Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board Member: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Eichenbaum, Howard / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2016: 2.546
5-year IMPACT FACTOR: 3.191

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.249
Source Normalized Impact per Paper (SNIP) 2016: 0.983

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 25, Issue 6 (Dec 2014)

Issues

Chronic stress as a risk factor for Alzheimer’s disease

Alberto Machado
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio J. Herrera
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rocío M. de Pablos
  • Corresponding author
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ana María Espinosa-Oliva
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Manuel Sarmiento
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Ayala
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Luis Venero
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martiniano Santiago
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruth F. Villarán
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María José Delgado-Cortés
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sandro Argüelles
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josefina Cano
  • Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain
  • Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Sevilla, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-08-29 | DOI: https://doi.org/10.1515/revneuro-2014-0035

Abstract

This review aims to point out that chronic stress is able to accelerate the appearance of Alzheimer’s disease (AD), proposing the former as a risk factor for the latter. Firstly, in the introduction we describe some human epidemiological studies pointing out the possibility that chronic stress could increase the incidence, or the rate of appearance of AD. Afterwards, we try to justify these epidemiological results with some experimental data. We have reviewed the experiments studying the effect of various stressors on different features in AD animal models. Moreover, we also point out the data obtained on the effect of chronic stress on some processes that are known to be involved in AD, such as inflammation and glucose metabolism. Later, we relate some of the processes known to be involved in aging and AD, such as accumulation of β-amyloid, TAU hyperphosphorylation, oxidative stress and impairement of mitochondrial function, emphasizing how they are affected by chronic stress/glucocorticoids and comparing with the description made for these processes in AD. All these data support the idea that chronic stress could be considered a risk factor for AD.

Keywords: aging; amyloid-β; glucocorticoids; neuroinflammation

References

  • Abercrombie, H.C., Jahn, A.L., Davidson, R.J., Kern, S., Kirschbaum, C., and Halverson, J. (2011). Cortisol’s effects on hippocampal activation in depressed patients are related to alterations in memory formation. J. Psychiatr. Res. 45, 15–23.CrossrefGoogle Scholar

  • Abrahám, I., Harkany, T., Horvath, K.M., Veenema, A.H., Penke, B., Nyakas, C., and Luiten P.G. (2000). Chronic corticosterone administration dose-dependently modulates Aβ(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J. Neuroendocrinol. 12, 486–494.Google Scholar

  • Abramov, A.Y. and Duchen, M.R. (2005). The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid β peptides. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 2309–2314.Google Scholar

  • Adachi, N., Chen, J., Liu, K., Tsubota, S., and Arai, T. (1998). Dexamethasone aggravates ischemia induced neuronal damage by facilitating the onset of anoxic depolarization and the increase in the intracellular Ca2+ concentration in gerbil hippocampus. J. Cereb. Blood Flow Metab. 18, 274–280.Google Scholar

  • Aisa, B., Tordera, R., Lasheras, B., Del Río, J., and Ramírez, M.J. (2007). Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology 32, 256–266.CrossrefGoogle Scholar

  • Amatruda, J.M., Livingston, J.N., and Lockwood, D.H. (1985). Cellular mechanisms in selected states of insulin resistance: human obesity, glucocorticoid excess, and chronic renal failure. Diabetes Metab. Rev. 1, 293–317.PubMedCrossrefGoogle Scholar

  • Argüelles, S., Herrera, A.J., Carreño-Müller, E., de Pablos, R.M., Villarán, R.F., Espinosa-Oliva, A.M., Machado, A., and Cano, J. (2010). Degeneration of dopaminergic neurons induced by thrombin injection in the substantia nigra of the rat is enhanced by dexamethasone: role of monoamine oxidase enzyme. Neurotoxicology 31, 55–66.PubMedCrossrefGoogle Scholar

  • Atamna, H. and Frey, W.H. 2nd. (2007). Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer’s disease. Mitochondrion 7, 297–310.CrossrefGoogle Scholar

  • Atif, F., Yousuf, S., and Agrawal, S.K. (2008). Restraint stress-induced oxidative damage and its amelioration with selenium. Eur. J. Pharmacol. 600, 59–63.Google Scholar

  • Baglietto-Vargas, D., Medeiros, R., Martinez-Coria, H., LaFerla, F.M., and Green, K.N. (2013). Mifepristone alters amyloid precursor protein processing to preclude amyloid beta and also reduces tau pathology. Biol Psychiatry 74, 357–366.CrossrefGoogle Scholar

  • Baker, A.F., Briehl, M.M., Dorr, R., and Powis, P. (1996). Decreased antioxidant defence and increased oxidant stress during dexamethasone-induced apoptosis: bcl-2 prevents the loss of antioxidant enzyme activity. Cell Death Diff. 3, 207–213.Google Scholar

  • Behl, C., Trapp, T., Skutella, T., and Holsboer, F. (1997). Protection against oxidative stress-induced neuronal cell death – a novel role for RU486. Eur. J. Neurosci. 9, 912–920.CrossrefGoogle Scholar

  • Belanoff, J.K., Gross, K., Yager, A., and Schatzberg, A.F. (2001). Corticosteroids and cognition. J. Psychiatr. Res. 35, 127–145.CrossrefGoogle Scholar

  • Berent, S., Giordani, B., Foster, N., Minoshima, S., Lajiness-O’Neill, R., Koeppe, R., and Kuhl, D.E. (1999). Neuropsychological function and cerebral glucose utilization in isolated memory impairment and Alzheimer’s disease. J. Psychiatr. Res. 33, 7–16.Google Scholar

  • Bertram, L. and Tanzi, R.E. (2008). Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nature Rev. Neurosci. 9, 768–778.CrossrefGoogle Scholar

  • Bishop, N.A., Lu, T., and Yankner, B.A. (2010). Neural mechanisms of ageing and cognitive decline. Nature 464, 529– 535.CrossrefPubMedGoogle Scholar

  • Blasko, I., Marx, F., Steiner, E., Hartmann, T., and Grubeck-Loebenstein, B. (1999). TNFalpha plus IFNgamma induce the production of Alzheimer β-amyloid peptides and decrease the secretion of APPs. FASEB J. 13, 63–68.PubMedGoogle Scholar

  • Bons, N., Jallageas, V., Mestre-Francés, N., Silhol, S., Petter, A., and Delacourte, A. (1995). Microcebus murinus, a convenient laboratory animal model for the study of Alzheimer’s disease. Alzheimer’s Res. 1, 83–87.Google Scholar

  • Braak, H., Braak, E., and Strothjohann, M. (1994). Abnormally phosphorylated tau protein related to the formation of neurofibrillary tangles and neuropil threads in the cerebral cortex of sheep and goat. Neurosci. Lett. 171, 1–4.CrossrefPubMedGoogle Scholar

  • Briones, T.L. and Darwish, H. (2014). Decrease in age-related tau hyperphosphorylation and cognitive improvement following vitamin D supplementation are associated with modulation of brain energy metabolism and redox state. Neuroscience 262, 143–55.Google Scholar

  • Brunetti, A., Fulham, M.J., Aloj, L., De Souza, B., Nieman, L., Oldfield, E.H., and Di Chiro, G. (1998). Decreased brain glucose utilization in patients with Cushing’s disease. J. Nucl. Med. 39, 786–790.Google Scholar

  • Burnes, D.P. and Burnette, D.J. (2013). Broadening the etiological discourse on Alzheimer’s disease to include trauma and posttraumatic stress disorder as psychosocial risk factors. Aging Stud. 27, 218–224.CrossrefGoogle Scholar

  • Butterfield, D.A., Drake, J., Pocernich, C., and Castegna, A. (2001). Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol. Med. 7, 548–554.PubMedCrossrefGoogle Scholar

  • Buxbaum, J.D., Oishi, M., Chen, H.I., Pinkas-Kramarski, R., Jaffe, E.A., Gandy, S.E., and Greengard, P. (1992). Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer β/A4 amyloid protein precursor. Proc. Natl. Acad. Sci. USA 89, 10075–10078.Google Scholar

