Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 26, Issue 4


Autophagy in Alzheimer’s disease

Ameneh Zare-shahabadi
  • Molecular Immunology Research Center, and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 14194, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eliezer Masliah
  • Departments of Neurosciences and Pathology, University of California at San Diego, La Jolla, CA 92093-0662, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gail V.W. Johnson / Nima Rezaei
  • Corresponding author
  • Molecular Immunology Research Center, and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 14194, Iran
  • Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran; and Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-14 | DOI: https://doi.org/10.1515/revneuro-2014-0076


Autophagy is a vesicle and lysosome-mediated degradative pathway that is essential for protein homeostasis and cell health. In particular, compared to nonneuronal cells, neurons are dependent on high basal autophagy for survival. There is emerging agreement that defects in autophagy are likely to contribute to the neurodegenerative processes in numerous diseases, including Alzheimer’s disease (AD). Autophagy-lysosome defects occur early in the pathogenesis of AD and have been proposed to be a significant contributor to the disease process. Given the fact that autophagy deficits are likely major contributors to the etiology of AD, the focus of this review will be on recent studies that support a role for autophagy deficits in AD.

Keywords: Alzheimer’s disease; autophagy; degradative pathway; lysosome defects


  • Bejarano, E. and Cuervo, A.M. (2010). Chaperone-mediated autophagy. Proc. Am. Thoracic Soc. 7, 29.CrossrefGoogle Scholar

  • Berger, Z., Ravikumar, B., Menzies, F.M., Oroz, L.G., Underwood, B.R., Pangalos, M.N., Schmitt, I., Wullner, U., Evert, B.O., O’Kane, C.J., et al. (2006). Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum. Mol. Genet. 15, 433–442.PubMedCrossrefGoogle Scholar

  • Bjørkøy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Øvervatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603–614.Google Scholar

  • Boland, B., Kumar, A., Lee, S., Platt, F.M., Wegiel, J., Yu, W.H., and Nixon, R.A. (2008). Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J. Neurosci. 28, 6926–6937.CrossrefGoogle Scholar

  • Caccamo, A., Majumder, S., Richardson, A., Strong, R., and Oddo, S. (2010). Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and τ effects on cognitive impairments. J. Biol. Chem. 285, 13107–13120.Google Scholar

  • Caccamo, A., Magrì, A., Medina, D.X., Wisely, E.V., López-Aranda, M.F., Silva, A.J., and Oddo, S. (2013). mTOR regulates τ phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12, 370–380.PubMedCrossrefGoogle Scholar

  • Cai, Z. and Yan, L.-J. (2013). Rapamycin, autophagy, and Alzheimer’s disease. J. Biochem. Pharmacol. Res. 1, 84.Google Scholar

  • Cai, Z., Yan, L.-J., Li, K., Quazi, S.H., and Zhao, B. (2012). Roles of AMP-activated protein kinase in Alzheimer’s disease. Neuromol. Med. 14, 1–14.CrossrefGoogle Scholar

  • Cárdenas, C. and Foskett, J.K. (2012). Mitochondrial Ca2+ signals in autophagy. Cell Calcium 52, 44–51.CrossrefPubMedGoogle Scholar

  • Cataldo, A.M., Hamilton, D.J., Barnett, J.L., Paskevich, P.A., and Nixon, R.A. (1996). Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer’s disease. J. Neurosci. 16, 186–199.Google Scholar

  • Chapman, P.F., White, G.L., Jones, M.W., Cooper-Blacketer, D., Marshall, V.J., Irizarry, M., Younkin, L., Good, M.A., Bliss, T.V., Hyman, B.T., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2, 271–276.CrossrefPubMedGoogle Scholar

  • Chauhan, S., Goodwin, J.G., Chauhan, S., Manyam, G., Wang, J., Kamat, A.M., and Boyd, D.D. (2013). ZKSCAN3 is a master transcriptional repressor of autophagy. Mol. Cell 50, 16–28.PubMedCrossrefGoogle Scholar

  • Chen, H., Qian, K., Du, Z., Cao, J., Petersen, A., Liu, H., Blackbourn, L.W. IV, Huang, C.-L., Errigo, A., Yin, Y., et al. (2014). Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 14, 796–809.CrossrefGoogle Scholar

