholar

  • Raz, A., Frechter-Mazar, V., Feingold, A., Abeles, M., Vaadia, E., and Bergman, H. (2001). Activity of pallidal and striatal tonically active neurons is correlated in MPTP-treated monkeys but not in normal monkeys. J. Neurosci. 21, RC128.Google Scholar

  • Reynolds, J.N. and Wickens, J.R. (2000). Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience 99, 199–203.Google Scholar

  • Robertson, G.S. and Robertson, H.A. (1988). Evidence that the substantia nigra is a site of action for L-DOPA. Neurosci. Lett. 89, 204–208.CrossrefPubMedGoogle Scholar

  • Robertson, G.S. and Robertson, H.A. (1989). Evidence that L-DOPA-induced rotational behavior is dependent on both striatal and nigral mechanisms. J. Neurosci. 9, 3326–3331.Google Scholar

  • Ronesi, J. and Lovinger, D.M. (2005). Induction of striatal long-term synaptic depression by moderate frequency activation of cortical afferents in rat. J. Physiol. 562, 245–256.Google Scholar

  • Ronesi, J., Gerdeman, G.L., and Lovinger, D.M. (2004). Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J. Neurosci. 24, 1673–1679.CrossrefPubMedGoogle Scholar

  • Sano, H., Chiken, S., Hikida, T., Kobayashi, K., and Nambu, A. (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J. Neurosci. 33, 7583–7594.CrossrefGoogle Scholar

  • Schmidt, R., Leventhal, D.K., Mallet, N., Chen, F., and Berke, J.D. (2013). Canceling actions involves a race between basal ganglia pathways. Nat. Neurosci. 16, 1118–1124.PubMedCrossrefGoogle Scholar

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (1997). Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones. J. Physiol. 505 (Pt 1), 153–163.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (2000). Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J. Physiol. 525(pt 2), 331–341.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (2001). Presynaptic GABA(B) receptors inhibit synaptic inputs to rat subthalamic neurons. Neuroscience 108, 431–436.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (2002). Presynaptic modulation of synaptic transmission by opioid receptor in rat subthalamic nucleus in vitro. J. Physiol. 541, 219–230.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (2003a). Group II metabotropic glutamate receptor modulation of excitatory transmission in rat subthalamic nucleus. J. Physiol. 553, 489–496.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (2003b). Presynaptic inhibition of synaptic transmission by adenosine in rat subthalamic nucleus in vitro. Neuroscience 116, 99–106.Google Scholar

  • Shen, K.Z. and Johnson, S.W. (2008). 5-HT inhibits synaptic transmission in rat subthalamic nucleus neurons in vitro. Neuroscience 151, 1029–1033.Google Scholar

  • Shen, K.Z., Zhu, Z.T., Munhall, A., and Johnson, S.W. (2003). Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation. Synapse 50, 314–319.Google Scholar

  • Shen, W., Flajolet, M., Greengard, P., and Surmeier, D.J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–851.Google Scholar

  • Shindou, T., Ochi-Shindou, M., and Wickens, J.R. (2011). A Ca(2+) threshold for induction of spike-timing-dependent depression in the mouse striatum. J. Neurosci. 31, 13015–13022.CrossrefGoogle Scholar

  • Singh, V., Carman, M., Roeper, J., and Bonci, A. (2007). Brief ischemia causes long-term depression in midbrain dopamine neurons. Eur. J. Neurosci. 26, 1489–1499.PubMedCrossrefGoogle Scholar

  • Smith, Y., Raju, D.V., Pare, J.F., and Sidibe, M. (2004). The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 27, 520–527.CrossrefPubMedGoogle Scholar

  • Smith, Y., Galvan, A., Ellender, T.J., Doig, N., Villalba, R.M., Huerta-Ocampo, I., Wichmann, T., and Bolam, J.P. (2014). The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci. 8, 5.PubMedGoogle Scholar

  • Stefani, A., Peppe, A., Pierantozzi, M., Galati, S., Moschella, V., Stanzione, P., and Mazzone, P. (2009). Multi-target strategy for parkinsonian patients: the role of deep brain stimulation in the centromedian-parafascicularis complex. Brain Res. Bull. 78, 113–118.PubMedCrossrefGoogle Scholar

  • Steidl, J.V., Gomez-Isla, T., Mariash, A., Ashe, K.H., and Boland, L.M. (2003). Altered short-term hippocampal synaptic plasticity in mutant alpha-synuclein transgenic mice. NeuroReport 14, 219–223.PubMedCrossrefGoogle Scholar

  • Suarez, F., Zhao, Q., Monaghan, D.T., Jane, D.E., Jones, S., and Gibb, A.J. (2010). Functional heterogeneity of NMDA receptors in rat substantia nigra pars compacta and reticulata neurones. Eur. J. Neurosci. 32, 359–367.PubMedCrossrefGoogle Scholar

  • Sung, K.W., Choi, S., and Lovinger, D.M. (2001). Activation of group I mGluRs is necessary for induction of long-term depression at striatal synapses. J. Neurophysiol. 86, 2405–2412.Google Scholar

  • Surmeier, D.J., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235.PubMedCrossrefGoogle Scholar

