Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2018: 2.80

SCImago Journal Rank (SJR) 2018: 0.933
Source Normalized Impact per Paper (SNIP) 2018: 0.710

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 26, Issue 4

Issues

Role of leukemia inhibitory factor in the nervous system and its pathology

Pavel Ostasov
  • Corresponding author
  • Faculty of Medicine in Pilsen, Department of Histology and Embryology, Charles University Prague, Karlovarska 48, 323 00 Plzen, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zbynek Houdek
  • Faculty of Medicine in Pilsen, Department of Pathophysiology, Charles University in Prague, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Cendelin
  • Faculty of Medicine in Pilsen, Department of Pathophysiology, Charles University Prague, alej Svobody 1655/76, 301 66 Plzen, Czech Republic
  • Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University Prague, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Milena Kralickova
  • Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University Prague, alej Svobody 1655/76, 323 00 Plzen, Czech Republic
  • Faculty of Medicine in Pilsen, Department of Histology and Embryology, Charles University in Prague, Karlovarska 48, 301 66 Plzen, Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-16 | DOI: https://doi.org/10.1515/revneuro-2014-0086

Abstract

Leukemia inhibitory factor (LIF) is a multifunction cytokine that has various effects on different tissues and cell types in rodents and humans; however, its insufficiency has a relatively mild impact. This could explain why only some aspects of LIF activity are in the limelight, whereas other aspects are not well known. In this review, the LIF structure, signaling pathway, and primary roles in the development and function of an organism are reviewed, and the effects of LIF on stem cell growth and differentiation, which are important for its use in cell culturing, are described. The focus is on the roles of LIF in central nervous system development and on the modulation of its physiological functions as well as the involvement of LIF in the pathogenesis of brain diseases and injuries. Finally, LIF and its signaling pathway are discussed as potential targets of therapeutic interventions to influence both negative phenomena and regenerative processes following brain injury.

Keywords: embryogenesis; leukemia inhibitory factor; nervous system; neuropathology; stem cells

References

  • Adam, R.M., Eaton, S.H., Estrada, C., Nimgaonkar, A., Shih, S.C., Smith, L.E.H., Kohane, I.S., Bägli, D., and Freeman, M.R. (2004). Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol. Genomics 20, 36–44.PubMedCrossrefGoogle Scholar

  • Adelman, C.A., Chattopadhyay, S., and Bieker, J.J. (2002). The BMP/BMPR/Smad pathway directs expression of the erythroid-specific EKLF and GATA1 transcription factors during embryoid body differentiation in serum-free media. Development 129, 539–549.PubMedGoogle Scholar

  • Aikawa, J., Sato, E., Kyuwa, S., Sasai, K., Shiota, K., and Ogawa, T. (1998). Asparagine-linked glycosylation of the rat leukemia inhibitory factor expressed by simian COS7 cells. Biosci. Biotechnol. Biochem. 62, 1318–1325.PubMedCrossrefGoogle Scholar

  • Aisemberg, J., Vercelli, C.A., Bariani, M.V., Billi, S.C., Wolfson, M.L., and Franchi, A.M. (2013). Progesterone is essential for protecting against LPS-induced pregnancy loss. LIF as a potential mediator of the anti-inflammatory effect of progesterone. PLoS One 8, e56161.Google Scholar

  • Alter, J., Rozentzweig, D., and Bengal, E. (2008). Inhibition of myoblast differentiation by tumor necrosis factor α is mediated by c-Jun N-terminal kinase 1 and leukemia inhibitory factor. J. Biol. Chem. 283, 23224–23234.Google Scholar

  • Amiri, I., Mirahadi, N., Amini, A., Parvini, M., and Heidarbeigi, K. (2009). The effects of LIF and EGF on mouse oocyte maturation fertilization and development in vitro. Iran. J. Reprod. Med. 7, 189–194.Google Scholar

  • Azari, M.F., Profyris, C., Zang, D.W., Petratos, S., and Cheema, S.S. (2005). Induction of endogenous neural precursors in mouse models of spinal cord injury and disease. Eur. J. Neurol. 12, 638–648.PubMedCrossrefGoogle Scholar

  • Bamberger, A.M., Jenatschke, S., Schulte, H.M., Ellebrecht, I., Beil, F.U., and Bamberger, C.M. (2004). Regulation of the human leukemia inhibitory factor gene by ETS transcription factors. Neuroimmunomodulation 11, 10–19.PubMedCrossrefGoogle Scholar

  • Banner, L.R., Moayeri, N.N., and Patterson, P.H. (1997). Leukemia inhibitory factor is expressed in astrocytes following cortical brain injury. Exp. Neurol. 147, 1–9.Google Scholar

  • Banner, L.R., Patterson, P.H., Allchorne, A., Poole, S., and Woolf, C.J. (1998). Leukemia inhibitory factor is an anti-inflammatory and analgesic cytokine. J. Neurosci. 18, 5456–5462.Google Scholar

  • Barnes, J., Lim, J.M., Godard, A., Blanchard, F., Wells, L., and Steet, R. (2011). Extensive mannose phosphorylation on leukemia inhibitory factor (LIF) controls its extracellular levels by multiple mechanisms. J. Biol. Chem. 286, 24855–24864.Google Scholar

  • Bauer, S. and Patterson, P.H. (2006). Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J. Neurosci. 26, 12089–12099.CrossrefGoogle Scholar

  • Baumann, O., Borra, R.J., Bower, J.M., Cullen, K.E., Habas, C., Ivry, R.B., Leggio, M., Mattingley, J.B., Molinari, M., Moulton, E.A., et al. (2015). Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum. 14, 197–220.PubMedCrossrefGoogle Scholar

  • Baxter, E.W. and Milner, J. (2010). p53 regulates LIF expression in human medulloblastoma cells. J. Neurooncol. 97, 373–382.CrossrefGoogle Scholar

  • Bazan, J.F. (1990). Haemopoietic receptors and helical cytokines. Immunol. Today 11, 350–354.CrossrefPubMedGoogle Scholar

  • Bazan, J.F. (1991). Neuropoietic cytokines in the hematopoietic fold. Neuron 7, 197–208.CrossrefPubMedGoogle Scholar