  • Chesser, A.S., Pritchard, S.M., and Johnson, G.V. (2013). τ clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front. Neurol. 4.PubMedCrossrefGoogle Scholar

  • Cheung, Z.H. and Ip, N.Y. (2011). Autophagy deregulation in neurodegenerative diseases–recent advances and future perspectives. J. Neurochem. 118, 317–325.CrossrefGoogle Scholar

  • Coffey, E., Beckel, J., Laties, A., and Mitchell, C. (2014). Lysosomal alkalization and dysfunction in human fibroblasts with the Alzheimer’s disease-linked presenilin 1 A246E mutation can be reversed with cAMP. Neuroscience 263, 111–124.Google Scholar

  • Congdon, E.E., Wu, J.W., Myeku, N., Figueroa, Y.H., Herman, M., Marinec, P.S., Gestwicki, J.E., Dickey, C.A., Yu, W.H., and Duff, K.E. (2012). Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8, 609–622.CrossrefGoogle Scholar

  • Criollo, A., Maiuri, M.C., Tasdemir, E., Vitale, I., Fiebig, A.A., Andrews, D., Molgó, J., Díaz, J., Lavandero, S., Harper, F., et al. (2007). Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ. 14, 1029–1039.PubMedGoogle Scholar

  • Darlington, D., Deng, J., Giunta, B., Hou, H., Sanberg, C.D., Kuzmin-Nichols, N., Zhou, H.D., Mori, T., Ehrhart, J., Sanberg, P.R., et al. (2012). Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev. 22, 412–421.PubMedCrossrefGoogle Scholar

  • David, D.C., Layfield, R., Serpell, L., Narain, Y., Goedert, M., and Spillantini, M.G. (2002). Proteasomal degradation of τ protein. J. Neurochem. 83, 176–185.PubMedCrossrefGoogle Scholar

  • Decuypere, J.-P., Kindt, D., Luyten, T., Welkenhuyzen, K., Missiaen, L., De Smedt, H., Bultynck, G., and Parys, J.B. (2013). mTOR-controlled autophagy requires intracellular Ca2+ signaling. PLoS One 8, e61020.Google Scholar

  • Dekosky, S.T. and Scheff, S.W. (1990). Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann. Neurol. 27, 457–464.PubMedCrossrefGoogle Scholar

  • Dickey, C.A., Kamal, A., Lundgren, K., Klosak, N., Bailey, R.M., Dunmore, J., Ash, P., Shoraka, S., Zlatkovic, J., Eckman, C.B., et al. (2007). The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated τ client proteins. J. Clin. Invest. 117, 648.CrossrefGoogle Scholar

  • Dobrowolski, R., Vick, P., Ploper, D., Gumper, I., Snitkin, H., Sabatini, D.D., and De Robertis, E.M. (2012). Presenilin deficiency or lysosomal inhibition enhances Wnt signaling through relocalization of GSK3 to the late-endosomal compartment. Cell Rep. 29, 1316–1328.CrossrefGoogle Scholar

  • Dolan, P.J. and Johnson, G.V. (2010). A caspase cleaved form of τ is preferentially degraded through the autophagy pathway. J. Biol. Chem. 285, 21978–21987.Google Scholar

  • Dou, Z., Pan, J.A., Dbouk, H.A., Ballou, L.M., DeLeon, J.L., Fan, Y., Chen, J.S., Liang, Z., Li, G., Backer, J.M., et al. (2013). Class IA PI3K p110β subunit promotes autophagy through Rab5 Small GTPase in response to growth factor limitation. Mol. Cell. 50, 29–42.CrossrefGoogle Scholar

  • Eisenberg-Lerner, A. and Kimchi, A. (2012). PKD at the crossroads of necrosis and autophagy. Autophagy 8, 433–434.CrossrefGoogle Scholar

  • Esselens, C., Oorschot, V., Baert, V., Raemaekers, T., Spittaels, K., Serneels, L., Zheng, H., Saftig, P., De Strooper, B., Klumperman, J., et al. (2004). Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J. Cell Biol. 166, 1041–1054.CrossrefGoogle Scholar

