Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 26, Issue 5

Issues

Temporal phases of long-term potentiation (LTP): myth or fact?

Abdul-Karim Abbas
  • Corresponding author
  • Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 432, S-40530 Gothenburg, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnès Villers
  • Department of Neuroscience, Research Institute for Biosciences, University of Mons, 23 place du Parc, B-7000 Mons, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laurence Ris
  • Department of Neuroscience, Research Institute for Biosciences, University of Mons, 23 place du Parc, B-7000 Mons, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-05-20 | DOI: https://doi.org/10.1515/revneuro-2014-0072

Abstract

Long-term potentiation (LTP) remains the most widely accepted model for learning and memory. In accordance with this belief, the temporal differentiation of LTP into early and late phases is accepted as reflecting the differentiation of short-term and long-term memory. Moreover, during the past 30 years, protein synthesis inhibitors have been used to separate the early, protein synthesis-independent (E-LTP) phase and the late, protein synthesis-dependent (L-LTP) phase. However, the role of these proteins has not been formally identified. Additionally, several reports failed to show an effect of protein synthesis inhibitors on LTP. In this review, a detailed analysis of extensive behavioral and electrophysiological data reveals that the presumed correspondence of LTP temporal phases to memory phases is neither experimentally nor theoretically consistent. Moreover, an overview of the time courses of E-LTP in hippocampal slices reveals a wide variability ranging from <1 h to more than 5 h. The existence of all these conflictual findings should lead to a new vision of LTP. We believe that the E-LTP vs. L-LTP distinction, established with protein synthesis inhibitor studies, reflects a false dichotomy. We suggest that the duration of LTP and its dependency on protein synthesis are related to the availability of a set of proteins at synapses and not to the de novo synthesis of plasticity-related proteins. This availability is determined by protein turnover kinetics, which is regulated by previous and ongoing electrical activities and by energy store availability.

Keywords: hippocampus; long-term potentiation; memory; protein synthesis; protein turnover

References

  • Abbas, A.K. (2013). Evidence for constitutive protein synthesis in hippocampal LTP stabilization. Neuroscience 246, 301–311.Google Scholar

  • Abbas, A.K., Dozmorov, M., Li, R., Huang, F.-S., Hellberg, F., Danielson, J., Tian, Y., Ekström, J., Sandberg, M., and Wigström, H. (2009). Persistent LTP without triggered protein synthesis. Neurosci. Res. 63, 59–65.PubMedCrossrefGoogle Scholar

  • Abel, T., Nguyen, P.V., Barad, M., Deuel, T.A., Kandel, E.R., and Bourtchouladze, R. (1997). Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88, 615–626.PubMedCrossrefGoogle Scholar

  • Abraham, W.C. (2001). Persisting with long-term potentiation as a memory mechanism. In: Neuronal Mechanisms of Memory Formation. C. Hölscher, ed. (Cambridge: Cambridge University Press), pp. 37–57.Google Scholar

  • Abraham, W.C. (2003). How long will long-term potentiation last? Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 735–744.CrossrefGoogle Scholar

  • Abraham, W.C. and Otani, S. (1991). Macromolecules and maintenance of long-term potentiation. In: Kindling and Synaptic Plasticity. The Legacy of Graham Goddard. F. Morrell, ed. (Boston: Brikhauser), pp. 92–109.Google Scholar

  • Abraham, W.C., Dragunow, M., and Tate, W.P. (1991). The role of immediate early genes in the stabilization of long-term potentiation. Mol. Neurobiol. 5, 297–314.PubMedCrossrefGoogle Scholar

  • Abraham, W.C., Mason, S.E., Demmer, J., Williams, J.M., Richardson, C.L., Tate, W.P., Lawlor, P.A., and Dragunow, M. (1993). Correlations between immediate early gene induction and the persistence of long-term potentiation. Neuroscience 56, 717–727.CrossrefPubMedGoogle Scholar