  • Blanchard, F., Raher, S., Duplomb, L., Vusio, P., Pitard, V., Taupin, J.L., Moreau, J.F., Hoflack, B., Minvielle, S., Jacques, Y., et al. (1998). The mannose 6-phosphate/insulin-like growth factor II receptor is a nanomolar affinity receptor for glycosylated human leukemia inhibitory factor. J. Biol. Chem. 273, 20886–20893.Google Scholar

  • Blanchard, F., Duplomb, L., Raher, S., Vusio, P., Hoflack, B., Jacques, Y., and Godard, A. (1999). Mannose 6-phosphate/insulin-like growth factor II receptor mediates internalization and degradation of leukemia inhibitory factor but not signal transduction. J. Biol. Chem. 274, 24685–24693.CrossrefGoogle Scholar

  • Blesch, A., Uy, H.S., Grill, R.J., Cheng, J.G., Patterson, P.H., and Tuszynski, M.H. (1999). Leukemia inhibitory factor augments neurotrophin expression and corticospinal axon growth after adult CNS injury. J. Neurosci. 19, 3556–3566.Google Scholar

  • Bonni, A., Sun, Y., Nadal-Vicens, M., Bhatt, A., Frank D.A., Rozovsky, I., Stahl, N., Yancopoulos, G.D., Greenberg, M.E. (1997). Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science. 278, 477–483.Google Scholar

  • Bottorff, D. and Stone, J.C. (1992). The murine leukemia inhibition factor gene (Lif) is located on proximal chromosome 11, not chromosome 13. Mamm. Genome 3, 681–684.Google Scholar

  • Broholm, C., Mortensen, O.H., Nielsen, S., Akerstrom, T., Zankari, A., Dahl, B., and Pedersen, B.K. (2008). Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle. J. Physiol. 586, 2195–2201.Google Scholar

  • Bugga, L., Gadient, R.A., Kwan, K., Stewart, C.L., and Patterson, P.H. (1998). Analysis of neuronal and glial phenotypes in brains of mice deficient in leukemia inhibitory factor. J. Neurobiol. 36, 509–524.CrossrefGoogle Scholar

  • Butzkueven, H., Zhang, J.G., Soilu-Hanninen, M., Hochrein, H., Chionh, F., Shipham, K.A., Emery, B., Turnley, A.M., Petratos, S., Ernst, M., et al. (2002). LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat. Med. 8, 613–619.CrossrefPubMedGoogle Scholar

  • Cai, N., Kurachi, M., Shibasaki, K., Okano-Uchida, T., and Ishizaki, Y. (2012). CD44-positive cells are candidates for astrocyte precursor cells in developing mouse cerebellum. Cerebellum 11, 181–193.CrossrefGoogle Scholar

  • Chappell, J., Sun, Y., Singh, A., and Dalton, S. (2013). MYC/MAX control ERK signaling and pluripotency by regulation of dual-specificity phosphatases 2 and 7. Genes Dev. 27, 725–733.Google Scholar

  • Charnock-Jones, D.S., Sharkey, A.M., Fenwick, P., and Smith, S.K. (1994). Leukaemia inhibitory factor mRNA concentration peaks in human endometrium at the time of implantation and the blastocyst contains mRNA for the receptor at this time. J. Reprod. Fertil. 101, 421–426.CrossrefGoogle Scholar

  • Chen, H.F., Shew, J.Y., Ho, H.N., Hsu, W.L., and Yang, Y.S. (1999). Expression of leukemia inhibitory factor and its receptor in preimplantation embryos. Fertil. Steril. 72, 713–719.PubMedCrossrefGoogle Scholar

  • Chen, E.Y., Tan, C.M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G.V., Clark, N.R., and Ma’ayan, A. (2013a). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 14, 128.Google Scholar

  • Chen, X., Hausman, B.S., Luo, G., Zhou, G., Murakami, S., Rubin, J., and Greenfield, E.M. (2013b). Protein kinase inhibitor γ reciprocally regulates osteoblast and adipocyte differentiation by downregulating leukemia inhibitory factor. Stem Cells 31, 2789–2799.PubMedCrossrefGoogle Scholar

  • Chen, Y., Meng, L., Yu, Q., Dong, D., Tan, G., Huang, X., and Tan, Y. (2015). The miR-134 attenuates the expression of transcription factor FOXM1 during pluripotent NT2/D1 embryonal carcinoma cell differentiation. Exp. Cell. Res. 330, 442–450.Google Scholar

  • Chucair-Elliott, A.J., Elliott, M.H., Wang, J., Moiseyev, G.P., Ma, J.X., Politi, L.E., Rotstein, N.P., Akira, S., Uematsu, S., and Ash, J.D. (2012). Leukemia inhibitory factor coordinates the down-regulation of the visual cycle in the retina and retinal-pigmented epithelium. J. Biol. Chem. 287, 24092–24102.Google Scholar

  • Chung, J., Uchida, E., Grammer, T., and Blenis, J. (1997). STAT3 serine phosphorylation by ERK-dependent and -independent pathways negatively modulates its tyrosine phosphorylation. Mol. Cell Biol. 17, 6508–6516.Google Scholar

  • Clarke, P.G. (1990). Developmental cell death: morphological diversity and multiple mechanisms. Anat. Embryol. (Berl.) 181, 195–213.Google Scholar

  • Cui, S., Hope, R.M., Rathjen, J., Voyle, R.B., and Rathjen, P.D. (2001). Structure, sequence and function of a marsupial LIF gene: conservation of IL-6 family cytokines. Cytogenet. Cell. Genet. 92, 271–278.PubMedCrossrefGoogle Scholar

  • Dahéron, L., Opitz, S.L., Zaehres, H., Lensch, M.W., Lensch, W.M., Andrews, P.W., Itskovitz-Eldor, J., and Daley, G.Q. (2004). LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells 22, 770–778.CrossrefGoogle Scholar

  • Dang, L.T.H. and Tropepe, V. (2010). FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm. Neural Dev. 5, 13.CrossrefGoogle Scholar

  • Davey, R.E., Onishi, K., Mahdavi, A., and Zandstra, P.W. (2007). LIF-mediated control of embryonic stem cell self-renewal emerges due to an autoregulatory loop. FASEB J. 21, 2020–2032.CrossrefPubMedGoogle Scholar