  • Felbor, U., Kessler, B., Mothes, W., Goebel, H.H., Ploegh, H.L., Bronson, R.T., and Olsen, B.R. (2002). Neuronal loss and brain atrophy in mice lacking cathepsins B and L. Proc. Natl. Acad. Sci. USA. 99, 7883–7888.CrossrefGoogle Scholar

  • Fred Dice, J. (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309.CrossrefGoogle Scholar

  • Grotemeier, A., Alers, S., Pfisterer, S.G., Paasch, F., Daubrawa, M., Dieterle, A., Viollet, B., Wesselborg, S., Proikas-Cezanne, T., and Stork, B. (2010). AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal. 22, 914–925.PubMedCrossrefGoogle Scholar

  • Hamano, T., Gendron, T.F., Causevic, E., Yen, S.H., Lin, W.L., Isidoro, C., Deture, M., and Ko, L.W. (2008). Autophagic-lysosomal perturbation enhances τ aggregation in transfectants with induced wild-type τ expression. Eur. J. Neurosci. 27, 1119–1130.CrossrefPubMedGoogle Scholar

  • Harrington, C., Ricard, J., Horsley, D., Harrington, K., Hindley, K., Riedel, G., Theuring, F., Seng, K., et al. (2008). Methylthioninium chloride (MTC) acts as a τ aggregation inhibitor in a cellular model and reverses τ pathology in transgenic mice models of Alzheimer’s disease. International Conference on Alzheimer’s Disease Abstracts.Google Scholar

  • Hay, N. and Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945.CrossrefPubMedGoogle Scholar

  • Hayashi, S.-I., Sato, N., Yamamoto, A., Ikegame, Y., Nakashima, S., Ogihara, T., and Morishita, R. (2009). Alzheimer disease-associated peptide, amyloid β40, inhibits vascular regeneration with induction of endothelial autophagy. Arterioscler. Thromb. Vasc. Biol. 29, 1909–1915.CrossrefGoogle Scholar

  • Hosokawa, N., Hara, T., Kaizuka, T., Kishi, C., Takamura, A., Miura, Y., Iemura, S., Natsume, T., Takehana, K., Yamada, N., et al. (2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991.Google Scholar

  • Ichimura, Y. and Komatsu, M. (2010). Selective degradation of p62 by autophagy. Semin. Immunopathol. 32, 431–436.Google Scholar

  • Inomata, M., Niida, S., Shibata, K.-I., and Into, T. (2012). Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell. Mol. Life Sci. 69, 963–979.CrossrefGoogle Scholar

  • Jaeger, P.A., Pickford, F., Sun, C.-H., Lucin, K.M., Masliah, E., and Wyss-Coray, T. (2010). Regulation of amyloid precursor protein processing by the Beclin1 complex. PLoS One 5, e11102.Google Scholar

  • Jinwal, U.K., Miyata, Y., Koren, J. 3rd, Jones, J.R., Trotter, J.H., Chang, L., O’Leary, J., Morgan, D., Lee, D.C., Shults, C.L., et al. (2009). Chemical manipulation of hsp70 ATPase activity regulates τ stability. J. Neurosci. 29, 12079–12088.CrossrefGoogle Scholar

  • Jisun, L., Samantha, G., and Jianhua, Z. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523–540.Google Scholar

  • Jo, C., Gundemir, S., Pritchard, S., Jin, Y.N., Rahman, I., and Johnson, G.V. (2014). Nrf2 reduces levels of phosphorylated τ protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496.Google Scholar

  • Johansen, T. and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296.PubMedCrossrefGoogle Scholar

  • Kabeya, Y., Mizushima, N., Ueno, T., Yamamoto, A., Kirisako, T., Noda, T., Kominami, E., Ohsumi, Y., and Yoshimori, T. (2000). LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728.CrossrefGoogle Scholar

  • Kaminskyy, V. and Zhivotovsky, B. (2012). Proteases in autophagy. Biochim. Biophys. Acta Proteins Proteomics 1824, 44–50.Google Scholar

  • Kaushik, S., Bandyopadhyay, U., Sridhar, S., Kiffin, R., Martinez-Vicente, M., Kon, M., Orenstein, S.J., Wong, E., and Cuervo, A.M. (2011). Chaperone-mediated autophagy at a glance. J. Cell Sci. 124, 495–499.CrossrefGoogle Scholar

