Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 26, Issue 3

Issues

Evaluating the functional state of adult-born neurons in the adult dentate gyrus of the hippocampus: from birth to functional integration

Andrea Aguilar-Arredondo
  • Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, 04510 Coyoacán, D.F., México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Clorinda Arias
  • Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, 04510 Coyoacán, D.F., México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Angélica Zepeda
  • Corresponding author
  • Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, 04510 Coyoacán, D.F., México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-09 | DOI: https://doi.org/10.1515/revneuro-2014-0071

Abstract

Hippocampal neurogenesis occurs in the adult brain in various species, including humans. A compelling question that arose when neurogenesis was accepted to occur in the adult dentate gyrus (DG) is whether new neurons become functionally relevant over time, which is key for interpreting their potential contributions to synaptic circuitry. The functional state of adult-born neurons has been evaluated using various methodological approaches, which have, in turn, yielded seemingly conflicting results regarding the timing of maturation and functional integration. Here, we review the contributions of different methodological approaches to addressing the maturation process of adult-born neurons and their functional state, discussing the contributions and limitations of each method. We aim to provide a framework for interpreting results based on the approaches currently used in neuroscience for evaluating functional integration. As shown by the experimental evidence, adult-born neurons are prone to respond from early stages, even when they are not yet fully integrated into circuits. The ongoing integration process for the newborn neurons is characterised by different features. However, they may contribute differently to the network depending on their maturation stage. When combined, the strategies used to date convey a comprehensive view of the functional development of newly born neurons while providing a framework for approaching the critical time at which new neurons become functionally integrated and influence brain function.

Keywords: electrophysiology; IEGs; immunohistochemistry; integration; methods; morphology; neurogenesis; optogenetics; time windows

References

  • Altman, J. and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335.Google Scholar

  • Arruda-Carvalho, M., Akers, K.G., Guskjolen, A., Sakaguchi, M., Josselyn, S.A., and Frankland, P.W. (2014). Posttraining ablation of adult-generated olfactory granule cells degrades odor-reward memories. J. Neurosci. 34, 15793–15803.CrossrefGoogle Scholar

  • Bekiari, C., Giannakopoulou, A., Siskos, N., Grivas, I., Tsingotjidou, A., Michaloudi, H., and Papadopoulos, G.C. (2014). Neurogenesis in the septal and temporal part of the adult rat dentate gyrus. Hippocampus. doi: 10.1002/hipo.22388.CrossrefPubMedGoogle Scholar

  • Bruel-Jungerman, E., Davis, S., Rampon, C., and Laroche, S. (2006). Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J. Neurosci. 26, 5888–5893.CrossrefGoogle Scholar

  • Cameron, H.A. and McKay, R.D. (2001). Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol. 435, 406–417.Google Scholar

  • Cameron, H.A., Woolley, C.S., McEwen, B.S., and Gould, E. (1993). Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56, 337–344.Google Scholar

  • Chancey, J.H., Poulsen, D.J., Wadiche, J.I., and Overstreet-Wadiche, L. (2014). Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J. Neurosci. 34, 2349–2354.CrossrefGoogle Scholar

  • Clark, P.J., Kohman, R.A., Miller, D.S., Bhattacharya, T.K., Haferkamp, E.H., and Rhodes, J.S. (2010). Adult hippocampal neurogenesis and c-Fos induction during escalation of voluntary wheel running in C57BL/6J mice. Behav. Brain Res. 213, 246–252.Google Scholar

  • Clark, P.J., Bhattacharya, T.K., Miller, D.S., and Rhodes, J.S. (2011). Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience 184, 16–27.Google Scholar

  • Courtin, J., Chaudun, F., Rozeske, R.R., Karalis, N., Gonzalez-Campo, C., Wurtz, H., Abdi, A., Baufreton, J., Bienvenu, T.C., and Herry, C. (2014). Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96.Google Scholar

  • Deng, W., Saxe, M.D., Gallina, I.S., and Gage, F.H. (2009). Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain. J. Neurosci. 29, 13532–13542.CrossrefGoogle Scholar

  • Encinas, J.M., Vaahtokari, A., and Enikolopov, G. (2006). Fluoxetine targets early progenitor cells in the adult brain. Proc. Natl. Acad. Sci. USA 103, 8233–8238.Google Scholar