  • Calingasan, N.Y., Uchida, K., and Gibson, G.E. (1999). Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease, J. Neurochem. 72, 751–756.CrossrefGoogle Scholar

  • Cao, K., Chen-Plotkin, A.S., Plotkin, J.B., and Wang, L-S. (2010). Age-correlated gene expression in normal and neurodegenerative human brain tissues. PLoS One 5, pii:e13098.Google Scholar

  • Cardoso, S.M., Santana, I., Swerdlow, R.H., and Oliveira, C.R. (2004). Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Aβ toxicity. J. Neurochem. 89, 1417–1426.CrossrefGoogle Scholar

  • Carlo, P., Violani, E., Del Rio, M., Olasmaa, M., Santagati, S., Maggi, A., and Picotti, G.B. (1996). Monoamine oxidase B expression is selectively regulated by dexamethasone in cultured rat astrocytes. Brain Res. 711, 175–183.Google Scholar

  • Carreño-Müller, E., Herrera, A.J., de Pablos, R.M., Tomás-Camardiel, M., Venero, J.L., Cano, J., and Machado, A. (2003). Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. J. Neurochem. 84, 1201–1214.CrossrefGoogle Scholar

  • Carroll, J.C., Iba, M., Bangasser, D.A., Valentino, R.J., James, M.J., Brunden, K.R., Lee, V.M., and Trojanowski, J.Q. (2011). Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J Neurosci. 31, 14436–14449.CrossrefGoogle Scholar

  • Castaño, A., Herrera, A.J., Cano, J., and Machado, A. (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J. Neurochem. 70, 1584–1592.Google Scholar

  • Castaño, A., Herrera, A.J., Cano, J., and Machado, A. (2002). The degenerative effect of a single intranigral injection of LPS on the dopaminergic system is prevented by dexamethasone, and not mimicked by rh-TNF-α, IL-1β and IFN-γ. J. Neurochem. 81, 150–157.Google Scholar

  • Catania, C., Sotiropoulos, I., Silva, R., Onofri, C., Breen, K.C., Sousa, N., and Almeida, O.F. (2009). The amyloidogenic potential and behavioral correlates of stress. Mol. Psychiatry 14, 95–105.PubMedCrossrefGoogle Scholar

  • Ceballos-Picot, I., Nicole, A., Clement, M., Bourre, J.M., and Sinet, P.M. (1992). Age-related changes in antioxidant enzymes and lipid peroxidation in brains of control and transgenic mice overexpressing copper-zinc superoxide dismutase, Mutat. Res. 275, 281–293.Google Scholar

  • Coluccia, D., Wolf, O.T., Kollias, S., Roozendaal, B., Forster, A., and de Quervain D.J. (2008). Glucocorticoid therapy-induced memory deficits: acute versus chronic effects. J. Neurosci. 28, 3474–3478.CrossrefGoogle Scholar

  • Copeland, J.M., Cho, J., Lo, T. Jr., Hur, J.H., Bahadorani, S., Arabyan, T., Rabie, J., Soh, J., and Walker, D.W. (2009). Extension of Drosophila life span by RNAi of the mitochondrial respiratory chain. Curr. Biol. 19, 1591–1598.CrossrefPubMedGoogle Scholar

  • Cork, L.C., Powers, R.E., Selkoe, D.J., Davies, P., Geyer, J.J., and Price, D.L. (1988). Neurofibrillary tangles and senile plaques in aged bears. J. Neuropathol. Exp. Neurol. 47, 629–641.Google Scholar

  • Croisier, E., Moran, L.B., Dexter, D.T., Pearce, R.K., and Graeber, M.B. (2005). Microglial inflammation in the parkinsonian substantia nigra: relationship to α-synuclein deposition. J. Neuroinflammation. 3, 2–14.Google Scholar

  • Csernansky, J.G., Dong, H., Fagan, A.M., Wang, L., Xiong, C., Holtzman, D.M., and Morris, J.C. (2006). Plasma cortisol and progression of dementia in subjects with Alzheimer-type dementia. Am. J. Psychiatry 163, 2164–2169.Google Scholar

  • Cuadrado-Tejedor, M., Cabodevilla, J.F., Zamarbide, M., Gómez-Isla, T., Franco, R. and Perez-Mediavilla, A. (2013). Age-related mitochondrial alterations without neuronal loss in the hippocampus of a transgenic model of Alzheimer’s disease. Curr Alzheimer Res. 10, 390–405.CrossrefGoogle Scholar

  • Cui, B., Zhu, L. She, X., Wu, M., Ma, Q., Wang, T., Zhang, N., Xu, C., Chen, X., An, G., et al. (2012). Chronic noise exposure causes persistence of tau hyperphosphorylation and formation of NFT tau in the rat hippocampus and prefrontal cortex. Exp Neurol. 238, 122–129.Google Scholar

  • de Leon, M.J., Ferris, S.H., George, A.E., Reisberg, B., Christman, D.R., Kricheff, I.I., and Wolf, A.P. (1983a). Computed tomography and positron emission transaxial tomography evaluations of normal aging and Alzheimer’s disease. J. Cereb. Blood Flow Metab. 3, 391–394.Google Scholar

  • de Leon, M.J., Ferris, S.H., George, A.E., Christman, D.R., Fowler, J.S., Gentes, C., Reisberg, B., Gee, B., Emmerich, M., Yonekura, Y., et al. (1983b). Positron emission tomographic studies of aging and Alzheimer disease. AJNR Am. J. Neuroradiol. 4, 568–571.Google Scholar

  • de Leon, M.J., McRae, T., Rusinek, H., Convit, A., De Santi, S., Tarshish, C., Golomb, J., Volkow, N., Daisley, K., Orentreich, N., et al. (1997). Cortisol reduces hippocampal glucose metabolism in normal elderly, but not in Alzheimer’s disease. J. Clin. Endocrinol. Metab. 82, 3251–3259.Google Scholar

  • de Pablos, R.M., Herrera, A.J., Villarán, R.F., Cano, J., and Machado, A. (2005). Dopamine-dependent neurotoxicity of lipopolysaccharide in substantia nigra. FASEB J. 19, 407–409.PubMedGoogle Scholar

  • de Pablos, R.M., Villarán, R.F., Argüelles, S., Herrera, A.J., Venero, J.L., Ayala, A., Cano, J., and Machado, A. (2006). Stress increases vulnerability to inflammation in the rat prefrontal cortex. J. Neurosci. 26, 5709–5719.CrossrefGoogle Scholar

  • de Pablos, R.M., Herrera, A.J., Espinosa-Oliva, A.M., Sarmiento, M., Muñoz, M.F., Machado, A., and Venero, J.L. (2014). Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation 11, 34.PubMedCrossrefGoogle Scholar

  • de Quervain, D.J., Poirier, R., Wollmer, M.A., Grimaldi, L.M., Tsolaki, M., Streffer, J.R., Hock, C., Nitsch, R.M., Mohajeri, M.H., and Papassotiropoulos, A. (2004). Glucocorticoid-related genetic susceptibility for Alzheimer’s disease. Hum. Mol. Genet. 13, 47–52.Google Scholar

  • Desgranges, B., Baron, J.C., de la Sayette, V., Petit-Taboué, M.C., Benali, K., Landeau, B., Lechevalier, B., and Eustache, F. (1998). The neural substrate of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain 121, 611–631.CrossrefGoogle Scholar

  • Dhikav, V. and Anand, K.S. (2007). Glucocorticoids may initiate Alzheimer’s disease: a potential therapeutic role for mifepristone (RU-486). Med. Hypotheses 68, 1088–1092.Google Scholar

  • Dodart, J.C., Mathis, C., Bales, K.R., Paul, S.M., and Ungerer, A. (1999). Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F beta-amyloid precursor protein. Neurosci. Lett. 277, 49–52.Google Scholar

