Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 25, Issue 6

Issues

Autism: cause factors, early diagnosis and therapies

Shreya Bhat
  • Manipal Institute of Technology, Department of Biomedical Engineering, Manipal, Karnataka 576104, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ U. Rajendra Acharya
  • Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
  • Faculty of Engineering, Department of Biomedical Engineering, University of Malaya, 50603, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hojjat Adeli
  • Corresponding author
  • Departments of Neuroscience, Biomedical Engineering, Biomedical Informatics, Electrical and Computer Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Muralidhar Bairy
  • Manipal Institute of Technology, Department of Biomedical Engineering, Manipal, Karnataka 576104, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amir Adeli
Published Online: 2014-09-12 | DOI: https://doi.org/10.1515/revneuro-2014-0056

Abstract

Autism spectrum disorder (ASD) is a complex neurobiological disorder characterized by neuropsychological and behavioral deficits. Cognitive impairment, lack of social skills, and stereotyped behavior are the major autistic symptoms, visible after a certain age. It is one of the fastest growing disabilities. Its current prevalence rate in the U.S. estimated by the Centers for Disease Control and Prevention is 1 in 68 births. The genetic and physiological structure of the brain is studied to determine the pathology of autism, but diagnosis of autism at an early age is challenging due to the existing phenotypic and etiological heterogeneity among ASD individuals. Volumetric and neuroimaging techniques are explored to elucidate the neuroanatomy of the ASD brain. Nuroanatomical, neurochemical, and neuroimaging biomarkers can help in the early diagnosis and treatment of ASD. This paper presents a review of the types of autism, etiologies, early detection, and treatment of ASD.

Keywords: autism spectrum disorders; CHD8; GABA; neural connectivity; virtual reality

References

  • Acharya, U.R., Sree, S.V., Alvin, A.P.C., Yanti, R., and Suri, J. (2012). Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neural Syst. 22, 1250002.PubMedCrossrefGoogle Scholar

  • Acharya, U.R., Sree, S.V., Swapna, G., Martis, R.J., and Suri, J. (2013). Automated EEG analysis of epilepsy: a review. Knowl. Based Syst. 37, 274–282.Google Scholar

  • Adeli, H. and Ghosh-Dastidar S. (2010). Automated EEG-Based Diagnosis of Neurological Disorders—Inventing the Future of Neurology (Boca Raton, FL: CRC Press, Taylor & Francis).Google Scholar

  • Ahmadlou, M., Adeli, H., and Adeli, A. (2010). Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder. J. Clin. Neurophysiol. 27, 328–333.CrossrefGoogle Scholar

  • Ahmadlou, M., Adeli, H., and Adeli, A. (2012a). Improved visibility graph fractality with application for diagnosis of autism spectrum disorder. Physica A 391, 4720–4726.Google Scholar

  • Ahmadlou, M., Adeli, H., and Adeli, A. (2012b). Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder. J. Neurosci. Methods 211, 203–209.CrossrefGoogle Scholar

  • Alexandridis, A. (2013). Evolving RBF neural networks for adaptive soft-sensor design. Int. J. Neural Syst. 23, 1350029.PubMedCrossrefGoogle Scholar

  • Anderson, J.S., Druzgal, T.J., Froehlich, A., DuBray, M.B., Lange, N., Alexander, A.L., Abildskov, T., Nielsen, J.A., Cariello, A.N., Cooperrider, J.R., et al. (2011). Decreased interhemispheric functional connectivity in autism. Cereb. Cortex 21, 1134–1146.CrossrefPubMedGoogle Scholar

  • Aylward, E.H., Minshew, N.J., Field, K., Sparks, B.F., and Singh, N. (2002). Effects of age on brain volume and head circumference in autism. Neurology 59, 175–183.CrossrefPubMedGoogle Scholar

  • Bekele, E., Zheng, Z., Swanson, A., Crittendon, J., Warren, Z., Sarkar, N. (2013). Understanding how adolescents with autism respond to facial expressions in virtual reality environments. IEEE Trans. Visual. Comput. Graphics 19, 711–720.CrossrefGoogle Scholar

  • Belmonte, M.K., Allen, G., Beckel-Mitchener, A., Boulanger, L.M., Carper, R.A., Webb, S.J. (2004). Autism and abnormal development of brain connectivity. J. Neurosci. 24, 9228–9231.CrossrefGoogle Scholar

  • Bernier, R., Golzio, C., Xiong, B., Stressman, H.A., Coe, B.P., Osnat, P., Kali, W., Jennifer, G., Carl B., Anneke T.V., et al. (2014). Disruptive CHD8 mutations define a subtype of autism early in development. Cell. To be published. Available at: http://www.sciencedaily.com/releases/2014/07/140703125851.htm. Accessed July 7, 2014.