  • Esposito, M.S., Piatti, V.C., Laplagne, D.A., Morgenstern, N.A., Ferrari, C.C., Pitossi, F.J., and Schinder, A.F. (2005). Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J. Neurosci. 25, 10074–10086.CrossrefGoogle Scholar

  • Feinberg, E.H., Vanhoven, M.K., Bendesky, A., Wang, G., Fetter, R.D., Shen, K., and Bargmann, C.I. (2008). GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363.Google Scholar

  • Feng, L., Kwon, O., Lee, B., Oh, W.C., and Kim, J. (2014). Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain. Nat. Protoc. 9, 2425–2437.PubMedCrossrefGoogle Scholar

  • Ge, S., Goh, E.L., Sailor, K.A., Kitabatake, Y., Ming, G.L., and Song, H. (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593.Google Scholar

  • Gregoire, C.A., Bonenfant, D., Le Nguyen, A., Aumont, A., and Fernandes, K.J. (2014). Untangling the influences of voluntary running, environmental complexity, social housing and stress on adult hippocampal neurogenesis. PLoS One 9, e86237.Google Scholar

  • Gu, Y., Arruda-Carvalho, M., Wang, J., Janoschka, S.R., Josselyn, S.A., Frankland, P.W., and Ge, S. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706.PubMedCrossrefGoogle Scholar

  • Guzowski, J.F., McNaughton, B.L., Barnes, C.A., and Worley, P.F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124.CrossrefPubMedGoogle Scholar

  • Guzowski, J.F., Setlow, B., Wagner, E.K., and McGaugh, J.L. (2001). Experience-dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268. J. Neurosci. 21, 5089–5098.Google Scholar

  • Hastings, N.B. and Gould, E. (1999). Rapid extension of axons into the CA3 region by adult-generated granule cells. J. Comp. Neurol. 413, 146–154.Google Scholar

  • Jagasia, R., Steib, K., Englberger, E., Herold, S., Faus-Kessler, T., Saxe, M., Gage, F.H., Song, H., and Lie, D.C. (2009). GABA-cAMP response element-binding protein signaling regulates maturation and survival of newly generated neurons in the adult hippocampus. J. Neurosci. 29, 7966–7977.CrossrefGoogle Scholar

  • Jessberger, S. and Kempermann, G. (2003). Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur. J. Neurosci. 18, 2707–2712.CrossrefPubMedGoogle Scholar

  • Kee, N., Teixeira, C.M., Wang, A.H., and Frankland, P.W. (2007). Preferential incorporation of adult-generated granule cells into spatial memory networks in the dentate gyrus. Nat. Neurosci. 10, 355–362.PubMedCrossrefGoogle Scholar

  • Kempermann, G., Jessberger, S., Steiner, B., and Kronenberg, G. (2004). Milestones of neuronal development in the adult hippocampus. Trends Neurosci. 27, 447–452.PubMedCrossrefGoogle Scholar

  • Kovacs, K.J. (1998). c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem. Int. 33, 287–297.PubMedCrossrefGoogle Scholar

  • Kravitz, A.V. and Kreitzer, A.C. (2011). Optogenetic manipulation of neural circuitry in vivo. Curr. Opin. Neurobiol. 21, 433–439.CrossrefPubMedGoogle Scholar

  • Kuhn, H.G., Dickinson-Anson, H., and Gage, F.H. (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J. Neurosci. 16, 2027–2033.Google Scholar

  • Kuipers, S.D., Tiron, A., Soule, J., Messaoudi, E., Trentani, A., and Bramham, C.R. (2009). Selective survival and maturation of adult-born dentate granule cells expressing the immediate early gene Arc/Arg3.1. PLoS One 4, e4885.Google Scholar

  • Laplagne, D.A., Esposito, M.S., Piatti, V.C., Morgenstern, N.A., Zhao, C., van Praag, H., Gage, F.H., and Schinder, A.F. (2006). Functional convergence of neurons generated in the developing and adult hippocampus. PLoS Biol. 4, e409.CrossrefGoogle Scholar