  • Dong, H., Goico, B., Martin, M., Csernansky, C.A., Bertchume, A., and Csernansky, J.G. (2004). Modulation of hipocampal cell proliferation, memory, and amyloid plaque deposition in APPsw (Tg2576) mutant mice by isolation stress. Neuroscience 127, 601–609.CrossrefGoogle Scholar

  • Dong, H., Yuede, C.M., Yoo, H.S., Martin, M.V., Deal, C., Mace, A.G., and Csernansky, J.G. (2008). Corticosterone and related receptor expression are associated with increased β-amyloid plaques in isolated Tg2576 mice. Neuroscience 155, 154–163.PubMedCrossrefGoogle Scholar

  • Du, J., Wang, Y., Hunter, R., Wei, Y., Blumenthal, R., Falke, C., Khairova, R., Zhou, R., Yuan, P., Machado-Vieira, R., et al. (2009). Dynamic regulation of mitochondrial function by glucocorticoids. Proc. Natl. Acad. Sci. USA 106, 3543–3548.CrossrefGoogle Scholar

  • Dunn, A.J., Wang, J., and Ando, T. (1999). Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv. Exp. Med. Biol. 461, 117–127.Google Scholar

  • Edenfield, T.M. and Saeed, S.A. (2012). An update on mindfulness meditation as a self-help treatment for anxiety and depression. Psychol. Res. Behav. Manag. 5, 131–141.CrossrefPubMedGoogle Scholar

  • Endo, Y., Nishimura, J., and Kimura, F. (1994). Adrenalectomy increases local cerebral blood flow in the rat hippocampus. Pflüger’s Arch. 426, 83–88.Google Scholar

  • Epel, E.S., Blackburn, E.H., Lin, J., Dhabhar, F.S., Adler, N.E., Morrow, J.D., and Cawthon, R.M. (2004). Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA 101, 17312–17315.CrossrefGoogle Scholar

  • Espinosa-Oliva, A.M., de Pablos, R.M., Villarán, R.F., Argüelles, S., Venero, J.L., Machado, A., and Cano, J. (2011). Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiol. Aging 32, 85–102.CrossrefGoogle Scholar

  • Filipcik, P., Novak, P., Mravec, B., Ondicova, K., Krajciova, G., Novak, M., and Kvetnansky, R. (2012). Tau protein phosphorylation in diverse brain areas of normal and CRH deficient mice: up-regulation by stress. Cell Mol. Neurobiol. 32, 837–845.CrossrefPubMedGoogle Scholar

  • Fontella, F.U., Siqueira, I.R., Vasconcellos, A.P., Tabajara, A.S., Netto, C.A., and Dalmaz, C. (2005). Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem. Res. 30, 105–111.PubMedCrossrefGoogle Scholar

  • Freo, U., Holloway, H.W., Kalogeras, K., Rapoport, S.I., and Soncrant, T.T. (1992). Adrenalectomy or metyrapone-pretreatment abolishes cerebral metabolic responses to the serotonin agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in the hippocampus. Brain Res. 586, 256–264.Google Scholar

  • Fulham, M.J., Brunetti, A., Aloj, L., Raman, R., Dwyer, A.J., and Di Chiro, G. (1995). Decreased cerebral glucose metabolism in patients with brain tumors: an effect of corticosteroids. J. Neurosurg. 83, 657–664.CrossrefGoogle Scholar

  • Fuster-Matanzo, A., Llorens-Martin, M., Jurado-Arjona, J., Avila, J., and Hernandez, F. (2012). Tau protein and adult hippocampal neurogenesis. Front. Neurosci. 6, 104.Google Scholar

  • Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., et al. (1995). Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373, 523–527.Google Scholar

  • Ghoumari, A.M., Dusart, I., El-Etr, M., Tronche, F., Sotelo, C., Schumacher, M., and Baulieu, E.E. (2003). Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc. Natl. Acad. Sci. USA 100, 7953–7958.Google Scholar

  • Gibson, G.E., Ratan, R.R., and Beal, M.F. (2008). Mitochondria and oxidative stress in neurodegenerative disorders. Preface. Ann. NY Acad. Sci. 1147, xi-xii.Google Scholar

  • Gillardon, F., Rist, W., Kussmaul, L., Vogel, J., Berg, M., Danzer, K., Kraut, N., and Hengerer, B. (2007). Proteomics 7, 605–616.CrossrefGoogle Scholar

  • Goodman, Y., Bruce, A.J., Cheng, B., and Mattson, M.P. (1996). Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons. J. Neurochem. 66, 1836–1844.Google Scholar

  • Goosens, K.A. and Sapolsky, R.M. (2007). Stress and Glucocorticoid Contributions to Normal and Pathological Aging, in Brain Aging: Models, Methods, and Mechanisms.D. R. Riddle ed., chapter 13. (CRC Press, Boca Raton).Google Scholar

  • Gotz, J., Xia, D., Leinenga, G., Chew, Y.L., and Nicholas, H. (2013). What renders TAU toxic. Front. Neurol. 4, 72.PubMedGoogle Scholar

  • Green, K.N., Billings, L.M., Roozendaal, B., McGaugh, J.L., and LaFerla, F.M. (2006). Glucocorticoids increase amyloid-β and tau pathology in a mouse model of Alzheimer’s disease. J. Neurosci. 26, 9047–9056.CrossrefGoogle Scholar

  • Guo, J.T., Yu, J., Grass, D., de Beer, F.C., and Kindy, M.S. (2002). Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis. J. Neurosci. 22, 5900–5909.Google Scholar

  • Harris-White, M.E., Chu, T., Miller, S.A., Simmons, M., Teter, B., Nash, D., Cole, G.M., and Frautschy, S.A. (2001). Estrogen (E2) and glucocorticoid (Gc) effects on microglia and Aβ clearance in vitro and in vivo. Neurochem. Int. 39, 435–448.CrossrefGoogle Scholar

  • Härtig, W., Klein, C., Brauer, K.,. Schüppel, K.F, Arendt, T., Brückner, G., and Bigl, V. (2000). Abnormally phosphorylated protein tau in the cortex of aged individuals of various mammalian orders. Acta Neuropathol. 100, 305–312.PubMedGoogle Scholar

  • Härtig, W., Klein, C., Brauer, K., Schüppel, K.F., Arendt, T., Bigl, V., and Brückner, G. (2001). Hyperphosphorylated protein tau is restricted to neurons devoid of perineuronal nets in the cortex of aged bison. Neurobiol. Aging, 22, 25–33.CrossrefPubMedGoogle Scholar

  • Härtig, W., Oklejewicz, M., Strijkstra, A.M, Boerema, A.S., Stieler, J., and Arendt, T. (2005). Phosphorylation of the tau protein sequence 199-205 in the hippocampal CA3 region of Syrian hamsters in adulthood and during aging. Brain Res. 1056, 100–104.Google Scholar

  • Hashiguchi, M. and Hashiguchi, Y. (2013). Kinase-kinase interaction and modulation of tau phosphorylation. Int. Rev. Cell. Mol. Biol. 300, 121–160.Google Scholar

  • Hebert, L.E., Scherr, P.A., Bienias, J.L., Bennett, D.A., and Evans, D.A. (2003). Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch. Neurol. 60, 1119–1122.CrossrefPubMedGoogle Scholar

  • Hensley, K., Carney, J.M., Mattson, M.P., Aksenova, M., Harris, M., Wu, J.F., Floyd, R.A., and Butterfield, D.A. (1994). A model for β-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.CrossrefGoogle Scholar

  • Hernández-Romero, M.C., Argüelles, S., Villarán, R.F., de Pablos, R.M., Delgado-Cortés, M.J., Santiago, M., Herrera, A.J., Cano, J., and Machado, A. (2008). Simvastatin prevents the inflammatory process and the dopaminergic degeneration induced by the intranigral injection of lipopolysaccharide. J. Neurochem. 105, 445–459.CrossrefGoogle Scholar

  • Herrera, A.J., Castaño, A., Venero, J.L., Cano, J., and Machado, A. (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol. Dis. 7, 429–447.PubMedCrossrefGoogle Scholar