  • Bhat, S., Acharya, U.R., Adeli, A., Bairy, G.M., and Adeli, A. (2014). Automated diagnosis of autism: in search of a mathematical marker. Rev. Neurosci. 25, 813–823.Google Scholar

  • Bohil, C.J., Alicea, B., and Biocca, F.A. (2011). Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 752–762.PubMedGoogle Scholar

  • Bosl, W., Tierney, A., Flusberg, H.T., and Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 9, 1–16.Google Scholar

  • Brandwein, A.B., Foxe, J.J., Butler, J.S., Russo, N.N., Altschuler, T.S., Gomes, H., Molholm, S. (2013). The development of multisensory integration in high-functioning autism: high-density electrical mapping and psychophysical measures reveal impairments in the processing of audiovisual inputs. Cereb. Cortex 23, 1329–1341.CrossrefPubMedGoogle Scholar

  • Cai, Y., Chia, N.K.H., Thalmann, D., Kee, N.K.N., Zheng, J., Thalmann, N.M. (2013). Design and development of a virtual dolphinarium for children with autism. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 208–217.PubMedCrossrefGoogle Scholar

  • Carozza, L., Tingdahl, D., Bosche, F., and Van Gool, L. (2014). Markerless vision-based augmented reality for urban planning. Comput. Aided Civ. Infrastruct. Eng. 29, 2–17.CrossrefGoogle Scholar

  • Celikoglu, H.B. (2013). An approach to dynamic classification of traffic flow patterns by neural networks. Comput. Aided Civ. Infrastruct. Eng. 28, 273–288.CrossrefGoogle Scholar

  • Cen, Z., Wei, J., and Jiang, R. (2013). A grey-box neural network-based model identification and fault estimation scheme for nonlinear dynamic systems. Int. J. Neural Syst. 23, 1350025.CrossrefGoogle Scholar

  • Center for Disease Control and Prevention (2012). New data on autism spectrum disorders. Available at: http://www.cdc.gov/features/countingautism/. Accessed July 15, 2014.

  • Center for Disease Control and Prevention (2014). Facts about ASD. Available at: http://www.cdc.gov/ncbddd/autism/facts.html. Accessed February 20, 2014.

  • Chahrour, M., Jung, S.Y., Shaw, C., Zhou, X., Wong, S.T.C., Qin, J., Zoghbi, H.Y. (2008). MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320, 1224–1229.CrossrefGoogle Scholar

  • Cong, F., Phan, A.H., Astikainen, P., Zhao, Q., Wu, Q., Hietanen, J.K., Ristaniemi, T., Cichocki, A. (2013). Multi-domain feature extraction for event-related potential through nonnegative multi-way array decomposition from low dense array EEG. Int. J. Neural Syst. 23, 1350006.PubMedCrossrefGoogle Scholar

  • Dawson, G. (2008). Early behavioral intervention, brain plasticity and the prevention of autism spectrum disorder. Dev. Psychopathol. 20, 775–803.PubMedGoogle Scholar

  • DiCicco-Bloom, E., Lord, C., Zwaigenbaum, L., Courchesne, E., Dager, S.R., Schmitz, C., Schultz, R.T., Crawley, J., Young, L.J. (2006). The developmental neurobiology of autism spectrum disorder. J. Neurosci. 26, 6897–6906.CrossrefGoogle Scholar

  • Dinstein, I., Pierce, K., Eyler, L., Solso, S., Malach, R., Behrmann, M., Courchesne, E. (2011). Disrupted neural synchronization in toddlers with autism. Neuron 70, 1218–1225.CrossrefPubMedGoogle Scholar

  • Dorsey, R. and Howard, A.M. (2011). Examining the effects of technology-based learning on children with autism: a case study. 2011 11th IEEE International Conference on Advanced Learning Technologies, University of Georgia, Athens, GA, USA, July 6–8, 2011, 260–261.Google Scholar

  • DSM (2013). American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (Arlington, VA: American Psychiatric Association). Available at: http://dsm.psychiatryonline.org/book.aspx?bookid=556. Accessed April 3, 2014.