  • Lois, C. and Alvarez-Buylla, A. (1993). Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia. Proc. Natl. Acad. Sci. USA 90, 2074–2077.Google Scholar

  • Markakis, E.A. and Gage, F.H. (1999). Adult-generated neurons in the dentate gyrus send axonal projections to field CA3 and are surrounded by synaptic vesicles. J. Comp. Neurol. 406, 449–460.Google Scholar

  • Ming, G.L. and Song, H. (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702.Google Scholar

  • Mongiat, L.A. and Schinder, A.F. (2011). Adult neurogenesis and the plasticity of the dentate gyrus network. Eur. J. Neurosci. 33, 1055–1061.CrossrefPubMedGoogle Scholar

  • Mongiat, L.A., Esposito, M.S., Lombardi, G., and Schinder, A.F. (2009). Reliable activation of immature neurons in the adult hippocampus. PLoS One 4, e5320.Google Scholar

  • Nacher, J., Varea, E., Blasco-Ibanez, J.M., Castillo-Gomez, E., Crespo, C., Martinez-Guijarro, F.J., and McEwen, B.S. (2005). Expression of the transcription factor Pax 6 in the adult rat dentate gyrus. J. Neurosci. Res. 81, 753–761.Google Scholar

  • Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., Hegemann, P., and Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945.Google Scholar

  • Perederiy, J.V., Luikart, B.W., Washburn, E.K., Schnell, E., and Westbrook, G.L. (2013). Neural injury alters proliferation and integration of adult-generated neurons in the dentate gyrus. J. Neurosci. 33, 4754–4767.CrossrefGoogle Scholar

  • Piatti, V.C., Davies-Sala, M.G., Esposito, M.S., Mongiat, L.A., Trinchero, M.F., and Schinder, A.F. (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J. Neurosci. 31, 7715–7728.CrossrefGoogle Scholar

  • Ramirez-Amaya, V., Marrone, D.F., Gage, F.H., Worley, P.F., and Barnes, C.A. (2006). Integration of new neurons into functional neural networks. J. Neurosci. 26, 12237–12241.CrossrefGoogle Scholar

  • Saha, R.N. and Dudek, S.M. (2013). Splitting hares and tortoises: a classification of neuronal immediate early gene transcription based on poised RNA polymerase II. Neuroscience 247, 175–181.Google Scholar

  • Sandoval, C.J., Martinez-Claros, M., Bello-Medina, P.C., Perez, O., and Ramirez-Amaya, V. (2011). When are new hippocampal neurons, born in the adult brain, integrated into the network that processes spatial information? PLoS One 6, e17689.Google Scholar

  • Schmidt-Hieber, C., Jonas, P., and Bischofberger, J. (2004). Enhanced synaptic plasticity in newly generated granule cells of the adult hippocampus. Nature 429, 184–187.Google Scholar

  • Snyder, J.S., Glover, L.R., Sanzone, K.M., Kamhi, J.F., and Cameron, H.A. (2009). The effects of exercise and stress on the survival and maturation of adult-generated granule cells. Hippocampus 19, 898–906.PubMedCrossrefGoogle Scholar

  • Snyder, J.S., Ferrante, S.C., and Cameron, H.A. (2012). Late maturation of adult-born neurons in the temporal dentate gyrus. PLoS One 7, e48757.Google Scholar

  • Song, J., Sun, J., Moss, J., Wen, Z., Sun, G.J., Hsu, D., Zhong, C., Davoudi, H., Christian, K.M., Toni, N., et al. (2013). Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat. Neurosci. 16, 1728–1730.CrossrefPubMedGoogle Scholar

  • Stanfield, B.B. and Trice, J.E. (1988). Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp. Brain. Res. 72, 399–406.PubMedCrossrefGoogle Scholar

  • Stephens, C.L., Toda, H., Palmer, T.D., DeMarse, T.B., and Ormerod, B.K. (2012). Adult neural progenitor cells reactivate superbursting in mature neural networks. Exp. Neurol. 234, 20–30.Google Scholar

  • Tashiro, A., Sandler, V.M., Toni, N., Zhao, C., and Gage, F.H. (2006a). NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442, 929–933.Google Scholar