  • Herrera, A. J., Tomás-Camardiel, M., Venero, J.L., Cano, J., and Machado, A. (2005). Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J. Neural. Transm. 112, 111–119.CrossrefGoogle Scholar

  • Herrera, A.J., de Pablos, R.M., Carreño-Müller, E., Villarán, R.F., Venero, J.L., Tomás-Camardiel, M., Cano, J., and Machado, A. (2008). The intrastriatal injection of thrombin in rat induced a retrograde apoptotic degeneration of nigral dopaminergic neurons through synaptic elimination. J. Neurochem. 105, 750–762.CrossrefGoogle Scholar

  • Hirai, K., Aliev, G., Nunomura, A., Fujioka, H., Russell, R.L., Atwood, C.S., Johnson, A.B., Kress, Y., Vinters, H.V., Tabaton, M., et al. (2001). Mitochondrial abnormalities in Alzheimer’s disease. J. Neurosci. 21, 3017–3023.Google Scholar

  • Hirose, Y., Imai, Y., Nakajima, K., Takemoto, N., Toya, S., and Kohsaka, S. (1994). Glial conditioned medium alters the expression of amyloid precursor protein in SH-SY5Y neuroblastoma cells. Biochem. Biophys. Res. Commun. 198, 504–509.CrossrefGoogle Scholar

  • Horner, H.C., Packan, D.R., and Sapolsky, R.M. (1990). Glucocorticoids inhibit glucose transport in cultured hippocampal neurons and glia. Neuroendocrinology 52, 57–64.PubMedGoogle Scholar

  • Ibáñez, V., Pietrini, P., Alexander, G.E., Furey, M.L., Teichberg, D., Rajapakse, J.C., Rapoport, S.I., Schapiro, M.B., and Horwitz, B. (1998). Regional glucose metabolic abnormalities are not the result of atrophy in Alzheimer’s disease. Neurology 50, 1585–1593.CrossrefGoogle Scholar

  • Iqbal, K. and Grundke-Iqbal, I. (2008). Alzheimer neurofibrillary degeneration: significance, etiopathogenesis, therapeutics and prevention. J. Cell Mol. Med. 12, 38–55.Google Scholar

  • Iuchi, T., Akaike, M., Mitsui, T., Ohshima, Y., Shintani, Y., Azuma, H., and Matsumoto, T. (2003). Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ. Res. 92, 81–87.PubMedCrossrefGoogle Scholar

  • Jang, Y.C. and Remmen, V.H. (2009). The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp. Gerontol. 44, 256–260.CrossrefPubMedGoogle Scholar

  • Jeong, Y.H., Park, C.H., Yoo, J., Shin, K.Y., Ahn, S.M., Kim, H.S., Lee, S.H., Emson, P.C., and Suh, Y.H. (2006). Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer’s disease model. FASEB J. 20, 729–731.Google Scholar

  • Johansson, L., Guo, X., Waern, M., Ostling, S., Gustafson, D., Bengtsson, C., and Skoog, I. (2010). Midlife psychological stress and risk of dementia: a 35-year longitudinal population study. Brain 133, 2217–2224.CrossrefGoogle Scholar

  • Jorm, A.F. and Jolley, D. (1998). The incidence of dementia: a meta-analysis. Neurology 51, 728–733.CrossrefPubMedGoogle Scholar

  • Kadekaro, M., Ito, M., and Gross, P.M. (1988). Local cerebral glucose utilization is increased in acutely adrenalectomized rats. Neuroendocrinology 47, 329–334.PubMedCrossrefGoogle Scholar

  • Kang, J.E., Cirrito, J.R., Dong, H., Csernansky, J.G., and Holtzman, D.M. (2007). Acute stress increases interstitial fluid amyloid-β via corticotropin-releasing factor and neuronal activity. Proc. Natl. Acad. Sci. USA 104, 10673–10678.CrossrefGoogle Scholar

  • Kashif, S.M., Zaidi, R., Al-Qirim, T.M, Hoda, M.N., and Banu, N. (2003). Modulation of restraint stress induced oxidative changes in rats by antioxidant vitamins. J. Nutrition Biochem. 14, 633–636.CrossrefGoogle Scholar

  • Kennedy, A.M., Rossor, M.N., and Frackowiak, R.S. (1995). Positron emission tomography in familial Alzheimer disease. Alzheimer Dis. Assoc. Disord. 9, 17–20.CrossrefGoogle Scholar

  • Khan, S.M., Cassarino, D.S., Abramova, N.N., Keeney, P.M., Borland, M.K., Trimmer, P.A., Krebs, C.T., Bennett, J.C., Parks, J.K., Swerdlow, R.H., et al. (2000). Alzheimer’s disease cybrids replicate β-amyloid abnormalities through cell death pathways. Ann. Neurol. 48, 148–155.PubMedCrossrefGoogle Scholar

  • Kim, J.J., Foy, M.R., and Thompson, R.F. (1996). Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc. Natl. Acad. Sci. USA 93, 4750–4753.CrossrefGoogle Scholar

  • Kim, W.G., Mohney, R.P., Wilson, B., Jeohn, G.H., Liu, B., and Hong, J.S. (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci. 20, 6309–6316.Google Scholar

  • Kimura, T., Yamashita, S., Fukuda, T., Park, J.M., Murayama, M., Mizoroki, T.,Yoshiike, Y., Sahara, N., and Takashima, A. (2007). Hyperphosphorylated TAU in parahippocampal cortex impairs place learning in aged mice expressing wild-type human TAU. EMBO J. 26, 5143–5152.CrossrefPubMedGoogle Scholar

  • Kitazawa, M., Oddo, S., Yamasaki, T.R., Green, K.N., and LaFerla, F.M. (2005). Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J. Neurosci. 25, 8843–8853.Google Scholar

  • Kuhl, D.E., Metter, E.J., Riege, W.H., and Phelps, M.E. (1982). Effects of human aging on patterns of local cerebral glucose utilization determined by the [18F]fluorodeoxyglucose method. J. Cereb. Blood Flow Metab. 2, 163–171.Google Scholar

  • Kulstad, J.J., McMillan, P.J., Leverenz, J.B., Cook, D.G., Green, P.S., Peskind, E.R., Wilkinson, C.W., Farris, W., Mehta, P.D., and Craft, S. (2005). Effects of chronic glucocorticoid administration on insulin-degrading enzyme and amyloid-β peptide in the aged macaque. J. Neuropathol. Exp. Neurol. 64, 139–146.Google Scholar

  • Landfield, P.W., Blalock, E.M., Chen, K-C., and Porter, N.M. (2007). A new glucocorticoid hypothesis of brain aging: implications for Alzheimer’s disease. Curr. Alzheimer Res. 4, 205–212.CrossrefGoogle Scholar

  • Landgraf, R., Mitro, A., and Hess, J. (1978). Regional net uptake of 14C-glucose by rat brain under the influence of corticosterone. Endocrinol. Exp. 12, 119–129.Google Scholar

  • Lee, K.W., Kim, J.B., Seo, J.S., Kim, T.K., Im, J.Y., Baek, I.S., Kim, K.S., Lee, J.K., and Han, P.L. (2009). Behavioral stress accelerates plaque pathogenesis in the brain of Tg2576 mice via generation of metabolic oxidative stress. J. Neurochem. 108, 165–175.CrossrefGoogle Scholar

  • Leza, J.C., Salas, E., Sawicki, G., Russell, J.C., and Radomski, M.W. (1998). The effects of stress on homeostasis in JCR-LA-cp rats: the role of nitric oxide. J. Pharmacol. Exp. Ther. 286, 1397–1403.Google Scholar

  • Li, W.Z., Li, W.P., Yao, Y.Y., Zhang, W., Yin, Y.Y., Wu, G.C., and Gong, H.L. (2010). Glucocorticoids increase impairments in learning and memory due to elevated amyloid precursor protein expression and neuronal apoptosis in 12-month old mice. Eur. J. Pharmacol. 628, 108–115.Google Scholar