  • David, S. and Kroner, A. (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399.PubMedCrossrefGoogle Scholar

  • Davis, S., Aldrich, T.H., Stahl, N., Pan, L., Taga, T., Kishimoto, T., Ip, N.Y., and Yancopoulos, G.D. (1993). LIFR β and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 260, 1805–1808.Google Scholar

  • De Matos, D.G., Miller, K., Scott, R., Tran, C.A., Kagan, D., Nataraja, S.G., Clark, A., and Palmer, S. (2008). Leukemia inhibitory factor induces cumulus expansion in immature human and mouse oocytes and improves mouse two-cell rate and delivery rates when it is present during mouse in vitro oocyte maturation. Fertil. Steril. 90, 2367–2375.CrossrefPubMedGoogle Scholar

  • Deverman, B.E. and Patterson, P.H. (2012). Exogenous leukemia inhibitory factor stimulates oligodendrocyte progenitor cell proliferation and enhances hippocampal remyelination. J. Neurosci. 32, 2100–2109.CrossrefGoogle Scholar

  • Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450.CrossrefGoogle Scholar

  • Eastwood, S.L., Law, A.J., Everall, I.P., and Harrison, P.J. (2003). The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol. Psychiatry 8, 148–155.CrossrefGoogle Scholar

  • Ernst, M., Oates, A., and Dunn, A.R. (1996). Gp130-mediated signal transduction in embryonic stem cells involves activation of Jak and Ras/mitogen-activated protein kinase pathways. J. Biol. Chem. 271, 30136–30143.Google Scholar

  • Fischer, R., Wajant, H., Kontermann, R., Pfizenmaier, K., and Maier, O. (2014). Astrocyte-specific activation of TNFR2 promotes oligodendrocyte maturation by secretion of leukemia inhibitory factor. Glia 62, 272–283.CrossrefGoogle Scholar

  • Gearing, D.P., Thut, C.J., VandeBos, T., Gimpel, S.D., Delaney, P.B., King, J., Price, V., Cosman, D., and Beckmann, M.P. (1991). Leukemia inhibitory factor receptor is structurally related to the IL-6 signal transducer, gp130. EMBO J. 10, 2839–2848.Google Scholar

  • Gearing, D.P., Comeau, M.R., Friend, D.J., Gimpel, S.D., Thut, C.J., McGourty, J., Brasher, K.K., King, J.A., Gillis, S., and Mosley, B. (1992). The IL-6 signal transducer, gp130: an oncostatin M receptor and affinity converter for the LIF receptor. Science 255, 1434–1437.Google Scholar

  • Gibson, R.M., Schiemann, W.P., Prichard, L.B., Reno, J.M., Ericsson, L.H., and Nathanson, N.M. (2000). Phosphorylation of human gp130 at Ser-782 adjacent to the di-leucine internalization motif. Effects on expression and signaling. J. Biol. Chem. 275, 22574–22582.Google Scholar

  • Griffiths, D.S., Li, J., Dawson, M.A., Trotter, M.W.B., Cheng, Y.H., Smith, A.M., Mansfield, W., Liu, P., Kouzarides, T., Nichols, J., et al. (2011). LIF-independent JAK signalling to chromatin in embryonic stem cells uncovered from an adult stem cell disease. Nat. Cell. Biol. 13, 13–21.PubMedCrossrefGoogle Scholar

  • Gurda, G.T., Crozier, S.J., Ji, B., Ernst, S.A., Logsdon, C.D., Rothermel, B.A., and Williams, J.A. (2010). Regulator of calcineurin 1 controls growth plasticity of adult pancreas. Gastroenterology 139, 609–619.Google Scholar

  • Hanington, P.C., Patten, S.A., Reaume, L.M., Waskiewicz, A.J., Belosevic, M., and Ali, D.W. (2008). Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio). Dev. Biol. 314, 250–260.Google Scholar

  • Hartner, A., Sterzel, R.B., Reindl, N., Hocke, G.M., Fey, G.H., and Goppelt-Struebe, M. (1994). Cytokine-induced expression of leukemia inhibitory factor in renal mesangial cells. Kidney Int. 45, 1562–1571.PubMedCrossrefGoogle Scholar

  • He, Z., Li, J., Zhen, C., Feng, L., and Ding, X. (2006). Effect of leukemia inhibitory factor on embryonic stem cell differentiation: implications for supporting neuronal differentiation. Acta Pharmacol. Sin. 27, 80–90.PubMedCrossrefGoogle Scholar

  • Hendry, I.A., Murphy, M., Hilton, D.J., Nicola, N.A., and Bartlett, P.F. (1992). Binding and retrograde transport of leukemia inhibitory factor by the sensory nervous system. J. Neurosci. 12, 3427–3434.Google Scholar

  • Hill, E.J. and Vernallis, A.B. (2008). Polarized secretion of leukemia inhibitory factor. BMC Cell Biol. 9, 53.PubMedCrossrefGoogle Scholar

  • Hitoshi, S., Seaberg, R.M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., Tsuji, S., and van der Kooy, D. (2004). Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev. 18, 1806–1811.Google Scholar

  • Holmberg, K.H. and Patterson, P.H. (2006). Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res. 1075, 26–35.Google Scholar

  • Holtmann, B., Wiese, S., Samsam, M., Grohmann, K., Pennica, D., Martini, R., and Sendtner, M. (2005). Triple knock-out of CNTF, LIF, and CT-1 defines cooperative and distinct roles of these neurotrophic factors for motoneuron maintenance and function. J. Neurosci. 25, 1778–1787.Google Scholar

  • Hu, W., Feng, Z., Teresky, A.K., and Levine, A.J. (2007). p53 regulates maternal reproduction through LIF. Nature 450, 721–724.Google Scholar

  • Humphrey, R.K., Beattie, G.M., Lopez, A.D., Bucay, N., King, C.C., Firpo, M.T., Rose-John, S., and Hayek, A. (2004). Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells 22, 522–530.CrossrefGoogle Scholar

  • Hunt, L.C., Tudor, E.M., and White, J.D. (2010). Leukemia inhibitory factor-dependent increase in myoblast cell number is associated with phosphatidylinositol 3-kinase-mediated inhibition of apoptosis and not mitosis. Exp. Cell Res. 316, 1002–1009.Google Scholar