  • Abraham, W.C., Mason-Parker, S.E., Williams, J., and Dragunow, M. (1995). Analysis of the decremental nature of LTP in the dentate gyrus. Brain Res. Mol. Brain Res. 30, 367–372.PubMedCrossrefGoogle Scholar

  • Abraham, W.C., Logan, B., Greenwood, J.M., and Dragunow, M. (2002). Induction and experience-dependent consolidation of stable long-term potentiation lasting months in the hippocampus. J. Neurosci. 22, 9626–9634.Google Scholar

  • Adams, J.P. and Sweatt, J.D. (2002). Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu. Rev. Pharmacol. Toxicol. 42, 135–163.CrossrefPubMedGoogle Scholar

  • Agranoff, B.W., Davis, R.E., and Brink, J.J. (1966). Chemical studies on memory fixation in goldfish. Brain Res. 1, 303–309.CrossrefPubMedGoogle Scholar

  • Agranoff, B., Burrell, H., Dokas, L., and Springer, A. (1978). Progress in biochemical approaches to learning and memory. In: Psychopharmacology: A Generation of Progress. M.A. Lipton, A. DiMasco and K.F. Killam, eds. (New York: Raven Press), pp. 623–635.Google Scholar

  • Ahmed, T. and Frey, J.U. (2005a). Phosphodiesterase 4B (PDE4B) and cAMP-level regulation within different tissue fractions of rat hippocampal slices during long-term potentiation in vitro. Brain Res. 1041, 212–222.Google Scholar

  • Ahmed, T. and Frey, J.U. (2005b). Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro. Neuropharmacology 49, 477–492.CrossrefGoogle Scholar

  • Aiken, C.T., Kaake, R.M., Wang, X., and Huang, L. (2011). Oxidative stress-mediated regulation of proteasome complexes. Mol. Cell. Proteomics 10, R110.006924.PubMedCrossrefGoogle Scholar

  • Alarcon, J.M., Hodgman, R., Theis, M., Huang, Y.-S., Kandel, E.R., and Richter, J.D. (2004). Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn. Mem. 11, 318–327.CrossrefGoogle Scholar

  • Allen, C. and Stevens, C.F. (1994). An evaluation of causes for unreliability of synaptic transmission. Proc. Natl. Acad. Sci. USA 91, 10380–10383.CrossrefGoogle Scholar

  • Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181, 223–230.Google Scholar

  • Anokhin, K.V., Tiunova, A.A., and Rose, S.P.R. (2002). Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 15, 1759–1765.PubMedCrossrefGoogle Scholar

  • Antion, M.D., Merhav, M., Hoeffer, C.A., Reis, G., Kozma, S.C., Thomas, G., Schuman, E.M., Rosenblum, K., and Klann, E. (2008). Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn. Mem. 15, 29–38.Google Scholar

  • Atkins, C.M., Selcher, J.C., Petraitis, J.J., Trzaskos, J.M., and Sweatt, J.D. (1998). The MAPK cascade is required for mammalian associative learning. Nat. Neurosci. 1, 602–609.CrossrefPubMedGoogle Scholar

  • Atkins, C.M., Nozaki, N., Shigeri, Y., and Soderling, T.R. (2004). Cytoplasmic polyadenylation element binding protein-dependent protein synthesis is regulated by calcium/calmodulin-dependent protein kinase II. J. Neurosci. 24, 5193–5201.CrossrefGoogle Scholar

  • Atkinson, R. and Shiffrin, R. (1968). Human memory: a proposed system and its control processes. In: The Psychology of Learning and Motivation. K.W. Spence and J.T. Spence, eds. (New York: Academic Press), pp. 89–195.Google Scholar

  • Auerbach, B.D. and Bear, M.F. (2010). Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J. Neurophysiol. 104, 1047–1051.CrossrefGoogle Scholar