  • Li, Z., Ma, L., Kulesskaya, N., Võikar, V., and Tian, L. (2014). Microglia are polarized to M1 type in high-anxiety inbred mice in response to lipopolysaccharide challenge. Brain Behav Immun 38, 237–248.CrossrefGoogle Scholar

  • Liang, W.S., Reiman, E.M., Valla, J., Dunckley, T., Beach, T.G., Grover, A., Niedzielko, T.L., Schneider, L.E., Mastroeni, D., Caselli, R., et al. (2008). Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc. Natl Acad. Sci. USA 105, 4441–4446.CrossrefGoogle Scholar

  • Liu, J., Wang, X., Shigenaga, M., Yeo, H., Mori, A., and Ames, B. (1996). Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of rats. FASEB J. 10, 1532–1538.PubMedGoogle Scholar

  • Loerch, P.M., Lu, T., Dakin, K.A., Vann, J.M., Isaacs, A., Geula, C., Wang, J., Pan, Y., Gabuzda, D.H., Li, C., et al. (2008). Evolution of the aging brain transcriptome and synaptic regulation. PLoS One 3, e3329.Google Scholar

  • Lovell, M.A. and Markesbery, W.R. (2007). Oxidative DNA damage in mild cognitive impairment and late-stage Alzheimer’s disease. Nucleic Acids Res. 35, 7497–7504.CrossrefPubMedGoogle Scholar

  • Lu, T., Pan, Y., Kao, S.Y., Li, C., Kohane, I., Chan, J., and Yankner, B.A. (2004). Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891.Google Scholar

  • MacPherson, A., Dinkel, K., and Sapolsky, R. (2005). Glucocorticoids worsen excitotoxin-induced expression of pro-inflammatory cytokines in hipocampal cultures. Exp. Neurol. 194, 376–383.CrossrefGoogle Scholar

  • Madrigal, J.L., Hurtado, O., Moro, M.A., Lizasoain, I., Lorenzo, P., Castrillo, A., Boscá, L., and Leza, J.C. (2002). The increase in TNF-α levels is implicated in NF-κB activation and inducible nitric oxide synthase expression in brain cortex after immobilization stress. Neuropsychopharmacology 26, 155–163.CrossrefPubMedGoogle Scholar

  • Madrigal, J.L, Garcia-Bueno, B., Caso, J.R., Perez-Nievas, B.G., and Leza, J.C. (2006). Stress-induced oxidative changes in brain. CNS Neurol. Disord. Drug Targets 5, 561–568.CrossrefGoogle Scholar

  • Magarinos, A.M. and McEwen, B.S. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement ofglucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98.Google Scholar

  • Mailliet, F., Qi, H., Rocher, C., Spedding, M., Svenningsson, P., and Jay, T.M. (2008). Protection of stress-induced impairment of hippocampal/prefrontal LTP through blockade of glucocorticoid receptors: implication of MEK signaling. Exp. Neurol. 211, 593–596.CrossrefPubMedGoogle Scholar

  • Mancuso, M., Orsucci, D., Siciliano, G., and Murri, L. (2008). Mitochondria, mitochondrial DNA and Alzheimer’s disease. What comes first? Curr. Alzheimer Res. 5, 457–468.CrossrefGoogle Scholar

  • Manoli, I., Le, H., Alesci, S., McFann, K.K., Su, Y.A., Kino, T., Chrousos, G.P., and Blackman, M.R. (2005). Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J. 19, 1359–1361.Google Scholar

  • Marcus, D.L. and Freedman, M.L. (1997). Decreased brain glucose metabolism in microvessels from patients with Alzheimer’s disease. Ann. NY Acad. Sci. 826, 248–253.Google Scholar

  • Mark, R.J., Pang, Z., Geddes, J.W., Uchida, K., and Mattson, M.P. (1997). Amyloid beta-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 17, 1046–1054.Google Scholar

  • Masters, C.L. and Beyreuther, K. (1998). Alzheimer’s disease. Br. Med. J. 316, 446–448.Google Scholar

  • Matsuoka, Y., Picciano, M., La Francois, J., and Duff, K. (2001). Fibrillar β-amyloid evokes oxidative damage in a transgenic mouse model of Alzheimer’s disease. Neuroscience 104, 609–613.CrossrefGoogle Scholar

  • Mazanetz, M.P. and Fischer, P.M. (2007). Untangling tau hyperphosphorylation in drug design for neurodegenerative diseases. Nat. Rev. Drug Discov. 6, 464–479.PubMedCrossrefGoogle Scholar

  • McClelland, D.C., Patel, V., Brown, D., and Kelner, S.P. Jr. (1991). The role of affiliative loss in the recruitment of helper cells among insulin-dependent diabetics. Behav Med. 17, 5–14.PubMedCrossrefGoogle Scholar

  • McCullers, D.L., Sullivan, P.G., Scheff, S.W., and Herman, J.P. (2002). Mifepristone protects CA1 hippocampal neurons following traumatic brain injury in rat. Neuroscience 109, 219–230.Google Scholar

  • McGeer, E.G. and McGeer, P.L. (1998). The importance of inflammatory mechanisms in Alzheimer disease. Exp. Gerontol. 33, 371–378.PubMedCrossrefGoogle Scholar

  • Medina, M. and Avila, J. (2014). The role of extracellular Tau in the spreading of neurofibrillary pathology. Front Cell Neurosci. 8:113.Google Scholar

  • Meguro, K., LeMestric, C., Landeau, B., Desgranges, B., Eustache, F., and Baron, J.C. (2001). Relations between hypometabolism in the posterior association neocortex and hippocampal atrophy in Alzheimer’s disease: a PET/MRI correlative study. J. Neurol. Neurosurg. Psychiatry 71, 315–321.CrossrefGoogle Scholar

  • Mehta, P.D., Mehta, S.P., Fedor, B., Patrick, B.A., Emmerling, M., and Dalton, A.J. (2003). Plasma amyloid protein 1–42 levels are increased in old Down syndrome but not in young Down syndrome. Neurosci. Lett. 342, 155–158.Google Scholar

  • Meier-Ruge, W. and Bertoni-Freddari, C. (1996). The significance of glucose turnover in the brain in the pathogenetic mechanisms of Alzheimer’s disease. Rev. Neurosci. 7, 1–19.CrossrefGoogle Scholar

  • Meier-Ruge, W.A. and Bertoni-Freddari, C. (1997). Pathogenesis of decreased glucose turnover and oxidative phosphorylation in ischemic and trauma-induced dementia of the Alzheimer type. Ann. NY Acad.Sci. 826, 229–241.Google Scholar

  • Mesulam, M.M. (1999). Neuroplasticity failure in Alzheimer’s disease: bridging the gap between plaques and tangles. Neuron 24, 521–529.PubMedCrossrefGoogle Scholar

  • Miller, J.A., Oldham, M.C., and Geschwind, D.H. (2008). A systems level analysis of transcriptional changes in Alzheimer’s disease and normal aging. J. Neurosci. 28, 1410–1420.CrossrefGoogle Scholar

  • Moreira, P.I., Santos, M.S., and Oliveira, C.R. (2007). Alzheimer’s disease: a lesson from mitochondrial dysfunction. Antioxid. Redox Signal 9, 1621–1630.CrossrefGoogle Scholar

  • Morishima-Kawashima, M., Oshima, N., Ogata, H., Yamaguchi, H., Yoshimura, M., Sugihara, S., and Ihara, Y. (2000). Effect of apolipoprotein E allele e4 on the initial phase of amyloid β-protein accumulation in the human brain. Am. J. Pathol. 157, 2093–2099.CrossrefGoogle Scholar

  • Mosconi, L., Tsui, W.H., De Santi, S., Li, J., Rusinek, H., Convit, A., Li, Y., Boppana, M., and de Leon, M.J. (2005). Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology 64, 1860–1867.CrossrefGoogle Scholar