  • Ecker, C. and Murphy, D. (2014). Neuroimaging in autism – from basic science to translational research. Nat. Rev. Neurol. 10, 82–91.PubMedCrossrefGoogle Scholar

  • Eilam-Stock, T., Xu, P., Cao, M., Gu, X., Dam, N.T.V., Anagnostou, E., Kolevzon, A., Soorya, L., Park, Y., Siller, M., et al. (2014). Abnormal autonomic and associated brain activities during rest in autism spectrum disorder. Brain 137, 153–171.Google Scholar

  • Elsabbagh, M., Fernandes, J., Webb, S.J., Dawson, G., Charman, T., Johnson, M.H.; British Autism Study of Infant Siblings Team. (2013). Disengagement of visual attention in infancy is associated with emerging autism in toddlerhood. Biol. Psychiatry 74, 189–194.PubMedCrossrefGoogle Scholar

  • Eyler, L.T., Pierce, K., and Courchesne, E. (2012). A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism. Brain 135, 949–960.PubMedCrossrefGoogle Scholar

  • Falco, M. (2014). Autism rates now in 1 in 68 U.S. children: CDC. Available at: http://www.cnn.com/2014/03/27/health/cdc-autism/index.html?iref=allsearch. Accessed April 3, 2014.

  • Foxe, J.J., Molholm, S., Bene, V.A.D., Frey, H.P., Russo, N.N., Blanco, D., Saint-Amour, D., and Ross, L.A. (2013). Severe multisensory speech integration deficits in high-functioning school-aged children with autism spectrum disorder (ASD) and their resolution during early adolescence. Cereb. Cortex, bht213, 19–29.Google Scholar

  • Gabis, L., Pomeroy, J., and Andriola, M.R. (2005). Autism and epilepsy: cause, consequence, comorbidity, or coincidence?. Epilepsy Behav. 7, 652–656.CrossrefPubMedGoogle Scholar

  • Ghanizadeh, A. (2011). A novel hypothesized clinical implication of zonisamide for autism. Ann. Neurol. 69, 426.CrossrefPubMedGoogle Scholar

  • Gilman, S.R., Iossifov, I., Levy, D., Ronemus, M., Wigler, M., Vitkup, D. (2011). Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907.PubMedCrossrefGoogle Scholar

  • Graf, W., Freitag, S., Sickert, J.U., and Kaliske, M. (2012), Structural analysis with fuzzy data and neural network-based material description. Comput. Aided Civ. Infrastruct. Eng. 27, 640–654.CrossrefGoogle Scholar

  • Guillon, Q., Hadjikhani, N., Baduel, S., and Rogé, B. (2014). Visual social attention in autism spectrum disorder: Insights from eye tracking studies. Neurosci. Biobehav. Rev. 42, 279–297.CrossrefPubMedGoogle Scholar

  • Hagen, E.A.H., Stoyanova, R.S., Rowe, J.B., Cohen, S.B., and Calder, A.J. (2014). Direct gaze elicits atypical activation of the theory-of-mind network in autism spectrum conditions. Cereb. Cortex 24, 1485–1492.CrossrefGoogle Scholar

  • Hamilton, J. (2014). Brain changes suggest autism starts in the womb. Available at: http://www.npr.org/blogs/health/2014/03/26/294446735/brain-changes-suggest-autism-starts-in-the-womb?ft=1&f=1007. Accessed April 3, 2014.

  • Happe, F., Ronald, A., and Plomin, R. (2006). Time to give up on a single explanation for autism. Nat. Neurosci. 9, 1218–1220.CrossrefPubMedGoogle Scholar

  • He, Q., Duan, Y., Karsch, K., and Miles, J. (2010). Detecting corpus callosum abnormalities in autism based on anatomical landmarks. Psychiatry Res. 183, 126–132.CrossrefPubMedGoogle Scholar

  • Hearld (2014). The Hearld Scotland. Available at: http://www.heraldscotland.com/news/health/study-links-epilepsy-and-autism.21079369. Accessed February 21, 2014.