  • Bach, M.E., Barad, M., Son, H., Zhuo, M., Lu, Y.F., Shih, R., Mansuy, I., Hawkins, R.D., and Kandel, E.R. (1999). Age-related defects in spatial memory are correlated with defects in the late phase of hippocampal long-term potentiation in vitro and are attenuated by drugs that enhance the cAMP signaling pathway. Proc. Natl. Acad. Sci. USA 96, 5280–5285.CrossrefGoogle Scholar

  • Banko, J.L., Poulin, F., Hou, L., DeMaria, C.T., Sonenberg, N., and Klann, E. (2005). The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci. 25, 9581–9590.Google Scholar

  • Barad, M., Bourtchouladze, R., Winder, D.G., Golan, H., and Kandel, E. (1998). Rolipram, a type IV-specific phosphodiesterase inhibitor, facilitates the establishment of long-lasting long-term potentiation and improves memory. Proc. Natl. Acad. Sci. USA 95, 15020–15025.CrossrefGoogle Scholar

  • Barco, A., Alarcon, J.M., and Kandel, E.R. (2002). Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108, 689–703.CrossrefPubMedGoogle Scholar

  • Barco, A., Patterson, S.L., Patterson, S., Alarcon, J.M., Gromova, P., Mata-Roig, M., Morozov, A., and Kandel, E.R. (2005). Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48, 123–137.CrossrefGoogle Scholar

  • Barea-Rodríguez, E.J., Rivera, D.T., Jaffe, D.B., and Martinez, J., Jr. (2000). Protein synthesis inhibition blocks the induction of mossy fiber long-term potentiation in vivo. J. Neurosci. 20, 8528–8532.Google Scholar

  • Barnes, C.A. (1979). Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104.CrossrefGoogle Scholar

  • Barondes, S.H. (1970). Cerebral protein synthesis inhibitors block long-term memory. Int. Rev. Neurobiol. 12, 177–205.CrossrefPubMedGoogle Scholar

  • Barondes, S.H. and Cohen, H.D. (1967). Delayed and sustained effect of acetoxycycloheximide on memory in mice. Proc. Natl. Acad. Sci. USA 58, 157–164.CrossrefGoogle Scholar

  • Barondes, S.H. and Cohen, H.D. (1968). Arousal and the conversion of ‘short-term’ to ‘long-term’ memory. Proc. Natl. Acad. Sci. USA 61, 923–929.CrossrefGoogle Scholar

  • Barondes, S.H. and Squire, L.R. (1972). Time and the biology of memory. Clin. Neurosurg. 19, 381–396.PubMedGoogle Scholar

  • Barr, W.B., Goldberg, E., Wasserstein, J., and Novelly, R.A. (1990). Retrograde amnesia following unilateral temporal lobectomy. Neuropsychologia 28, 243–255.PubMedCrossrefGoogle Scholar

  • Barraco, R.A. and Stettner, L.J. (1976). Antibiotics and memory. Psychol. Bull. 83, 242–302.PubMedCrossrefGoogle Scholar

  • Barrionuevo, G. and Brown, T.H. (1983). Associative long-term potentiation in hippocampal slices. Proc. Natl. Acad. Sci. USA 80, 7347–7351.CrossrefGoogle Scholar

  • Barrionuevo, G., Schottler, F., and Lynch, G. (1980). The effects of repetitive low frequency stimulation on control and ‘potentiated’ synaptic responses in the hippocampus. Life Sci. 27, 2385–2391.CrossrefPubMedGoogle Scholar

  • Bashir, Z.I. and Collingridge, G.L. (1994). An investigation of depotentiation of long-term potentiation in the CA1 region of the hippocampus. Exp. Brain Res. 100, 437–443.CrossrefGoogle Scholar

  • Bashir, Z.I., Bortolotto, Z.A., Davies, C.H., Berretta, N., Irving, A.J., Seal, A.J., Henley, J.M., Jane, D.E., Watkins, J.C., and Collingridge, G.L. (1993). Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363, 347–350.CrossrefPubMedGoogle Scholar