  • Murphy, A.N., Bredesen, D.E., Cortopassi, G., Wang, E., and Fiskum, G. (1996). Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc. Natl. Acad. Sci. USA 93, 9893–9898.Google Scholar

  • Nater, U.M., Skoluda, N., and Strahler, J. (2013). Biomarkers of stress in behavioural medicine. Curr Opin Psychiatry 26, 440–445.CrossrefPubMedGoogle Scholar

  • Nitta, A., Fukuta, T., Hasegawa, T., and Nabeshima, T. (1997). Continuous infusion of β-amyloid protein into the rat cerebral ventricle induces learning impairment and neuronal and morphological degeneration. Jpn. J. Pharmacol. 73, 51–57.Google Scholar

  • Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K, Ghanbari, H., Wataya,T., Shimohama, S., et al. (2001). Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60, 759–767.Google Scholar

  • Orzechowski, A., Grizard, J., Jank, M., Gajkowska, B., Lokociejewska, M., Zaron-Teperek, M., and Godlewski, M. (2002). Dexamethasone-mediated regulation of death and differentiation of muscle cells. Is hydrogen peroxide involved in the process? Reprod. Nutr. Dev. 42, 197–216.PubMedCrossrefGoogle Scholar

  • Orzechowski, A., Jank, M., Gajkowska, B., Sadkowski, T., Godlewski, M.M., and Ostaszewski, P. (2003). Delineation of signalling pathway leading to antioxidant-dependent inhibition of dexamethasone-mediated muscle cell death. J. Muscle Res. Cell Motil. 24, 33–53.CrossrefGoogle Scholar

  • Oshima, Y., Kuroda, Y., Kunishige, M., Matsumoto, T., and Mitsui, T. (2004). Oxidative stress-associated mitochondrial dysfunction in corticosteroid-treated muscle cells. Muscle Nerve 30, 49–54.PubMedCrossrefGoogle Scholar

  • Pace, T.W., Hu, F., and Miller, A.H. (2007). Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav. Immun. 21, 9–19.PubMedCrossrefGoogle Scholar

  • Pajović, S.B., Pejić, S., Stojiljković, V., Gavrilović, L., Dronjak, S., and Kanazir, D.T. (2006). Alterations in hippocampal antioxidant enzyme activities and sympatho-adrenomedullary system of rats in response to different stress models. Physiol. Res. 55, 453–460.PubMedGoogle Scholar

  • Pamplona, R. and Barja, G. (2007). Highly resistant macromolecular components and low rate of generation of endogenous damage: two key traits of longevity. Ageing Res. Rev. 6, 189–210.PubMedCrossrefGoogle Scholar

  • Pecori Giraldi, F., Moro, M., and Cavagnini, F. (2003). Gender-related differences in the presentation and course of Cushing’s disease. J. Clin. Endocrinol. Metab. 88, 1554–1558.CrossrefGoogle Scholar

  • Pedersen, W.A. and Flynn, E.R. (2004). Insulin resistance contributes to aberrant stress responses in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol. Dis. 17, 500–506.CrossrefGoogle Scholar

  • Pedersen, W.A., Culmsee, C., Ziegler, D., Herman, J.P., and Mattson, M.P. (1999). Aberrant stress response associated with severe hypoglycemia in a transgenic mouse model of Alzheimer’s disease. J. Mol. Neurosci. 13, 159–165.CrossrefGoogle Scholar

  • Pedersen, W.A., Wan, R., and Mattson, M.P. (2001). Impact of aging on stress-responsive neuroendocrine systems. Mech. Ageing Dev. 122, 963–983.CrossrefPubMedGoogle Scholar

  • Perani, D., Bressi, S., Cappa, S.F., Vallar, G., Alberoni, M., Grassi, F., Caltagirone, C., Cipolotti, L., Franceschi, M., Lenzi, G.L., and Fazio, F. (1993). Evidence of multiple memory systems in the human brain. A [18F]FDG PET metabolic study. Brain 116, 903–199.CrossrefPubMedGoogle Scholar

  • Petrie, E.C., Cross, D.J., Galasko, D., Schellenberg, G.D., Raskind, M.A., Peskind, E.R., and Minoshima, S. (2009). Preclinical evidence of Alzheimer changes: convergent cerebrospinal fluid biomarker and fluorodeoxyglucose positron emission tomography findings. Arch. Neurol. 66, 632–637.PubMedGoogle Scholar

  • Piroli, G.G., Grillo, C.A., Reznikov, L.R., Adams, S., McEwen, B.S., Charron, M.J., and Reagan, L.P. (2007). Corticosterone impairs insulin-stimulated translocation of GLUT4 in the rat hippocampus. Neuroendocrinology 85, 71–80.CrossrefGoogle Scholar

  • Praticò, D., MY Lee, V., Trojanowski, J.Q., Rokach, J., and Fitzgerald, G.A. (1998). Increased F2-isoprostanes in Alzheimer’s disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 12, 1777–1783.Google Scholar

  • Praticò, D., Uryu, K., Leight, S., Trojanoswki, J.Q., and Lee, V. M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21,4183–4187.Google Scholar

  • Qin, L., Wu, X., Block, M.L., Liu, Y., Breese, G.R., Hong, J.S., Knapp, D.J., and Crews, F.T. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55, 453–462.CrossrefPubMedGoogle Scholar

  • Radak, Z., Sasvari, M., Nyakas, C., Kaneko, T., Ohno, H., and Goto, S. (2001). Single bout of exercise eliminates the immobilization-induced oxidative stress in rat brain. Neurochem. Int. 39, 33–38.PubMedCrossrefGoogle Scholar

  • Rapoport, S.I. (1999). In vivo PET imaging and postmortem studies suggest potentially reversible and irreversible stages of brain metabolic failure in Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 249 Suppl 3, 46–55.Google Scholar

  • Rea, S.L., Ventura, N., and Johnson, T.E. (2007). Relationship between mitochondrial electron transport chain dysfunction, development, and life extension in Caenorhabditis elegans. PLoS Biol. 5, e259.CrossrefGoogle Scholar

  • Reul, J.M. and de Kloet, E.R. (1985). Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511.CrossrefGoogle Scholar

  • Ricci, S., Fuso, A., Ippoliti, F., and Businaro, R.J. (2012). Stress-induced cytokines and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dis. 28, 11–24. Review.Google Scholar

  • Rockenstein, E.M., McConlogue, L., Tan, H., Power, M., Masliah, E., and Mucke, L. (1995). Levels and alternative splicing of amyloid β protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J. Biol. Chem. 270, 28257–28267.Google Scholar

  • Ros-Bernal, F., Hunot, S., Herrero, M.T., Parnadeau, S., Corvol, J.C., Lu, L., Alvarez-Fischer, D., Carrillo-de Sauvage, M.A., Saurini, F., Coussieu, C., et al. (2011). Microglial glucocorticoid receptors play a pivotal role in regulating dopaminergic neurodegeneration in parkinsonism. Proc. Natl. Acad. Sci. USA 108, 6632–6637.Google Scholar

  • Rothman, S.M. and Mattson, M.P. (2010). Adverse stress, hippocampal networks, and Alzheimer’s disease. Neuromolecular Med. 12, 56–70.CrossrefGoogle Scholar

  • Rothman, S.M., Herdener, N., Camandola, S., Texel, S.J., Mughal, M.R., Cong, W.N., Martin, B., and Mattson, M.P. (2012). 3xTgAD mice exhibit altered behavior and elevated Aβ after chronic mild social stress. Neurobiol. Aging 33, 830.e1–12.Google Scholar

  • Rowan, M.J., Klyubin, I., Cullen, W.K., and Anwyl, R. (2003). Synaptic plasticity in animal models of early Alzheimer’s disease. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 358, 821–828.Google Scholar

  • Sahin, E. and Gumuslu, S. (2007a). Immobilization stress in rat tissues: alterations in protein oxidation, lipid peroxidation and antioxidant defense system. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 144, 342–347.CrossrefGoogle Scholar