  • Keck, S., Nitsch, R., Grune, T., and Ullrich, O. (2003). Proteasome inhibition by paired helical filament-τ in brains of patients with Alzheimer’s disease. J. Neurochem. 85, 115–122.CrossrefGoogle Scholar

  • Khan, M.T. and Joseph, S.K. (2010). Role of inositol trisphosphate receptors in autophagy in DT40 cells. J. Biol. Chem. 285, 16912–16920.Google Scholar

  • Kim, D.-H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163–175.CrossrefGoogle Scholar

  • Kirkin, V., Lamark, T., Sou, Y.S., Bjørkøy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009a). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505–516.CrossrefGoogle Scholar

  • Kirkin, V., Mcewan, D.G., Novak, I., and Dikic, I. (2009b). A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269.PubMedCrossrefGoogle Scholar

  • Kodiha, M. and Stochaj, U. (2011). AMP kinase: the missing link between type 2 diabetes and neurodegenerative diseases? Trends Mol. Med. 17, 613–614.CrossrefGoogle Scholar

  • Krüger, U., Wang, Y., Kumar, S., and Mandelkow, E.-M. (2012). Autophagic degradation of τ in primary neurons and its enhancement by trehalose. Neurobiol. Aging 33, 2291–2305.PubMedCrossrefGoogle Scholar

  • Kundu, M. (2011). ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. Antioxidants Redox Signal. 14, 1953–1958.Google Scholar

  • Lee, J.H., Yu, W.H., Kumar, A., Lee, S., Mohan, P.S., Peterhoff, C.M., Wolfe, D.M., Martinez-Vicente, M., Massey, A.C., Sovak, G., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158.Google Scholar

  • Lee, M.J., Lee, J.H., and Rubinsztein, D.C. (2013). τ degradation: the ubiquitin-proteasome system versus the autophagy-lysosome system. Prog. Neurobiol. 105, 49–59.CrossrefPubMedGoogle Scholar

  • Li, L., Zhang, X., and Le, W. (2010). Autophagy dysfunction in Alzheimer’s disease. Neurodegener. Dis. 7, 265–271.PubMedGoogle Scholar

  • Li, W.-W., Li, J., and Bao, J.-K. (2012). Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–1136.PubMedCrossrefGoogle Scholar

  • Lipinski, M.M., Zheng, B., Lu, T., Yan, Z., Py, B.F., Ng, A., Xavier, R.J., Li, C., Yankner, B.A., Scherzer, C.R., et al. (2010). Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 107, 14164–14169.CrossrefGoogle Scholar

  • Luo, W., Dou, F., Rodina, A., Chip, S., Kim, J., Zhao, Q., Moulick, K., Aguirre, J., Wu, N., Greengard, P., et al. (2007). Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies. Proc. Natl. Acad. Sci. USA. 104, 9511–9516.CrossrefGoogle Scholar

  • Majeski, A.E. and Fred Dice, J. (2004). Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 36, 2435–2444.CrossrefGoogle Scholar

  • Majumder, S., Richardson, A., Strong, R., and Oddo, S. (2011). Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLoS One 6, e25416.Google Scholar

  • Martina, J.A., Diab, H.I., Lishu, L., Jeong-A, L., Patange, S., Raben, N., and Puertollano, R. (2014). The nutrient-responsive transcription factor TFE3 promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci. Signal. 7, ra9.CrossrefGoogle Scholar

  • Medina, D.X., Caccamo, A., and Oddo, S. (2011). Methylene blue reduces Aβ levels and rescues early cognitive deficit by increasing proteasome activity. Brain Pathol. 21, 140–149.CrossrefPubMedGoogle Scholar

  • Murrow, L. and Debnath, J. (2013). Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. Mech. Dis. 8, 105–137.CrossrefGoogle Scholar

  • Necula, M., Breydo, L., Milton, S., Kayed, R., Van Der Veer, W.E., Tone, P., and Glabe, C.G. (2007). Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry (Moscow) 46, 8850–8860.CrossrefGoogle Scholar

  • Neely, K.M., Green, K.N., and Laferla, F.M. (2011). Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J. Neurosci. 31, 2781–2791.CrossrefGoogle Scholar