  • Ishibashi, T., Dakin, K.A., Stevens, B., Lee, P.R., Kozlov, S.V, Stewart, C.L., and Fields, R.D. (2006). Astrocytes promote myelination in response to electrical impulses. Neuron 49, 823–832.CrossrefGoogle Scholar

  • Jankowsky, J.L. and Patterson, P.H. (1999). Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp. Neurol. 159, 333–346.Google Scholar

  • Kami, K., Morikawa, Y., Kawai, Y., and Senba, E. (1999). Leukemia inhibitory factor, glial cell line-derived neurotrophic factor, and their receptor expressions following muscle crush injury. Muscle Nerve 22, 1576–1586.CrossrefPubMedGoogle Scholar

  • Kellokumpu-Lehtinen, P., Talpaz, M., Harris, D., Van, Q., Kurzrock, R., and Estrov, Z. (1996). Leukemia-inhibitory factor stimulates breast, kidney and prostate cancer cell proliferation by paracrine and autocrine pathways. Int. J. Cancer 66, 515–519.CrossrefGoogle Scholar

  • Kirsch, M., Trautmann, N., Ernst, M., and Hofmann, H.D. (2010). Involvement of gp130-associated cytokine signaling in Müller cell activation following optic nerve lesion. Glia 58, 768–779.CrossrefGoogle Scholar

  • Kobayashi, R., Terakawa, J., Kato, Y., Azimi, S., Inoue, N., Ohmori, Y., and Hondo, E. (2014). The contribution of leukemia inhibitory factor (LIF) for embryo implantation differs among strains of mice. Immunobiology 219, 512–521.Google Scholar

  • Koblar, S.A., Turnley, A.M., Classon, B.J., Reid, K.L., Ware, C.B., Cheema, S.S., Murphy, M., and Bartlett, P.F. (1998). Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl. Acad. Sci. USA 95, 3178–3181.CrossrefGoogle Scholar

  • Koziol, L.F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., Ito, M., Manto, M., Marvel, C., Parker, K., et al. (2014). Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum 13, 151–277.CrossrefGoogle Scholar

  • Kralickova, M., Sima, P., and Rokyta, Z. (2005). Role of the leukemia-inhibitory factor gene mutations in infertile women: the embryo-endometrial cytokine cross talk during implantation – a delicate homeostatic equilibrium. Folia Microbiol. 50, 179–186.CrossrefGoogle Scholar

  • Kuida, K., Zheng, T.S., Na, S., Kuan, C., Yang, D., Karasuyama, H., Rakic, P., and Flavell, R.A. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372.CrossrefGoogle Scholar

  • Kunisada, K., Hirota, H., Fujio, Y., Matsui, H., Tani, Y., Yamauchi-Takihara, K., and Kishimoto, T. (1996). Activation of JAK-STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 94, 2626–2632.CrossrefGoogle Scholar

  • Kurdi, M. and Booz, G.W. (2007). Evidence that IL-6-type cytokine signaling in cardiomyocytes is inhibited by oxidative stress: parthenolide targets JAK1 activation by generating ROS. J. Cell Physiol. 212, 424–431.Google Scholar

  • Kurimoto, T., Yin, Y., Habboub, G., Gilbert, H.Y., Li, Y., Nakao, S., Hafezi-Moghadam, A., and Benowitz, L.I. (2013). Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 33, 14816–14824.CrossrefGoogle Scholar

  • Lass, A., Weiser, W., Munafo, A., and Loumaye, E. (2001). Leukemia inhibitory factor in human reproduction. Fertil. Steril. 76, 1091–1096.PubMedCrossrefGoogle Scholar

  • Laterza, C., Merlini, A., De Feo, D., Ruffini, F., Menon, R., Onorati, M., Fredrickx, E., Muzio, L., Lombardo, A., Comi, G., et al. (2013). iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat. Commun. 4, 2597.PubMedCrossrefGoogle Scholar

  • Layton, M.J., Cross, B.A., Metcalf, D., Ward, L.D., Simpson, R.J., and Nicola, N.A. (1992). A major binding protein for leukemia inhibitory factor in normal mouse serum: identification as a soluble form of the cellular receptor. Proc. Natl. Acad. Sci. USA 89, 8616–8620.CrossrefGoogle Scholar

  • Leary, A.G., Zeng, H.Q., Clark, S.C., and Ogawa, M. (1992). Growth factor requirements for survival in G0 and entry into the cell cycle of primitive human hemopoietic progenitors. Proc. Natl. Acad. Sci. USA 89, 4013–4017.CrossrefGoogle Scholar

  • Lemke, R., Gadient, R.A., Schliebs, R., Bigl, V., and Patterson, P.H. (1996). Neuronal expression of leukemia inhibitory factor (LIF) in the rat brain. Neurosci. Lett. 215, 205–208.Google Scholar

  • Lemke, R., Gadient, R.A., Patterson, P.H., Bigl, V., Schliebs, R. (1997). Leukemia inhibitory factor (LIF) mRNA-expressing neuronal subpopulations in adult rat basal forebrain. Neurosci. Lett. 229, 69–71.Google Scholar

  • Levy, C.S., Slomiansky, V., Gattelli, A., Nahmod, K., Pelisch, F., Blaustein, M., Srebrow, A., Coso, O.A., and Kordon, E.C. (2010). Tumor necrosis factor α induces LIF expression through ERK1/2 activation in mammary epithelial cells. J. Cell. Biochem. 110, 857–865.Google Scholar

  • Li, M., Sendtner, M., and Smith, A. (1995). Essential function of LIF receptor in motor neurons. Nature 378, 724–727.Google Scholar

  • Li, Z., Chen, J., Li, L., Ran, J.H., Liu, J., Gao, T.X., Guo, B.Y., Li, X.H., Liu, Z.H., Liu, G.J., et al. (2013). In vitro proliferation and differentiation of hepatic oval cells and their potential capacity for intrahepatic transplantation. Braz. J. Med. Biol. Res. 46, 681–688.Google Scholar

  • Lin, C.H., Jackson, A.L., Guo, J., Linsley, P.S., and Eisenman, R.N. (2009). Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J. 28, 3157–3170.PubMedCrossrefGoogle Scholar