  • Herbert, M.R. (2005). Large brains in autism: the challenge of pervasive abnormality. Neuroscientist 11, 417–440.CrossrefPubMedGoogle Scholar

  • Herrera, L.J., Fernandes, C., Mora, A.M., Migotina, D., Largo, R., Guillen, A., Rosa, A.C. (2013). Combination of heterogeneous EEG feature extraction methods and stacked sequential learning for sleep stage classification. Int. J. Neural Syst. 23, 1350012.CrossrefPubMedGoogle Scholar

  • Hsu, W.Y. (2013). Single-trial motor imagery classification using asymmetry ratio, phase relation and wavelet-based fractal features, and their selected combination. Int. J. Neural Syst. 23, 1350007.CrossrefPubMedGoogle Scholar

  • Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., Yamrom, B., Lee, Y.H., Narzisi, G., Leotta, A., et al. (2012). De novo gene disruptions in children on the autistic spectrum. Neuron 74, 285–299.CrossrefGoogle Scholar

  • Iuculano, T., Rosenberg-Lee, M., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Uddin, L.Q., Menon, V. (2014). Brain organization underlying superior mathematical abilities in children with autism. Biol. Psychiatry 75, 223–230.CrossrefPubMedGoogle Scholar

  • Jeste, S.S. and Geschwind, D.H. (2014). Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat. Rev. Neurol. 10, 74–81.PubMedCrossrefGoogle Scholar

  • Jones, E.J.H., Gliga, T., Bedford, R., Charman, T., and Johnson, M.H. (2014). Developmental pathways to autism: a review of prospective studies of infants at risk. Neurosci. Biobehav. Rev. 39, 1–33.PubMedCrossrefGoogle Scholar

  • Just, M.A., Keller, T.A., Malave, V.L., Kana, R.K., and Varma, S. (2012). Autism as a neural systems disorder: a theory of frontal-posterior underconnectivity. Neurosci. Biobehav. Rev. 36, 1292–1313.CrossrefPubMedGoogle Scholar

  • Karimi, M., Haghshenas, S., and Rostami, R. (2011). Neurofeedback and autism spectrum: a case study. Procedia Soc. Behav. Sci. 30, 1472–1475.CrossrefGoogle Scholar

  • Keehn, B., Muller, R., and Townsend, J. (2013). Atypical attentional networks and the emergence of autism. Neurosci. Biobehav. Rev. 37, 164–183.CrossrefPubMedGoogle Scholar

  • Kimiskidis, V.K., Kugiumtzis, D., Papagiannopoulos, S., and Vlaikidis, N. (2013). Transcranial magnetic stimulation (TMS) modulates epileptiform discharges in patients with partial epilepsy: a combined EEG-TMS study. Int. J. Neural Syst. 23, 1250035.CrossrefGoogle Scholar

  • Kodogiannis, V.S., Amina, M., and Petrounias, I. (2013). A clustering-based fuzzy-wavelet neural network model for short-term load forecasting. Int. J. Neural Syst. 23, 1350024.PubMedCrossrefGoogle Scholar

  • Kotagal, S. and Broomall, E. (2012). Sleep in children with autism spectrum disorder. Pediatr. Neurol. 47, 242–251.CrossrefPubMedGoogle Scholar

  • Krakowiak, P., Walker, C.K., Bremer, A.A., Baker, A.S., Ozonoff, S., Hansen, R.L., Hertz-Picciotto, I. (2012). Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics 129, 1121–1128.CrossrefGoogle Scholar

  • Kujala, T., Lepisto, T., and Naatanen, R. (2013). The neural basis of aberrant speech and audition in autism spectrum disorders. Neurosci. Biobehav. Rev. 37, 697–704.PubMedCrossrefGoogle Scholar

  • Kushner, D. (2011). The autism defense. IEEE Spectr. 48, 33–37.Google Scholar

  • Lai, G., Pantazatos, S.P., Schneider, H., and Hirsch, J. (2012). Neural systems for speech and song in autism. Brain 135, 961–975.CrossrefGoogle Scholar

  • Lahiri, U., Warren, Z., and Sarkar, N. (2011). Design of a gaze-sensitive virtual social interactive system for children with autism. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 443–452.PubMedCrossrefGoogle Scholar

  • Levy, D., Ronemus, M., Yamrom, B., Lee, Y., Leotta, A., Kendall, J., Marks, S., Lakshmi, B., Pai, D., Ye, K., et al. (2011). Rare de novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 70, 886–897.CrossrefPubMedGoogle Scholar

  • Lord, C., Rutter, M., DiLavore, P.C., Risi, S., Gotham, K., and Bishop, S.L. (2012). Autism Diagnostic Observation Schedule, Second Edition (ADOS-2) (Torrance, CA: Western Psychological Services). Available at: http://www.hogrefe.co.uk/autism-diagnostic-observation-schedule-2nd-edition-ados-2.html. Accessed April 3, 2014.