  • Nishida, Y., Arakawa, S., Fujitani, K., Yamaguchi, H., Mizuta, T., Kanaseki, T., Komatsu, M., Otsu, K., Tsujimoto, Y., and Shimizu, S. (2009). Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature 461, 654–658.Google Scholar

  • Nixon, R.A. and Yang, D.-S. (2011). Autophagy failure in Alzheimer’s disease – locating the primary defect. Neurobiol. Dis. 43, 38–45.CrossrefGoogle Scholar

  • O’Leary, J.C. 3rd, Li, Q., Marinec, P., Blair, L.J., Congdon, E.E., Johnson, A.G., Jinwal, U.K., Koren, J. 3rd, Jones, J.R., Kraft, C., et al. (2010). Phenothiazine-mediated rescue of cognition in τ transgenic mice requires neuroprotection and reduced soluble τ burden. Mol. Neurodegener. 5, 1–11.Google Scholar

  • Pankiv, S., Clausen, T.H., Lamark, T., Brech, A., Bruun, J.A., Outzen, H., Øvervatn, A., Bjørkøy, G., and Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145.Google Scholar

  • Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., et al. (2004). CHIP and Hsp70 regulate τ ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13, 703–714.CrossrefGoogle Scholar

  • Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P.A., Small, S., Spencer, B., Rockenstein, E., Levine, B., et al. (2008). The autophagy-related protein Beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J. Clin. Invest. 118, 2190.Google Scholar

  • Querfurth, H.W. and Laferla, F.M. (2010). Alzheimer’s disease. N. Engl. J. Med. 362, 329–344.CrossrefGoogle Scholar

  • Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786.Google Scholar

  • Salminen, A., Kaarniranta, K., Kauppinen, A., Ojala, J., Haapasalo, A., Soininen, H., and Hiltunen, M. (2013). Impaired autophagy and APP processing in Alzheimer’s disease: the potential role of Beclin1 interactome. Prog. Neurobiol. 106–107, 33–54.Google Scholar

  • Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303.CrossrefGoogle Scholar

  • Sarkar, S., Davies, J.E., Huang, Z., Tunnacliffe, A., and Rubinsztein, D.C. (2007). Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J. Biol. Chem. 282, 5641–5652.Google Scholar

  • Schaeffer, V. and Goedert, M. (2012). Stimulation of autophagy is neuroprotective in a mouse model of human tauopathy. Autophagy 8, 1686.CrossrefGoogle Scholar

  • Scheff, S.W., Price, D.A., Schmitt, F.A., and Mufson, E.J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384.CrossrefGoogle Scholar

  • Settembre, C., Di Malta, C., Polito, V.A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S.U., Huynh, T., Medina, D., Colella, P., et al. (2011). TFEB links autophagy to lysosomal biogenesis. Science 332, 1429–1433.Google Scholar

  • Shimizu, S., Arakawa, S., and Nishida, Y. (2010). Autophagy takes an alternative pathway. Autophagy 6, 290–291.PubMedCrossrefGoogle Scholar

  • Shin, J.Y., Park, H.J., Kim, H.N., Oh, S.H., Bae, J.-S., Ha, H.-J., and Lee, P.H. (2014). Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10, 32–44.PubMedCrossrefGoogle Scholar

  • Shoval, Y., Berissi, H., Kimchi, A., and Pietrokovski, S. (2011). New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One 6, e17344.Google Scholar

  • Son, S.M., Jung, E.S., Shin, H.J., Byun, J., and Mook-Jung, I. (2012). Aβ-induced formation of autophagosomes is mediated by RAGE-CaMKKβ-AMPK signaling. Neurobiol. Aging 33, 1006.e11–e23.PubMedCrossrefGoogle Scholar

  • Spilman, P., Podlutskaya, N., Hart, M.J., Debnath, J., Gorostiza, O., Bredesen, D., Richardson, A., Strong, R., and Galvan, V. (2010). Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 5, e9979.Google Scholar

  • Steele, J.W., Lachenmayer, M.L., Ju, S., Stock, A., Liken, J., Kim, S.H., Delgado, L.M., Alfaro, I.E., Bernales, S., Verdile, G., et al. (2013). Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer’s mouse model. Mol Psychiatry 18, 889–897.CrossrefGoogle Scholar