  • Maeda, T., Golczak, M., and Maeda, A. (2012). Retinal photodamage mediated by all-trans-retinal. Photochem. Photobiol. 88, 1309–1319.CrossrefPubMedGoogle Scholar

  • Majumder, A., Banerjee, S., Harrill, J.A., Machacek, D.W., Mohamad, O., Bacanamwo, M., Mundy, W.R., Wei, L., Dhara, S.K., and Stice, S.L. (2012). Neurotrophic effects of leukemia inhibitory factor on neural cells derived from human embryonic stem cells. Stem Cells 30, 2387–2399.CrossrefPubMedGoogle Scholar

  • Maloku, E., Covelo, I.R., Hanbauer, I., Guidotti, A., Kadriu, B., Hu, Q., Davis, J.M., and Costa, E. (2010). Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc. Natl. Acad. Sci. USA 107, 4407–4411.Google Scholar

  • Manto, M., Bower, J.M., Conforto, A.B., Delgado-García, J.M., da Guarda, S.N., Gerwig, M., Habas, C., Hagura, N., Ivry, R.B., Mariën, P., et al. (2012). Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 11, 457–487.PubMedCrossrefGoogle Scholar

  • Mariën, P. and Beaton, A. (2014). The enigmatic linguistic cerebellum: clinical relevance and unanswered questions on nonmotor speech and language deficits in cerebellar disorders. Cerebellum Ataxias 1, 12.PubMedCrossrefGoogle Scholar

  • Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C.H., Beaton, A., Desmond, J., De Witte, E., Fawcett, A.J., Hertrich, I., Küper, M., et al. (2014). Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13, 386–410.PubMedGoogle Scholar

  • Martin, A., Hofmann, H.D., and Kirsch, M. (2003). Glial reactivity in ciliary neurotrophic factor-deficient mice after optic nerve lesion. J. Neurosci. 23, 5416–5424.Google Scholar

  • Mathieu, M.E., Saucourt, C., Mournetas, V., Gauthereau, X., Thézé, N., Praloran, V., Thiébaud, P., and Bœuf, H. (2012). LIF-dependent signaling: new pieces in the Lego. Stem. Cell. Rev. 8, 1–15.CrossrefPubMedGoogle Scholar

  • Matsushita, K., Itoh, S., Ikeda, S., Yamamoto, Y., Yamauchi, Y., and Hayashi, M. (2014). LIF/STAT3/SOCS3 signaling pathway in murine bone marrow stromal cells suppresses osteoblast differentiation. J. Cell. Biochem. 115, 1262–1268.CrossrefGoogle Scholar

  • McKenzie, R.C., Paglia, D., Kondo, S., and Sauder, D.N. (1996). A novel endogenous mediator of cutaneous inflammation: leukemia inhibitory factor. Acta Derm. Venereol. 76, 111–114.PubMedGoogle Scholar

  • Mencalha, A.L., Binato, R., Ferreira, G.M., Du Rocher, B., and Abdelhay, E. (2012). Forkhead box M1 (FoxM1) gene is a new STAT3 transcriptional factor target and is essential for proliferation, survival and DNA repair of K562 cell line. PLoS One 7, e48160.Google Scholar

  • Metcalf, D. (2003). The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21, 5–14.CrossrefPubMedGoogle Scholar

  • Michikawa, M., Kikuchi, S., and Kim, S.U. (1992). Leukemia inhibitory factor (LIF) mediated increase of choline acetyltransferase activity in mouse spinal cord neurons in culture. Neurosci. Lett. 140, 75–77.CrossrefPubMedGoogle Scholar

  • Mohammadi Roushandeh, A., Haji Hosseinlou, H., Niknafs, B., Halabian, R., Mehdipour, A., and Habibi Roudkenar, M. (2010). Effects of leukemia inhibitory factor on gp130 expression and rate of metaphase II development during in vitro maturation of mouse oocyte. Iran Biomed. J. 14, 103–107.Google Scholar

  • Moon, C., Yoo, J.Y., Matarazzo, V., Sung, Y.K., Kim, E.J., and Ronnett, G.V. (2002). Leukemia inhibitory factor inhibits neuronal terminal differentiation through STAT3 activation. Proc. Natl. Acad. Sci. USA 99, 9015–9020.CrossrefGoogle Scholar

  • Moon, C., Liu, B.Q., Kim, S.Y., Kim, E.J., Park, Y.J., Yoo, J.Y., Han, H.S., Bae, Y.C., and Ronnett, G.V. (2009). Leukemia inhibitory factor promotes olfactory sensory neuronal survival via phosphoinositide 3-kinase pathway activation and Bcl-2. J. Neurosci. Res. 87, 1098–1106.CrossrefGoogle Scholar

  • Morikawa, Y., Tohya, K., Tamura, S., Ichihara, M., Miyajima, A., and Senba, E. (2000). Expression of interleukin-6 receptor, leukemia inhibitory factor receptor and glycoprotein 130 in the murine cerebellum and neuropathological effect of leukemia inhibitory factor on cerebellar Purkinje cells. Neuroscience 100, 841–848.Google Scholar

  • Murakami, M., Hibi, M., Nakagawa, N., Nakagawa, T., Yasukawa, K., Yamanishi, K., Taga, T., and Kishimoto, T. (1993). IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 260, 1808–1810.Google Scholar

  • Murphy, M., Reid, K., Hilton, D.J., and Bartlett, P.F. (1991). Generation of sensory neurons is stimulated by leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 88, 3498–3501.CrossrefGoogle Scholar

  • Murphy, M., Reid, K., Brown, M.A., and Bartlett, P.F. (1993). Involvement of leukemia inhibitory factor and nerve growth factor in the development of dorsal root ganglion neurons. Development 117, 1173–1182.PubMedGoogle Scholar

  • Murphy, M., Reid, K., Ford, M., Furness, J., and Bartlett, P. (1994). FGF2 regulates proliferation of neural crest cells, with subsequent neuronal differentiation regulated by LIF or related factors. Development 120, 3519–3528.PubMedGoogle Scholar

  • Musso, T., Badolato, R., Longo, D.L., Gusella, G.L., and Varesio, L. (1995). Leukemia inhibitory factor induces interleukin-8 and monocyte chemotactic and activating factor in human monocytes: differential regulation by interferon-g. Blood 86, 1961–1967.Google Scholar