  • Sahin, E. and Gumuslu, S. (2007b). Stress-dependent induction of protein oxidation, lipid peroxidation and anti-oxidants in peripheral tissues of rats: comparison of three stress models (immobilization, cold and immobilization-cold). Clin. Exp. Pharmacol. Physiol. 34, 425–431.CrossrefPubMedGoogle Scholar

  • Sanz, A., Pamplona, R., and Barja, G. (2006). Is the mitochondrial free radical theory of aging intact? Antioxid. Redox Signal 8, 582–599.CrossrefGoogle Scholar

  • Sapolsky, R.M., Krey, L.C., and McEwen, B.S. (1985). Prolonged glucocorticoid exposure reduces hippocampal neuron number: implications for aging. J. Neurosci. 5, 1222–1227.Google Scholar

  • Sastre, M., Dewatcher, I., Landreth, G. E., Willson, T. M., Klockgether, T., van Leuven, F., and Heneka M. T. (2003). Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-γ agonists modulate immunostimulated processing of amyloid precursor protein through regulation of β-secretase. J. Neurosci. 23, 9796–9804.Google Scholar

  • Schatzberg, A.F. and Lindley, S. (2008). Glucocorticoid antagonists in neuropsychotic disorders. Eur. J. Pharmacol. 583, 358–364.CrossrefGoogle Scholar

  • Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., Coskun, P.E., Ladiges, W., Wolf, N., Van Remmen, H., et al. (2005). Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308, 1909–1911.Google Scholar

  • Schultz, C., Dehghani, F., Hubbard, G.B., Thal, D.R., Struckhoff, G., Braak, E., and Braak, H. (2000). Filamentous tau pathology in nerve cells, astrocytes, and oligodendrocytes of aged baboons. J. Neuropathol. Exp. Neurol. 59, 39–52.Google Scholar

  • Selkoe, D.J. (2002). Alzheimer’s disease is a synaptic failure. Science 298, 789–791.Google Scholar

  • Selvatici, R., Marani, L., Marino, S., and Siniscalchi, A. (2013) In vitro mitochondrial failure and oxidative stress mimic biochemical features of Alzheimer disease. Neurochem. Int. 63, 112–120.PubMedCrossrefGoogle Scholar

  • Shao, C., Xiong, S., Li, G.M., Gu, L., Mao, G., Markesbery, W.R., and Lovell, M.A. (2008). Altered 8-oxoguanine glycosylase in mild cognitive impairment and late-stage Alzheimer’s disease brain. Free Radic. Biol. Med. 45, 813–819.Google Scholar

  • Singh, A. and Kumar, A. (2008). Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice. Neurosci. Res. 60, 372–379.PubMedCrossrefGoogle Scholar

  • Smith, J. (2003). Stress and aging: theoretical and empirical challenges for interdisciplinary research. Neurobiol. Aging 24 (Suppl 1), 77–80; discussion 81–82.Google Scholar

  • Solas, M., Aisa, B., Tordera, R.M., Mugueta, M.C., Ramírez, M.J. (2013). Stress contributes to the development of central insulin resistance during aging: implications for Alzheimer’s disease. Biochim Biophys Acta 1832, 2332–2339.Google Scholar

  • Sorrells, S.F, Caso, J.R, Munhoz, C.D., and Sapolsky, R.M. (2009). The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64, 33–39.CrossrefPubMedGoogle Scholar

  • Sotiropoulos, I., Catania, C., Riedemann, T., Fry, J.P., Breen, K.C., Michaelidis, T.M., and Almeida, O.F. (2008). Glucocorticoids trigger Alzheimer disease-like pathobiochemistry in rat neuronal cells expressing human tau. J. Neurochem. 107, 385–397.CrossrefGoogle Scholar

  • Sotiropoulos, I., Catania, C., Pinto, L.G., Silva, R., Pollerberg, G.E., Takashima, A., Sousa, N., and Almeida, O.F. (2011). stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J. Neurosci. 31, 7840–7847.CrossrefGoogle Scholar

  • Srivareerat, M., Tran, T.T., Alzoubi, K.H., and Alkadhi, K.A. (2009). Chronic psychosocial stress exacerbates impairment of cognition and long-term potentiation in β-amyloid rat model of Alzheimer’s disease. Biol. Psychiatry 65, 918–926.CrossrefPubMedGoogle Scholar

  • Starkov, A.A. (2008). The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. NY Acad. Sci. 1147, 37–52.Google Scholar

  • Stephan, A. and Phillips, A.G. (2005). A case for a non-transgenic animal model of Alzheimer’s disease. Genes Brain Behav. 4, 157–172.CrossrefPubMedGoogle Scholar

  • Sultana, R. and Butterfield, D.A. (2009). Oxidatively modified, mitochondria-relevant brain proteins in subjects with Alzheimer disease and mild cognitive impairment. J. Bioenerg. Biomembr. 41, 441–446.CrossrefGoogle Scholar

  • Tanzi, R.E. (2005). The synaptic abeta hypothesis of Alzheimer disease. Nat. Neurosci. 8, 977–979.CrossrefPubMedGoogle Scholar

  • Tomás-Camardiel, M., Rite, I., Herrera, A.J., de Pablos, R.M., Cano, J., Machado, A., and Venero, J.L. (2004). Minocycline reduces the lipopolysaccharide-induced inflammatory reaction, peroxynitrite-mediated nitration of proteins, disruption of the blood-brain barrier, and damage in the nigral dopaminergic system. Neurobiol. Dis. 16, 190–201.CrossrefGoogle Scholar

  • Tran, T.T., Srivareerat, M., and Alkadhi, K.A. (2010). Chronic psychosocial stress triggers cognitive impairment in a novel at-risk model of Alzheimer’s disease. Neurobiol. Dis. 37, 756–763.CrossrefGoogle Scholar

  • Tsolaki, M., Pantazi, C., Stiliou, F., Aminta, M., Diudi, P., Karasoulas Kazis, A., and Pollen, D. (2003). Prevalence of dementia in Greek Orthodox Monasteries: the role of diet poor in lipids. Brain Aging 3, 13–17.Google Scholar

  • Tsolaki, M., Papaliagkas, V., Kounti, F., Messini, C., Boziki, M., Anogianakis, G., and Vlaikidis, N. (2010). Severely stressful events and dementia: a study of an elderly Greek demented population. Psychiatry Res. 176, 51–54.CrossrefPubMedGoogle Scholar

  • Vassar, R. (2001). The β-secretase, BACE: a prime drug target for Alzheimer’s disease. J. Mol. Neurosci. 17, 157–170.CrossrefGoogle Scholar

  • Velliquette, R.A., O’Connor, T., and Vassar, R. (2005). Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis, J. Neurosci. 25, 10874–10883.CrossrefGoogle Scholar

  • Velliquette, R.A., O’Connor, T., and Vassar, R. (2006). Energy inhibition elevates β-secretase levels and activity and is potentially amyloidogenic in APP transgenic mice: possible early events in Alzheimer’s disease pathogenesis. J. Neurosci. 26, 2140–2142.Google Scholar

  • Villarán, R.F., de Pablos, R.M., Argüelles, S., Espinosa-Oliva, A.M., Tomás-Camardiel, M., Herrera, A.J., Cano, J., and Machado, A. (2009). The intranigral injection of tissue plasminogen activator induced blood-brain barrier disruption, inflammatory process and degeneration of the dopaminergic system of the rat. Neurotoxicology 30, 403–413.CrossrefPubMedGoogle Scholar

  • Virgin, C.E.Jr., Ha, T.P., Packan, D.R., Tombaugh, G.C., Yang, S.H., Horner, H.C., and Sapolsky, R.M. (1991). Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J. Neurochem. 57, 1422–1428.CrossrefGoogle Scholar

  • Wang, J., Dickson, D. W., Trojanowski, J. Q., and Lee V. M. (1999). The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158, 328–337.PubMedCrossrefGoogle Scholar