  • Mammone, N., Labate, D., Lay-Ekuakille, A., and Morabito, F.C. (2012). Analysis of absence seizure generation using EEG spatial-temporal regularity measures. Int. J. Neural Syst. 22, 1250024–17.CrossrefPubMedGoogle Scholar

  • Martis, R.J., Acharya, U.R., Tan, J.H., Petznick, A., Chua, C.K., and Ng, E.Y.K. (2013). Application of intrinsic time-scale decomposition (ITD) to EEG signals for automated seizure prediction. Int. J. Neural Syst. 23, 1350023.PubMedCrossrefGoogle Scholar

  • Matson, J.L., Turygin, N.C., Beighley, J., Rieske, R., Tureck, K., and Matson, M. L. (2012). Applied behavior analysis in autism spectrum disorders: recent developments, strengths, and pitfalls. Res. Autism Spectr. Disord. 6, 144–150.CrossrefGoogle Scholar

  • Misic, B., Doesburg, S.M., Fatima, Z., Vidal, J., Vakorin, V.A., Taylor, M.J., and McIntosh, A.R. (2014). Coordinated information generation and mental flexibility: large-scale network disruption in children with autism. Cereb. Cortex. in press. doi: 10.1093/cercor/bhu082.CrossrefGoogle Scholar

  • Mostofsky, S.H. and Ewen, J.B. (2011). Altered connectivity and action model formation in autism is autism. Neuroscientist 17, 437–448.CrossrefPubMedGoogle Scholar

  • Munson, J. and Pasquel, P. (2012). Using technology in autism research: the promise and the perils. Entertainment Comput. 45, 89–91.Google Scholar

  • Nair, A., Treiber, J.M., Shukla, D.K., Shih, P., and Muller, R. (2013). Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity. Brain 136, 1942–1955.PubMedCrossrefGoogle Scholar

  • Narain, C. (2006). Childhood developmental disorders. Nat. Neurosci. 9, 1209.CrossrefGoogle Scholar

  • NIMH (2014). Autism spectrum disorder. Available at: http://www.nimh.nih.gov/health/topics/autism-spectrum-disorders-asd/index.shtml. Accessed February 22, 2014.

  • Noor, A., Whibley, A., Marshall, C.R., Gianakopoulos, P.J., Piton, A., Carson, A.R., Orlic-Milacic, M., Lionel, A.C., Sato, D., Pinto, D., et al. (2010). Disruption at the PTCHD1 locus on Xp22.11 in autism spectrum disorder and intellectual disability. Sci. Transl. Med. 2, 1–9.Google Scholar

  • Paul, L.K., Corsello, C., Kennedy, D.P., and Adolphs, R. (2014). Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain 137, 1813–1829.CrossrefPubMedGoogle Scholar

  • Pavlov, N. (2014). User interface for people with autism spectrum disorders. J. Software Eng. Appl. 7, 128–134.CrossrefGoogle Scholar

  • Rodriguez, J.I. and Kern, J.K. (2011). Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neuron Glia Biol. 7, 205–213.PubMedCrossrefGoogle Scholar

  • Roman, G.C., Ghassabian, A., Bongers-Schokking, J.J., Jaddoe, V.W.V., Hofman, A., de Rijke, Y.B., Verhulst, F.C., Tiemeier, H. (2013). Association of gestational maternal hypothyroxinemia and increased autism risk. Ann. Neurol. 74, 733–742.CrossrefGoogle Scholar

  • Rutishauser, U., Tudusciuc, O., Wang, S., Mamelak, A.N., Ross, I.B., Adolphs, R. (2013). Single-neuron correlates of atypical face processing in autism. Neuron 80, 887–899.CrossrefPubMedGoogle Scholar