  • Naumann, T., Schnell, O., Zhi, Q., Kirsch, M., Schubert, K.O., Sendtner, M., and Hofmann, H.D. (2003). Endogenous ciliary neurotrophic factor protects GABAergic, but not cholinergic, septohippocampal neurons following fimbria-fornix transection. Brain Pathol. 13, 309–321.PubMedCrossrefGoogle Scholar

  • Negoro, S., Oh, H., Tone, E., Kunisada, K., Fujio, Y., Walsh, K., Kishimoto, T., and Yamauchi-Takihara, K. (2001). Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation 103, 555–561.CrossrefGoogle Scholar

  • Nichols, J., Chambers, I., Taga, T., and Smith, A. (2001). Physiological rationale for responsiveness of mouse embryonic stem cells to gp130 cytokines. Development 128, 2333–2339.Google Scholar

  • Niwa, H., Burdon, T., Chambers, I., and Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 12, 2048–2060.Google Scholar

  • Niwa, H., Ogawa, K., Shimosato, D., and Adachi, K. (2009). A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460, 118–122.Google Scholar

  • Nygårdas, M., Paavilainen, H., Müther, N., Nagel, C.H., Röyttä, M., Sodeik, B., and Hukkanen, V. (2013). A herpes simplex virus-derived replicative vector expressing LIF limits experimental demyelinating disease and modulates autoimmunity. PLoS One 8, e64200.Google Scholar

  • Okahisa, Y., Ujike, H., Kunugi, H., Ishihara, T., Kodama, M., Takaki, M., Kotaka, T., and Kuroda, S. (2010). Leukemia inhibitory factor gene is associated with schizophrenia and working memory function. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 172–176.PubMedCrossrefGoogle Scholar

  • Oshima, K., Teo, D.T.W., Senn, P., Starlinger, V., and Heller, S. (2007). LIF promotes neurogenesis and maintains neural precursors in cell populations derived from spiral ganglion stem cells. BMC Dev. Biol. 7, 112.CrossrefPubMedGoogle Scholar

  • Ota, K., Quint, P., Weivoda, M.M., Ruan, M., Pederson, L., Westendorf, J.J., Khosla, S., and Oursler, M.J. (2013). Transforming growth factor β1 induces CXCL16 and leukemia inhibitory factor expression in osteoclasts to modulate migration of osteoblast progenitors. Bone 57, 68–75.Google Scholar

  • Pachernik, J., Bryja, V., Esner, M., Kubala, L., Dvorak, P., and Hampl, A. (2005). Neural differentiation of pluripotent mouse embryonal carcinoma cells by retinoic acid: inhibitory effect of serum. Physiol. Res. 54, 115–122.PubMedGoogle Scholar

  • Palmqvist, P., Lundberg, P., Lundgren, I., Hänström, L., and Lerner, U.H. (2008). IL-1β and TNF-α regulate IL-6-type cytokines in gingival fibroblasts. J. Dent. Res. 87, 558–563.Google Scholar

  • Pan, W. and Kastin, A.J. (2008). Cytokine transport across the injured blood-spinal cord barrier. Curr. Pharm. Des. 14, 1620–1624.PubMedCrossrefGoogle Scholar

  • Pan, W., Kastin, A.J., and Brennan, J.M. (2000). Saturable entry of leukemia inhibitory factor from blood to the central nervous system. J. Neuroimmunol. 106, 172–180.CrossrefGoogle Scholar

  • Pan, W., Yu, C., Hsuchou, H., Zhang, Y., and Kastin, A.J. (2008). Neuroinflammation facilitates LIF entry into brain: role of TNF. Am. J. Physiol. Cell Physiol. 294, C1436–C1442.Google Scholar

  • Patterson, P.H. and Nawa, H. (1993). Neuronal differentiation factors/cytokines and synaptic plasticity. Cell 72(Suppl), 123–137.PubMedCrossrefGoogle Scholar

  • Pechnick, R.N., Chesnokova, V.M., Kariagina, A., Price, S., Bresee, C.J., and Poland, R.E. (2004). Reduced immobility in the forced swim test in mice with a targeted deletion of the leukemia inhibitory factor (LIF) gene. Neuropsychopharmacology 29, 770–776.CrossrefGoogle Scholar

  • Pennica, D., Shaw, K.J., Swanson, T.A., Moore, M.W., Shelton, D.L., Zioncheck, K.A., Rosenthal, A., Taga, T., Paoni, N.F., and Wood, W.I. (1995). Cardiotrophin-1. Biological activities and binding to the leukemia inhibitory factor receptor/gp130 signaling complex. J. Biol. Chem. 270, 10915–10922.Google Scholar

  • Peñuelas, S., Anido, J., Prieto-Sánchez, R.M., Folch, G., Barba, I., Cuartas, I., García-Dorado, D., Poca, M.A., Sahuquillo, J., Baselga, J., et al. (2009). TGF-β increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 15, 315–327.CrossrefPubMedGoogle Scholar

  • Perciavalle, V., Apps, R., Bracha, V., Delgado-García, J.M., Gibson, A.R., Leggio, M., Carrel, A.J., Cerminara, N., Coco, M., Gruart, A., et al. (2013). Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. Cerebellum 12, 738–757.PubMedCrossrefGoogle Scholar

  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.CrossrefGoogle Scholar

  • Piccinni, M.P. (2007). Role of T-cell cytokines in decidua and in cumulus oophorus during pregnancy. Gynecol. Obstet. Invest. 64, 144–148.PubMedCrossrefGoogle Scholar

  • Pineau, I. and Lacroix, S. (2007). Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J. Comp. Neurol. 500, 267–285.Google Scholar

  • Placzek, M., Tessier-Lavigne, M., Yamada, T., Jessell, T., and Dodd, J. (1990). Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250, 985–988.Google Scholar

  • Plisov, S.Y., Yoshino, K., Dove, L.F., Higinbotham, K.G., Rubin, J.S., and Perantoni, A.O. (2001). TGFβ2, LIF and FGF2 cooperate to induce nephrogenesis. Development 128, 1045–1057.Google Scholar