  • Ward, P.A. and Till, G.O. (1990). Pathophysiologic events related to thermal injury of skin. J. Trauma. 30, 75–79.CrossrefGoogle Scholar

  • Wilson, R.S., Evans, D.A., Bienias, J.L., Mendes de Leon, C.F., Schneider, J.A., and Bennett, D.A. (2003). Proneness to psychological distress is associated with risk of Alzheimer’s disease. Neurology 61, 1468–1469.Google Scholar

  • Wilson, R.S., Barnes, L.L., Bennett, D.A., Li, Y., Bienias, J.L., Mendes de Leon, C.F., and Evans, D.A. (2005). Proneness to psychological distress and risk of Alzheimer disease in a biracial community. Neurology 64, 380–382.CrossrefGoogle Scholar

  • Wilson, R.S., Arnold, S.E., Schneider, J.A., Kelly, J.F., Tang, Y., and Bennett, D.A. (2006). Chronic psychological distress and risk of Alzheimer’s disease in old age. Neuroepidemiology 27, 143–53.PubMedCrossrefGoogle Scholar

  • Yamaguchi, S., Meguro, K., Itoh, M., Hayasaka, C., Shimada, M., Yamazaki, H., and Yamadori, A. (1997). Decreased cortical glucose metabolism correlates with hippocampal atrophy in Alzheimer’s disease as shown by MRI and PET. J. Neurol. Neurosurg. Psychiatry 62, 596–600.CrossrefGoogle Scholar

  • Yankner, B.A. and Lu, T. (2009). Amyloid β-protein toxicity and the pathogenesis of Alzheimer disease. J. Biol. Chem. 284, 4755–4759.Google Scholar

  • Yankner, B.A., Lu, T., and Loerch, P. (2008). The aging brain. Annu. Rev. Pathol. 3, 41–66.PubMedCrossrefGoogle Scholar

  • Yasuno, F., Imamura, T., Hirono, N., Ishii, K., Sasaki, M., Ikejiri, Y., Hashimoto, M., Shimomura, T., Yamashita, H., and Mori, E. (1998). Age at onset and regional cerebral glucose metabolism in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 9, 63–67.PubMedCrossrefGoogle Scholar

  • Youdim, M.B., Banerjee, D.K, Kelner, K., Offutt, L., and Pollard, H.B. (1989). Steroid regulation of monoamine oxidase activity in the adrenal medulla. FASEB J. 3, 1753–1759.PubMedGoogle Scholar

  • Zafir, A. and Banu, N. (2009). Modulation of in vivo oxidative status by exogenous corticosterone and restraint stress in rats. Stress 12, 167–177.CrossrefGoogle Scholar

  • Zamzami, N., Marzo, I., Susin, S.A., Brenner, C., Larochette, N., Marchetti, P., Reed, J., Kofler, R., and Kroemer, G. (1998). The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 26, 1055–1063.Google Scholar

About the article

Corresponding author: Rocío M. de Pablos, Facultad de Farmacia, Departamento de Bioquímica y Biología Molecular, Universidad de Sevilla, c/o Profesor García González, 2, E-41012 Sevilla, Spain, e-mail:

aPresent address: Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7LJ, UK

bPresent address: National Institutes of Health, National Institute on Aging, Biomedical Research Center, Laboratory of Neurosciences, 251 Bayview Boulevard, Baltimore, MD 21224, USA

cDeceased.


Received: 2014-05-16

Accepted: 2014-07-11

Published Online: 2014-08-29

Published in Print: 2014-12-01


Citation Information: Reviews in the Neurosciences, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0035.

Export Citation

©2014 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Donna Toufexis, S. Bradley King, and Vasiliki Michopoulos
Current Psychiatry Reports, 2017, Volume 19, Number 11
[2]
Boris Mravec, Lubica Horvathova, and Alexandra Padova
Cellular and Molecular Neurobiology, 2017
[3]
Mathilde S. Henry, Louis Gendron, Marie-Eve Tremblay, and Guy Drolet
Neural Plasticity, 2017, Volume 2017, Page 1
[5]
Jessika P. Prevatto, Rafael C. Torres, Bruno L. Diaz, Patrícia M. R. e Silva, Marco A. Martins, and Vinicius F. Carvalho
Oxidative Medicine and Cellular Longevity, 2017, Volume 2017, Page 1
[6]
Yi-Chien Liu, Jung-Lung Hsu, Shuu-Jin Wang, Ping-Keung Yip, Kenichi Meguro, and Jong-Ling Fuh
BMC Geriatrics, 2017, Volume 17, Number 1
[7]
Jereme G. Spiers, Hsiao-Jou Cortina Chen, Frederik J. Steyn, Nickolas A. Lavidis, Trent M. Woodruff, and John D. Lee
Stress, 2017, Volume 20, Number 1, Page 76
[8]
Li Tian, Chin Wai Hui, Kanchan Bisht, Yunlong Tan, Kaushik Sharma, Song Chen, Xiangyang Zhang, and Marie-Eve Tremblay
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, Volume 79, Page 27
[9]
Richard S. Jope, Yuyan Cheng, Jeffrey A. Lowell, Ryan J. Worthen, Yoel H. Sitbon, and Eleonore Beurel
Trends in Biochemical Sciences, 2017, Volume 42, Number 3, Page 180
[10]
Jose Enrique de la Rubia Ortí, Sandra Sancho Castillo, Maria Benlloch, Mariano Julián Rochina, Silvia Corchón Arreche, and María Pilar García-Pardo
Journal of Alzheimer's Disease, 2016, Volume 55, Number 3, Page 899
[11]
Amy L Atkinson
Journal of European Psychology Students, 2016, Volume 7, Number 1, Page 43
[12]
E S Epel, E Puterman, J Lin, E H Blackburn, P Y Lum, N D Beckmann, J Zhu, E Lee, A Gilbert, R A Rissman, R E Tanzi, and E E Schadt
Translational Psychiatry, 2016, Volume 6, Number 8, Page e880
[13]
Boaz Levy, Elena Tsoy, Samuel Gable, and Amos Korczyn
Journal of Alzheimer's Disease, 2016, Volume 54, Number 4, Page 1259
[14]
Fang Xie, Yun Zhao, Jing Ma, Jing-Bo Gong, Shi-Da Wang, Liang Zhang, Xiu-Jie Gao, and Ling-Jia Qian
Cell Stress and Chaperones, 2016, Volume 21, Number 5, Page 915
[17]
Vincent Koppelmans
Neuropraxis, 2016, Volume 20, Number 2, Page 43
[19]
Kyle Steenland, Felicia C. Goldstein, Allan Levey, and Whitney Wharton
Journal of Alzheimer's Disease, 2015, Volume 50, Number 1, Page 71
[20]
Hany E. Marei, Asmaa Althani, Jaana Suhonen, Mohamed E. El Zowalaty, Mohammad A. Albanna, Carlo Cenciarelli, Tengfei Wang, and Thomas Caceci
Journal of Cellular Physiology, 2016, Volume 231, Number 7, Page 1432
[21]
Boris Mravec, Katarina Lejavova, Peter Vargovic, Katarina Ondicova, Lubica Horvathova, Petr Novak, Georg Manz, Peter Filipcik, Michal Novak, and Richard Kvetnansky
Journal of Neuroinflammation, 2016, Volume 13, Number 1
[23]
Sarah B. Mathews and C. Neill Epperson
Current Behavioral Neuroscience Reports, 2015, Volume 2, Number 4, Page 246
[24]
Linhong Yuan, Jinmeng Liu, Weiwei Ma, Li Dong, Wenjuan Wang, Ruiwen Che, and Rong Xiao
Nutrition, 2016, Volume 32, Number 2, Page 193
[25]
Tuğçe Demirtaş Şahin, Ayşe Karson, Fuat Balcı, Yusufhan Yazır, Dilek Bayramgürler, and Tijen Utkan
Behavioural Brain Research, 2015, Volume 292, Page 233

Comments (0)

Please log in or register to comment.
Log in