  • Surmeier, D.J., Plotkin, J., and Shen, W. (2009). Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr. Opin. Neurobiol. 19, 621–628.CrossrefPubMedGoogle Scholar

  • Thomas, M.J., Malenka, R.C., and Bonci, A. (2000). Modulation of long-term depression by dopamine in the mesolimbic system. J. Neurosci. 20, 5581–5586.Google Scholar

  • Tigaret, C.M., Thalhammer, A., Rast, G.F., Specht, C.G., Auberson, Y.P., Stewart, M.G., and Schoepfer, R. (2006). Subunit dependencies of N-methyl-D-aspartate (NMDA) receptor-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. Mol. Pharmacol. 69, 1251–1259.Google Scholar

  • Tozzi, A., Costa, C., Siliquini, S., Tantucci, M., Picconi, B., Kurz, A., Gispert, S., Auburger, G., and Calabresi, P. (2012). Mechanisms underlying altered striatal synaptic plasticity in old A53T-alpha synuclein overexpressing mice. Neurobiol. Aging 33, 1792–1799.CrossrefGoogle Scholar

  • Tse, Y.C. and Yung, K.K. (2000). Cellular expression of ionotropic glutamate receptor subunits in subpopulations of neurons in the rat substantia nigra pars reticulata. Brain Res. 854, 57–69.Google Scholar

  • Tseng, K.Y., Riquelme, L.A., Belforte, J.E., Pazo, J.H., and Murer, M.G. (2000). Substantia nigra pars reticulata units in 6-hydroxydopamine-lesioned rats: responses to striatal D2 dopamine receptor stimulation and subthalamic lesions. Eur. J. Neurosci. 12, 247–256.Google Scholar

  • Tseng, K.Y., Kasanetz, F., Kargieman, L., Pazo, J.H., Murer, M.G., and Riquelme, L.A. (2001). Subthalamic nucleus lesions reduce low frequency oscillatory firing of substantia nigra pars reticulata neurons in a rat model of Parkinson’s disease. Brain Res. 904, 93–103.Google Scholar

  • Villalba, R.M., Wichmann, T., and Smith, Y. (2014). Neuronal loss in the caudal intralaminar thalamic nuclei in a primate model of Parkinson’s disease. Brain Struct. Funct. 219, 381–394.Google Scholar

  • Wang, Z., Kai, L., Day, M., Ronesi, J., Yin, H.H., Ding, J., Tkatch, T., Lovinger, D.M., and Surmeier, D.J. (2006). Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 50, 443–452.Google Scholar

  • Watson, J.B., Hatami, A., David, H., Masliah, E., Roberts, K., Evans, C.E., and Levine, M.S. (2009). Alterations in corticostriatal synaptic plasticity in mice overexpressing human alpha-synuclein. Neuroscience 159, 501–513.Google Scholar

  • Xu, Z., Chen, R.Q., Gu, Q.H., Yan, J.Z., Wang, S.H., Liu, S.Y., and Lu, W. (2009). Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J. Neurosci. 29, 8764–8773.Google Scholar

  • Yamawaki, N., Magill, P.J., Woodhall, G.L., Hall, S.D., and Stanford, I.M. (2012). Frequency selectivity and dopamine-dependence of plasticity at glutamatergic synapses in the subthalamic nucleus. Neuroscience 203, 1–11.Google Scholar

  • Yashiro, K. and Philpot, B.D. (2008). Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55, 1081–1094.Google Scholar

  • Yin, H.H. and Lovinger, D.M. (2006). Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc. Natl. Acad. Sci. USA 103, 8251–8256.Google Scholar

  • Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., and Poo, M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44.Google Scholar

  • Zhou, F.W., Jin, Y., Matta, S.G., Xu, M., and Zhou, F.M. (2009). An ultra-short dopamine pathway regulates basal ganglia output. J. Neurosci. 29, 10424–10435.CrossrefGoogle Scholar

  • Zweifel, L.S., Parker, J.G., Lobb, C.J., Rainwater, A., Wall, V.Z., Fadok, J.P., Darvas, M., Kim, M.J., Mizumori, S.J., Paladini, C.A., et al. (2009). Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl. Acad. Sci. USA 106, 7281–7288.Google Scholar

About the article

Corresponding author: Jérôme Baufreton, Université Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo Saignat, F-33000 Bordeaux, France, e-mail: ; and CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France


Received: 2014-03-14

Accepted: 2014-06-20

Published Online: 2014-07-19

Published in Print: 2014-12-01


Citation Information: Reviews in the Neurosciences, Volume 25, Issue 6, Pages 741–754, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0024.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Simon Schafferer, Rimpi Khurana, Violetta Refolo, Serena Venezia, Edith Sturm, Paolo Piatti, Clara Hechenberger, Hubert Hackl, Roman Kessler, Michaela Willi, Ronald Gstir, Anne Krogsdam, Alexandra Lusser, Werner Poewe, Gregor K. Wenning, Alexander Hüttenhofer, Nadia Stefanova, and Stefan Maas
PLOS ONE, 2016, Volume 11, Number 3, Page e0150705

Comments (0)

Please log in or register to comment.
Log in