  • Qiu, L., Bernd, P., and Fukada, K. (1994). Cholinergic neuronal differentiation factor (CDF)/leukemia inhibitory factor (LIF) binds to specific regions of the developing nervous system in vivo. Dev. Biol. 163, 516–520.Google Scholar

  • Qiu, L., Towle, M.F., Bernd, P., and Fukada, K. (1997). Distribution of cholinergic neuronal differentiation factor/leukemia inhibitory factor binding sites in the developing and adult rat nervous system in vivo. J. Neurobiol. 32, 163–192.CrossrefGoogle Scholar

  • Qiu, L., Bernd, P., Fukada, K. (1998). Cholinergic neuronal differentiation factor (CDF)/leukemia inhibitory factor (LIF) binds to specific regions of the developing nervous system in vivo. Dev. Biol. 163, 516–520.Google Scholar

  • Radzisheuskaya, A., Chia Gle, B., dos Santos, R.L., Theunissen, T.W., Castro, L.F.C., Nichols, J., and Silva, J.C.R. (2013). A defined Oct4 level governs cell state transitions of pluripotency entry and differentiation into all embryonic lineages. Nat. Cell. Biol. 15, 579–590.CrossrefGoogle Scholar

  • Richards, L.J., Kilpatrick, T.J., Bartlett, P.F., and Murphy, M. (1992). Leukemia inhibitory factor promotes the neuronal development of spinal cord precursors from the neural tube. J. Neurosci. Res. 33, 476–484.CrossrefGoogle Scholar

  • Richards, L.J., Kilpatrick, T.J., Dutton, R., Tan, S.S., Gearing, D.P., Bartlett, P.F., and Murphy, M. (1996). Leukaemia inhibitory factor or related factors promote the differentiation of neuronal and astrocytic precursors within the developing murine spinal cord. Eur. J. Neurosci. 8, 291–299.PubMedCrossrefGoogle Scholar

  • Salas, E.M., García-Barchino, M.J., Labiano, S., Shugay, M., Pérez-Encinas, M., Quinteiro, C., García-Delgado, M., Vizmanos, J.L., and Novo, F.J. (2011). LIF, a novel STAT5-regulated gene, is aberrantly expressed in myeloproliferative neoplasms. Genes Cancer 2, 593–596.CrossrefGoogle Scholar

  • Sasaki, N., Okishio, K., Ui-Tei, K., Saigo, K., Kinoshita-Toyoda, A., Toyoda, H., Nishimura, T., Suda, Y., Hayasaka, M., Hanaoka, K., et al. (2008). Heparan sulfate regulates self-renewal and pluripotency of embryonic stem cells. J. Biol. Chem. 283, 3594–3606.Google Scholar

  • Sengottuvel, V., Fischer, D. (2011). Facilitating axon regeneration in the injured CNS by microtubules stabilization. Commun. Integr. Biol. 4, 391–393.PubMedCrossrefGoogle Scholar

  • Senturk, L.M. and Arici, A. (1998). Leukemia inhibitory factor in human reproduction. Am. J. Reprod. Immunol. 39, 144–151.CrossrefGoogle Scholar

  • Schluns, K.S., Cook, J.E., and Le, P.T. (1997). TGF-β differentially modulates epidermal growth factor-mediated increases in leukemia-inhibitory factor, IL-6, IL-1α, and IL-1β in human thymic epithelial cells. J. Immunol. 158, 2704–2712.Google Scholar

  • Schmahmann, J.D. (2004). Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16, 367–378.CrossrefGoogle Scholar

  • Schmelzer, C.H., Harris, R.J., Butler, D., Yedinak, C.M., Wagner, K.L., and Burton, L.E. (1993). Glycosylation pattern and disulfide assignments of recombinant human differentiation-stimulating factor. Arch. Biochem. Biophys. 302, 484–489.Google Scholar

  • Schuster, B., Kovaleva, M., Sun, Y., Regenhard, P., Matthews, V., Grötzinger, J., Rose-John, S., and Kallen, K.J. (2003). Signaling of human ciliary neurotrophic factor (CNTF) revisited. The interleukin-6 receptor can serve as an α-receptor for CTNF. J. Biol. Chem. 278, 9528–9535.Google Scholar

  • Schwartz, M. (2003). Macrophages and microglia in central nervous system injury: are they helpful or harmful? J. Cereb. Blood Flow Metab. 23, 385–394.PubMedGoogle Scholar

  • Sibley, D.R., Benovic, J.L., Caron, M.G., and Lefkowitz, R.J. (1987). Regulation of transmembrane signaling by receptor phosphorylation. Cell 48, 913–922.PubMedCrossrefGoogle Scholar

  • Simamura, E., Shimada, H., Higashi, N., Uchishiba, M., Otani, H., and Hatta, T. (2010). Maternal leukemia inhibitory factor (LIF) promotes fetal neurogenesis via a LIF-ACTH-LIF signaling relay pathway. Endocrinology 151, 1853–1862.Google Scholar

  • Slaets, H., Hendriks, J.J.A., Van den Haute, C., Coun, F., Baekelandt, V., Stinissen, P., and Hellings, N. (2010). CNS-targeted LIF expression improves therapeutic efficacy and limits autoimmune-mediated demyelination in a model of multiple sclerosis. Mol. Ther. 18, 684–691.CrossrefGoogle Scholar

  • Smith, A.G. (1992). Mouse embryo stem cells: their identification, propagation and manipulation. Semin. Cell. Biol. 3, 385–399.CrossrefPubMedGoogle Scholar

  • Smith, A.G. (2001). Embryo-derived stem cells: of mice and men. Annu. Rev. Cell. Dev. Biol. 17, 435–462.CrossrefPubMedGoogle Scholar

  • Smukler, S.R., Runciman, S.B., Xu, S., and van der Kooy, D. (2006). Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences. J. Cell Biol. 172, 79–90.Google Scholar

  • Stahl, J., Gearing, D.P., Willson, T.A., Brown, M.A., King, J.A., and Gough, N.M. (1990). Structural organization of the genes for murine and human leukemia inhibitory factor. Evolutionary conservation of coding and non-coding regions. J. Biol. Chem. 265, 8833–8841.Google Scholar