  • Tashiro, A., Zhao, C., and Gage, F.H. (2006b). Retrovirus-mediated single-cell gene knockout technique in adult newborn neurons in vivo. Nat. Protoc. 1, 3049–3055.Google Scholar

  • Tashiro, A., Makino, H., and Gage, F.H. (2007). Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J. Neurosci. 27, 3252–3259.CrossrefGoogle Scholar

  • Toni, N., Teng, E.M., Bushong, E.A., Aimone, J.B., Zhao, C., Consiglio, A., van Praag, H., Martone, M.E., Ellisman, M.H., and Gage, F.H. (2007). Synapse formation on neurons born in the adult hippocampus. Nat. Neurosci. 10, 727–734.PubMedCrossrefGoogle Scholar

  • Toni, N., Laplagne, D.A., Zhao, C., Lombardi, G., Ribak, C.E., Gage, F.H., and Schinder, A.F. (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat. Neurosci. 11, 901–907.CrossrefPubMedGoogle Scholar

  • van Praag, H., Schinder, A.F., Christie, B.R., Toni, N., Palmer, T.D., and Gage, F.H. (2002). Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034.Google Scholar

  • Veyrac, A., Gros, A., Bruel-Jungerman, E., Rochefort, C., Kleine Borgmann, F.B., Jessberger, S., and Laroche, S. (2013). Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc. Natl. Acad. Sci. USA 110, 7062–7067.Google Scholar

  • Vivar, C. and van Praag, H. (2013). Functional circuits of new neurons in the dentate gyrus. Front. Neural Circuits 7, 15.Google Scholar

  • Vivar, C., Potter, M.C., Choi, J., Lee, J.Y., Stringer, T.P., Callaway, E.M., Gage, F.H., Suh, H., and van Praag, H. (2012). Monosynaptic inputs to new neurons in the dentate gyrus. Nat. Commun. 3, 1107.CrossrefGoogle Scholar

  • von Bohlen and Halbach, O. (2007). Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res. 329, 409–420.Google Scholar

  • von Bohlen and Halbach, O. (2011). Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res. 345, 1–19.Google Scholar

  • Wang, S., Scott, B.W., and Wojtowicz, J.M. (2000). Heterogenous properties of dentate granule neurons in the adult rat. J. Neurobiol. 42, 248–257.CrossrefGoogle Scholar

  • Zhang, S.J., Ye, J., Couey, J.J., Witter, M., Moser, E.I., and Moser, M.B. (2013). Functional connectivity of the entorhinal- hippocampal space circuit. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20120516.Google Scholar

  • Zhao, C., Teng, E.M., Summers, R.G., Jr., Ming, G.L., and Gage, F.H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11.CrossrefGoogle Scholar

About the article

Corresponding author: Angélica Zepeda, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, 04510 Coyoacán, D.F., México, e-mail:


Received: 2014-10-12

Accepted: 2015-01-09

Published Online: 2015-03-09

Published in Print: 2015-06-01


Citation Information: Reviews in the Neurosciences, Volume 26, Issue 3, Pages 269–279, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0071.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Sherleen Xue-Fu Adamson, Xubo Shen, Wendy Jiang, Vivien Lai, Xiaoting Wang, Jonathan H Shannahan, Jason R Cannon, Jinhui Chen, and Wei Zheng
Toxicological Sciences, 2018
[3]
Shufang Feng, Tianyao Shi, Jiangxia Qiu, Haihong Yang, Yan Wu, Wenxia Zhou, Wei Wang, and Haitao Wu
The FASEB Journal, 2017, Volume 31, Number 10, Page 4347
[4]
Estela Castilla-Ortega, David Ladrón de Guevara-Miranda, Antonia Serrano, Francisco J. Pavón, Juan Suárez, Fernando Rodríguez de Fonseca, and Luis J. Santín
Biochemical Pharmacology, 2017
[6]
Estela Castilla-Ortega, Antonia Serrano, Eduardo Blanco, Pedro Araos, Juan Suárez, Francisco J. Pavón, Fernando Rodríguez de Fonseca, and Luis J. Santín
Neuroscience & Biobehavioral Reviews, 2016, Volume 66, Page 15

Comments (0)

Please log in or register to comment.
Log in