  • Sanders, S.J., Ercan-Sencicek, A.G., Hus, V., Luo, R., Murtha, M.T., Moreno-De-Luca, D., Chu, S.H., Moreau, M.P., Gupta, A.R., Thomson, S.A., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885.Google Scholar

  • Scassellati, B. (2005). Quantitative metrics of social response for autism diagnosis. IEEE International Workshop on Robots and Human Interactive Communication, Nashville, TN, USA, August 13–15, 2005, 585–590.Google Scholar

  • Schipul, S.E., Williams, D.L., Keller, T.A., Minshew, N.J., and Just, M.A. (2012). Distinctive neural processes during learning in autism. Cereb. Cortex 22, 937–950.CrossrefPubMedGoogle Scholar

  • Shic, F., Macari, S., and Chawarska, K. (2014). Speech disturbs face scanning in 6-month-old infants who develop autism spectrum disorder. Biol. Psychiatry 75, 231–237.CrossrefPubMedGoogle Scholar

  • Stein, J.L., Parikshak, N.N., and Geschwind, D.H. (2013). Rare inherited variation in autism: beginning to see the forest and a few trees. Neuron 77, 209–211.CrossrefPubMedGoogle Scholar

  • Stevenson, R.A., Siemann, J.K., Schneider, B.C., Eberly, H.E., Woynaroski, T.G., Camarata, S.M., Wallace, M.T. (2014). Multisensory temporal integration in autism spectrum disorders. J. Neurosci. 34, 691–697.CrossrefGoogle Scholar

  • Strzelecka, J. (2014). Electroencephalographic studies in children with autism spectrum disorders. Res. Autism Spectr. Disord. 8, 317–323.CrossrefGoogle Scholar

  • Takarae, Y., Luna, B., Minshew, N.J., and Sweeney, J.A. (2014). Visual motion processing and visual sensorimotor control in autism. J. Int. Neuropsychol. Soc. 20, 113–122.CrossrefGoogle Scholar

  • Tao, H., Zain, J.M., Ahmed, M.M., Abdalla, A.N., and Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integr. Comput. Aided Eng. 19, 81–91.Google Scholar

  • Tyszka, J.M., Kennedy, D.P., Paul, L.K., and Adolphs, R. (2014). Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism. Cereb. Cortex. 24, 1894–1905.PubMedCrossrefGoogle Scholar

  • Venker, C.E., Ray-Subramanian, C.E., Bolt, D.M., and Weismer, S.E. (2013). Trajectories of autism severity in early childhood. J. Autism Dev. Disord. 44, 546–563.Google Scholar

  • Verly, M., Verhoeven, J., Zink, I., Mantini, D., Oudenhove, L.V., Lagae, L., Sunaert, S., Romme, N. (2013). Structural and functional underconnectivity as a negative predictor for language in autism. Hum. Brain Map. 35, 3602–3615.Google Scholar

  • Weigelt, S., Koldewyn, K., and Kanwisher, N. (2012). Face identity recognition in autism spectrum disorders: a review of behavioral studies. Neurosci. Biobehav. Rev. 36, 1060–1084.PubMedCrossrefGoogle Scholar

  • Weisburg, J., Milleville, S.C., Kenworthy, L., Wallace, G.L., Gotts, S.J., Beauchamp, M.S., Martin, A. (2014). Social perception in autism spectrum disorders: impaired category selectivity for dynamic but not static images in ventral temporal cortex. Cereb. Cortex 24, 37–48.CrossrefGoogle Scholar

  • Welburg, L. (2011). Autism – the importance of getting the dose right. Nat. Rev. Neurosci. 12, 429.CrossrefGoogle Scholar

  • Xiang, J. and Liang, M. (2012). Wavelet-based detection of beam cracks using modal shape and frequency measurements. Comput. Aided Civ. Infrastruct. Eng. 27, 439–454.CrossrefGoogle Scholar

  • Yates, K. and Couteur, A.L. (2013). Diagnosing autism. Paediatr. Child Health 23, 5–10.CrossrefGoogle Scholar

  • Yu, T.W., Chahrour, M.H., Coulter, M.E., Jiralerspong, S., Okamura-Ikeda, K., Ataman, B., Schmitz-Abe, K., Harmin, D.A., Adli, M., Malik, A.N., et al. (2013). Using whole-exome sequencing to identify inherited causes of autism. Neuron 77, 259–273.PubMedCrossrefGoogle Scholar