  • Stefanis, L. (2012). α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399.Google Scholar

  • Sweetlove, M. (2012). Phase III CONCERT trial of latrepirdine. Pharm. Med. 26, 113–115.CrossrefGoogle Scholar

  • Tumbarello, D.A., Waxse, B.J., Arden, S.D., Bright, N.A., Kendrick-Jones, J., and Buss, F. (2012). Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat. Cell Biol. 14, 1024–1035.Google Scholar

  • Tung, Y.-T., Wang, B.-J., Hu, M.-K., Hsu, W.-M., Lee, H., Huang, W.-P., and Liao, Y.-F. (2012). Autophagy: a double-edged sword in Alzheimer’s disease. J. Biosci. 37, 157–165.CrossrefGoogle Scholar

  • Tung, Y.-T., Wang, B.-J., Hsu, W.-M., Hu, M.-K., Her, G.M., Huang, W.-P., and Liao, Y.-F. (2014). Presenilin-1 regulates the expression of p62 to govern p62-dependent τ degradation. Mol. Neurobiol. 49, 10–27.Google Scholar

  • Vingtdeux, V., Giliberto, L., Zhao, H., Chandakkar, P., Wu, Q., Simon, J.E., Janle, E.M., Lobo, J., Ferruzzi, M.G., Davies, P., et al. (2010). AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J. Biol. Chem. 285, 9100–9113.Google Scholar

  • Wan, W., Xia, S., Kalionis, B., Liu, L., and Li, Y. (2014). The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? BioMed Res. Int. 2014.CrossrefPubMedGoogle Scholar

  • Wang, S., Shih, Y., Ko, W., Wei, Y.-H., and Shih, C. (2008). Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell. Mol. Life Sci. 65, 3640–3652.PubMedCrossrefGoogle Scholar

  • Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E.-M., Cuervo, A.M., and Mandelkow, E. (2009). τ fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170.PubMedCrossrefGoogle Scholar

  • Wang, Y., Martinez-Vicente, M., Krüger, U., Kaushik, S., Wong, E., Mandelkow, E.-M., Cuervo, A.M., and Mandelkow, E. (2010). Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological τ aggregation. Autophagy 6, 182–183.CrossrefGoogle Scholar

  • Wilson, C.A., Murphy, D.D., Giasson, B.I., Zhang, B., Trojanowski, J.Q., and Lee, V.M.-Y. (2004). Degradative organelles containing mislocalized α- and β-synuclein proliferate in presenilin-1 null neurons. J. Cell Biol. 165, 335–346.CrossrefGoogle Scholar

  • Wischik, C., Edwards, P., Lai, R., Roth, M., and Harrington, C. (1996). Selective inhibition of Alzheimer disease-like τ aggregation by phenothiazines. Proc. Natl. Acad. Sci. USA. 93, 11213–11218.CrossrefGoogle Scholar

  • Wischik, C.M., Bentham, P., Wischik, D.J., and Seng, K.M. (2008). O3-04-07: τ aggregation inhibitor (TAI) therapy with rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimer’s Dementia 4, T167.Google Scholar

  • Wolfe, D.M., Lee, J.H., Kumar, A., Lee, S., Orenstein, S.J., and Nixon, R.A. (2013). Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 37, 1949–1961.CrossrefPubMedGoogle Scholar

  • Yang, D.S., Stavrides, P., Mohan, P.S., Kaushik, S., Kumar, A., Ohno, M., Schmidt, S.D., Wesson, D., Bandyopadhyay, U., Jiang, Y., et al. (2011). Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 134, 258–277.Google Scholar

  • Yang, H., Xie, Z., Wei, L., Yang, H., Yang, S., Zhu, Z., Wang, P., Zhao, C., and Bi, J. (2013). Human umbilical cord mesenchymal stem cell-derived neuron-like cells rescue memory deficits and reduce amyloid-β deposition in an AβPP/PS1 transgenic mouse model. Stem Cell Res. Ther. 4, 76.Google Scholar