  • Stewart, C.L., Kaspar, P., Brunet, L.J., Bhatt, H., Gadi, I., Köntgen, F., and Abbondanzo, S.J. (1992). Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79.Google Scholar

  • Sugiura, S., Lahav, R., Han, J., Kou, S.Y., Banner, L.R., de Pablo, F., and Patterson, P.H. (2000). Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur. J. Neurosci. 12, 457–466.CrossrefGoogle Scholar

  • Suman, P., Malhotra, S.S., and Gupta, S.K. (2013). LIF-STAT signaling and trophoblast biology. JAK-STAT 2, e25155.Google Scholar

  • Sutherland, G.R., Baker, E., Hyland, V.J., Callen, D.F., Stahl, J., and Gough, N.M. (1989). The gene for human leukemia inhibitory factor (LIF) maps to 22q12. Leukemia 3, 9–13.Google Scholar

  • Taga, T. and Kishimoto, T. (1997). Gp130 and the interleukin-6 family of cytokines. Annu. Rev. Immunol. 15, 797–819.Google Scholar

  • Tan, G., Cheng, L., Chen, T., Yu, L., and Tan, Y. (2014). Foxm1 mediates LIF/Stat3-dependent self-renewal in mouse embryonic stem cells and is essential for the generation of induced pluripotent stem cells. PLoS One 9, e92304.Google Scholar

  • Taupin, J.L., Pitard, V., Dechanet, J., Miossec, V., Gualde, N., and Moreau, J.F. (1998). Leukemia inhibitory factor: part of a large ingathering family. Int. Rev. Immunol. 16, 397–426.PubMedCrossrefGoogle Scholar

  • Tomida, M., Yamamoto-Yamaguchi, Y., and Hozumi, M. (1984). Characterization of a factor inducing differentiation of mouse myeloid leukemic cells purified from conditioned medium of mouse Ehrlich ascites tumor cells. FEBS Lett. 178, 291–296.Google Scholar

  • Vanderlocht, J., Hellings, N., Hendriks, J.J.A., Vandenabeele, F., Moreels, M., Buntinx, M., Hoekstra, D., Antel, J.P., and Stinissen, P. (2006). Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-α-induced oligodendrocyte apoptosis. J. Neurosci. Res. 83, 763–774.CrossrefGoogle Scholar

  • Van Eijk, M.J., Mandelbaum, J., Salat-Baroux, J., Belaisch-Allart, J., Plachot, M., Junca, A.M., and Mummery, C.L. (1996). Expression of leukaemia inhibitory factor receptor subunits LIFR β and gp130 in human oocytes and preimplantation embryos. Mol. Hum. Reprod. 2, 355–360.CrossrefGoogle Scholar

  • Vicario-Abejón, C., Fernández-Moreno, C., Pichel, J.G., and de Pablo, F. (2004). Mice lacking IGF-I and LIF have motoneuron deficits in brain stem nuclei. NeuroReport 15, 2769–2772.Google Scholar

  • Villiger, P.M., Geng, Y., Lotz, M. (1993). Induction of cytokine expression by leukemia inhibitory factor. J. Clin. Invest. 91, 1575–1581.CrossrefGoogle Scholar

  • Von Toerne, C., Menzler, J., Ly, A., Senninger, N., Ueffing, M., and Hauck, S.M. (2014). Identification of a novel neurotrophic factor from primary retinal Muller cells using SILAC. Mol. Cell. Proteomics 13, 2371–2381.PubMedCrossrefGoogle Scholar

  • Ware, C., Horowitz, M., Renshaw, B., Hunt, J., Liggitt, D., Koblar, S., Gliniak, B., McKenna, H., Papayannopoulou, T., Thoma, B., et al. (1995). Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299.PubMedGoogle Scholar

  • Yamada, T., Placzek, M., Tanaka, H., Dodd, J., and Jessell, T.M. (1991). Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64, 635–647.PubMedCrossrefGoogle Scholar

  • Yang, Z.M., Le, S.P., Chen, D.B., Cota, J., Siero, V., Yasukawa, K., and Harper, M.J. (1995). Leukemia inhibitory factor, LIF receptor, and gp130 in the mouse uterus during early pregnancy. Mol. Reprod. Dev. 42, 407–414.CrossrefGoogle Scholar

  • Ying, Q.L., Nichols, J., Chambers, I., and Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–292.CrossrefGoogle Scholar

  • Zaidi, A.U., McDonough, J.S., Klocke, B.J., Latham, C.B., Korsmeyer, S.J., Flavell, R.A., Schmidt, R.E., and Roth, K.A. (2001). Chloroquine-induced neuronal cell death is p53 and Bcl-2 family-dependent but caspase-independent. J. Neuropathol. Exp. Neurol. 60, 937–945.Google Scholar

About the article

Corresponding author: Pavel Ostasov, Faculty of Medicine in Pilsen, Department of Histology and Embryology, Charles University Prague, Karlovarska 48, 323 00 Plzen, Czech Republic, e-mail:


Received: 2014-12-17

Accepted: 2015-02-22

Published Online: 2015-04-16

Published in Print: 2015-08-01


Citation Information: Reviews in the Neurosciences, Volume 26, Issue 4, Pages 443–459, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0086.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
I. F. Labunets, A. E.. Rodnichenko, N. O Melnyk, S. E. Rymar, N.A. Utko, G. O. Gavrulyk-Skyba, and G. M. Butenko
Biopolymers and Cell, 2018, Volume 34, Number 5, Page 350
[2]
Alinny Rosendo Isaac, Emerson Alexandre Neves da Silva, Rhowena Jane Barbosa de Matos, Ricielle Lopes Augusto, Giselle Machado Magalhães Moreno, Ingrid Prata Mendonça, Raphael Fabrício de Souza, Paulo Euzébio Cabral-Filho, Cláudio Gabriel Rodrigues, Catarina Gonçalves-Pimentel, Marcelo Cairrão Araujo Rodrigues, and Belmira Lara da Silveira Andrade-da-Costa
The Journal of Nutritional Biochemistry, 2018
[4]
JING WEI, Zhenhua Fan, Zhuo Yang, Yujie Zhou, Fan Da, Linyan Zhou, Wenjing Tao, and Deshou Wang
Stem Cells and Development, 2017

Comments (0)

Please log in or register to comment.
Log in