  • Zdravkovic, A.D., Milisavljevic, M.J., and Petrovic, D.M. (2010). Attention in children with intellectual disabilities. Procedia Soc. Behav. Sci. 5, 1601–1606.CrossrefGoogle Scholar

  • Zhan, Y., Paolicelli, R.C., Sforazzini, F., Weinhard, L., and Bolasco, G. (2014). Deficient neuron-microglia signalling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406.CrossrefGoogle Scholar

  • Zhang, Y. and Ge, H. (2013). Freeway travel time prediction using Takagi-Sugeno-Kang fuzzy neural network. Comput. Aided Civ. Infrastruct. Eng. 28, 594–603.CrossrefGoogle Scholar

  • Zielinski, B.A., Prigge, M.B.D., Nielsen, J.A., Froehlich, A.L., Abildskov, T.J., Anderson, J.S., Fletcher, P.T., Zygmunt, K.M., Travers, B.G., Lange, N., et al. (2014). Longitudinal changes in cortical thickness in autism and typical development. Brain 137, 1799–1812.CrossrefPubMedGoogle Scholar

About the article

Corresponding author: Hojjat Adeli, Departments of Neuroscience, Biomedical Engineering, Biomedical Informatics, Electrical and Computer Engineering, The Ohio State University, 470 Hitchcock Hall, 2070 Neil Avenue, Columbus, OH 43210, USA, e-mail:


Received: 2014-08-08

Accepted: 2014-08-11

Published Online: 2014-09-12

Published in Print: 2014-12-01


Citation Information: Reviews in the Neurosciences, Volume 25, Issue 6, Pages 841–850, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0056.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Marissa Sobolewski, Timothy Anderson, Katherine Conrad, Elena Marvin, Carolyn Klocke, Keith Morris-Schaffer, Joshua L. Allen, and Deborah A. Cory-Slechta
NeuroToxicology, 2018
[2]
Manish Sharma, P.V. Achuth, Dipankar Deb, Subha D. Puthankattil, and U. Rajendra Acharya
Cognitive Systems Research, 2018
[4]
Claudio Alberto Parisi, Alfredo Eymann, María Celeste Puga, Natalia Alejandra Petriz, and Mónica De Gennaro
Current Treatment Options in Allergy, 2018
[5]
Tianyu Zhao, Iana Markevych, Marcel Romanos, Dennis Nowak, and Joachim Heinrich
Environmental Research, 2018
[6]
G MURALIDHAR BAIRY, U C NIRANJAN, OH SHU LIH, JOEL E W KOH, VIDYA K SUDARSHAN, TAN JEN HONG, YUKI HAGIWARA, and EDDIE Y K NG
Journal of Mechanics in Medicine and Biology, 2017, Page 1740009
[7]
Xinrui Jiang, Johnny L. Matson, Abigail Issarraras, and Claire O. Burns
Journal of Developmental and Physical Disabilities, 2017
[8]
Yen-Ju Chu, Chi-Feng Chang, Jiann-Shing Shieh, and Wang-Tso Lee
Entropy, 2017, Volume 19, Number 8, Page 428
[9]
William Gaetz, Michael Jurkiewicz, Sudha Kilaru Kessler, Lisa Blaskey, Erin S. Schwartz, and Timothy P.L. Roberts
NeuroImage: Clinical, 2017
[10]
Haoran George Wang, Joseph Joel Jeffries, and Tianren Frank Wang
The Neuroscientist, 2016, Volume 22, Number 2, Page 119
[11]
Ridha Djemal, Khalil AlSharabi, Sutrisno Ibrahim, and Abdullah Alsuwailem
BioMed Research International, 2017, Volume 2017, Page 1
[12]
John Jacob Cannell
Reviews in Endocrine and Metabolic Disorders, 2017, Volume 18, Number 2, Page 183
[13]
Joseph I. Terranova, Zhimin Song, Tony E. Larkin, Nathan Hardcastle, Alisa Norvelle, Ansa Riaz, and H. Elliott Albers
Proceedings of the National Academy of Sciences, 2016, Volume 113, Number 46, Page 13233
[14]
Sarah Hulbert and Hojjat Adeli
Reviews in the Neurosciences, 2015, Volume 26, Number 6

Comments (0)

Please log in or register to comment.
Log in