  • Yu, W., Kumar, A., Peterhoff, C., Shapiro Kulnane, L., Uchiyama, Y., Lamb, B., Cuervo, A., and Nixon, R. (2004). Autophagic vacuoles are enriched in amyloid precursor protein-secretase activities: implications for β-amyloid peptide over-production and localization in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 36, 2531–2540.CrossrefPubMedGoogle Scholar

  • Yu, W.H., Cuervo, A.M., Kumar, A., Peterhoff, C.M., Schmidt, S.D., Lee, J.H., Mohan, P.S., Mercken, M., Farmery, M.R., Tjernberg, L.O., et al. (2005). Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171, 87–98.Google Scholar

  • Zhang, J., Liu, S., Li, H., and Wang, J.-Z. (2005). Microtubule- associated protein τ is a substrate of ATP/Mg2+-dependent proteasome protease system. J. Neural Transm. 112, 547–555.CrossrefGoogle Scholar

  • Zhang, X., Li, L., Chen, S., Yang, D., Wang, Y., Zhang, X., Wang, Z., and Le, W. (2011). Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412–425.CrossrefGoogle Scholar

  • Zhang, X., Garbett, K., Veeraraghavalu, K., Wilburn, B., Gilmore, R., Mirnics, K., and Sisodia, S.S. (2012). A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32, 8633–8648.CrossrefGoogle Scholar

  • Zheng, H. and Koo, E.H. (2011). Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 6, 1–16.Google Scholar

  • Zhu, Z., Yan, J., Jiang, W., Yao, X.G., Chen, J., Chen, L., Li, C., Hu, L., Jiang, H., and Shen, X. (2013). Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J. Neurosci. 33, 13138–13149.CrossrefGoogle Scholar

About the article

Corresponding author: Nima Rezaei, Molecular Immunology Research Center, and Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 14194, Iran; Universal Scientific Education and Research Network (USERN), Tehran 14194, Iran; and Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 14194, Iran, e-mail:

Received: 2014-11-11

Accepted: 2015-02-20

Published Online: 2015-04-14

Published in Print: 2015-08-01

Citation Information: Reviews in the Neurosciences, Volume 26, Issue 4, Pages 385–395, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0076.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Daniel Grasso, Felipe Javier Renna, and Maria Ines Vaccaro
Frontiers in Cell and Developmental Biology, 2018, Volume 6
Shreedarshanee Devi, Rashmi Yadav, Pratibha Chanana, and Ranjana Arya
Frontiers in Neuroscience, 2018, Volume 12
Marios Kritsilis, Sophia V. Rizou, Paraskevi Koutsoudaki, Konstantinos Evangelou, Vassilis Gorgoulis, and Dimitrios Papadopoulos
International Journal of Molecular Sciences, 2018, Volume 19, Number 10, Page 2937
Jason E. Miller, Manu K. Shivakumar, Younghee Lee, Seonggyun Han, Emrin Horgousluoglu, Shannon L. Risacher, Andrew J. Saykin, Kwangsik Nho, and Dokyoon Kim
BMC Medical Genomics, 2018, Volume 11, Number S3
Yuichi Saito, Yoshiki Kuse, Yuki Inoue, Shinsuke Nakamura, Hideaki Hara, and Masamitsu Shimazawa
Redox Biology, 2018
Emmanuel Cognat, Marion Tible, Ilyes Methnani, Hugues Chabriat, Homa Adle-Biassette, Jacques Hugon, and Claire Paquet
Virchows Archiv, 2018
K. Rajasekhar and Thimmaiah Govindaraju
RSC Advances, 2018, Volume 8, Number 42, Page 23780
Erin E. Congdon and Einar M. Sigurdsson
Nature Reviews Neurology, 2018
Joaquín G. Cordero, Ramón García-Escudero, Jesús Avila, Ricardo Gargini, and Vega García-Escudero
Oxidative Medicine and Cellular Longevity, 2018, Volume 2018, Page 1
Claire Paquet, James AR Nicoll, Seth Love, François Mouton-Liger, Clive Holmes, Jacques Hugon, and Delphine Boche
Brain Pathology, 2018
Lara Ordóñez-Gutiérrez, Irene Benito-Cuesta, José Luis Abad, Josefina Casas, Gemma Fábrias, and Francisco Wandosell
Pharmaceutical Research, 2018, Volume 35, Number 3
Andrew Arner, Edward Rockenstein, Michael Mante, Jazmin Florio, Deborah Masliah, Bahar Salehi, Anthony Adame, Cassia Overk, Eliezer Masliah, and Robert A. Rissman
Journal of Alzheimer's Disease, 2018, Volume 61, Number 3, Page 1201
Seyed Fazel Nabavi, Antoni Sureda, Ahmad Reza Dehpour, Samira Shirooie, Ana Sanches Silva, Kasi Pandima Devi, Touqeer Ahmed, Nafeesa Ishaq, Rabia Hashim, Eduardo Sobarzo-Sánchez, Maria Daglia, Nady Braidy, Mariateresa Volpicella, Rosa Anna Vacca, and Seyed Mohammad Nabavi
Biotechnology Advances, 2017
Md. Ataur Rahman and Hyewhon Rhim
BMB Reports, 2017, Volume 50, Number 7, Page 345
Onder Albayram, Asami Kondo, Rebekah Mannix, Colin Smith, Cheng-Yu Tsai, Chenyu Li, Megan K. Herbert, Jianhua Qiu, Michael Monuteaux, Jane Driver, Sandra Yan, William Gormley, Ava M. Puccio, David O. Okonkwo, Brandon Lucke-Wold, Julian Bailes, William Meehan, Mark Zeidel, Kun Ping Lu, and Xiao Zhen Zhou
Nature Communications, 2017, Volume 8, Number 1
Mohammad Ejaz Ahmed, Shankar Iyer, Ramasamy Thangavel, Duraisamy Kempuraj, Govindhasamy Pushpavathi Selvakumar, Sudhanshu P. Raikwar, Smita Zaheer, and Asgar Zaheer
Journal of Alzheimer's Disease, 2017, Volume 60, Number 3, Page 1143
Cláudia Caldeira, Carolina Cunha, Ana R. Vaz, Ana S. Falcão, Andreia Barateiro, Elsa Seixas, Adelaide Fernandes, and Dora Brites
Frontiers in Aging Neuroscience, 2017, Volume 9
Jianping Guo, Ji Cheng, Brian J. North, and Wenyi Wei
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2017, Volume 1868, Number 2, Page 341
Zhong-Hao Zhang, Qiu-Yan Wu, Chen Chen, Rui Zheng, Yao Chen, Qiong Liu, Jia-Zuan Ni, and Guo-Li Song
Journal of Alzheimer's Disease, 2017, Volume 59, Number 2, Page 591
Sylviane Muller, Susana Brun, Frédérique René, Jérôme de Sèze, Jean-Philippe Loeffler, and Hélène Jeltsch-David
Autoimmunity Reviews, 2017, Volume 16, Number 8, Page 856
Sandra L. Siedlak, Yinfei Jiang, Mikayla L. Huntley, Luwen Wang, Ju Gao, Fei Xie, Jingyi Liu, Bo Su, George Perry, and Xinglong Wang
Journal of Alzheimer's Disease, 2017, Volume 58, Number 4, Page 1027
Ju Gao, Luwen Wang, Jingyi Liu, Fei Xie, Bo Su, and Xinglong Wang
Antioxidants, 2017, Volume 6, Number 2, Page 25
Liyingzi Huang, Yunfeng Luo, Zhijun Pu, Xianghui Kong, Xiang Fu, Huanhuan Xing, Shenqi Wei, Wei Chen, and Huang Tang
Neurochemistry International, 2017, Volume 108, Page 157
Lijuan Zhang, Lina Wang, Run Wang, Yuan Gao, Haoyue Che, Yonghua Pan, and Peng Fu
Medical Science Monitor, 2017, Volume 23, Page 801
Leah Zuroff, David Daley, Keith L. Black, and Maya Koronyo-Hamaoui
Cellular and Molecular Life Sciences, 2017, Volume 74, Number 12, Page 2167
Daniel J. Colacurcio and Ralph A. Nixon
Ageing Research Reviews, 2016, Volume 32, Page 75
I. A. Kochergin and M. N. Zakharova
Neurochemical Journal, 2016, Volume 10, Number 1, Page 7

Comments (0)

Please log in or register to comment.
Log in