  • Behnisch, T. and Reymann, K.G. (1995). Thapsigargin blocks long-term potentiation induced by weak, but not strong tetanisation in rat hippocampal CA1 neurons. Neurosci. Lett. 192, 185–188.CrossrefGoogle Scholar

  • Behnisch, T., Matsushita, S., and Knöpfel, T. (2004). Imaging of gene expression during long-term potentiation. Neuroreport 15, 2039–2043.CrossrefPubMedGoogle Scholar

  • Belelovsky, K., Elkobi, A., Kaphzan, H., Nairn, A.C., and Rosenblum, K. (2005). A molecular switch for translational control in taste memory consolidation. Eur. J. Neurosci. 22, 2560–2568.CrossrefPubMedGoogle Scholar

  • Ben-Nissan, G. and Sharon, M. (2014). Regulating the 20S proteasome ubiquitin-independent degradation pathway. Biomolecules 4, 862–884.Google Scholar

  • Benaroudj, N., Zwickl, P., Seemüller, E., Baumeister, W., and Goldberg, A.L. (2003). ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78.PubMedCrossrefGoogle Scholar

  • Benne, R. and Hershey, J.W. (1978). The mechanism of action of protein synthesis initiation factors from rabbit reticulocytes. J. Biol. Chem. 253, 3078–3087.Google Scholar

  • Bennett, E., Rosenzweig, M., and Flood, J. (1977). Protein synthesis and memory studied with anisomycin. In: Mechanisms, Regulation and Special Function of Protein Synthesis in the Brain. S. Roberts, A. Lajtha and W. Gispen, eds. (Amsterdam: Elsevier, North-Holland Biomedical Press), pp. 319–329.Google Scholar

  • Bergado, J.A., Almaguer-Melian, W., Kostenko, S., Frey, S., and Frey, J.U. (2003). Behavioral reinforcement of long-term potentiation in rat dentate gyrus in vivo is protein synthesis-dependent. Neurosci. Lett. 351, 56–58.CrossrefGoogle Scholar

  • Bernabeu, R., Bevilaqua, L., Ardenghi, P., Bromberg, E., Schmitz, P., Bianchin, M., Izquierdo, I., and Medina, J.H. (1997). Involvement of hippocampal cAMP/cAMP-dependent protein kinase signaling pathways in a late memory consolidation phase of aversively motivated learning in rats. Proc. Natl. Acad. Sci. USA 94, 7041–7046.CrossrefGoogle Scholar

  • Bi, X., Standley, S., and Baudry, M. (1998). Posttranslational regulation of ionotropic glutamate receptors and synaptic plasticity. Int. Rev. Neurobiol. 42, 227–284.CrossrefPubMedGoogle Scholar

  • Bingol, B. and Schuman, E.M. (2006). Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 441, 1144–1148.Google Scholar

  • Bingol, B. and Sheng, M. (2011). Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron 69, 22–32.CrossrefPubMedGoogle Scholar

  • Bingol, B., Wang, C.F., Arnott, D., Cheng, D., Peng, J., and Sheng, M. (2010). Autophosphorylated CaMKIIa acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567–578.CrossrefGoogle Scholar

  • Bito, H., Deisseroth, K., and Tsien, R.W. (1996). CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214.CrossrefGoogle Scholar

  • Blenis, J., Chung, J., Erikson, E., Alcorta, D.A., and Erikson, R.L. (1991). Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp90rsk and pp70-S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Differ. 2, 279–285.Google Scholar

  • Bliss, T.V. and Collingridge, G.L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39.Google Scholar

  • Bliss, T.V. and Gardner-Medwin, A.R. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J. Physiol. 232, 357–374.CrossrefGoogle Scholar

  • Bliss, T.V. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.CrossrefGoogle Scholar

  • Bliss, T.V.P., Collingridge, G., and Morris, R. (2007). Synaptic plasticity in the hippocampus. In: The Hippocampus. P. Andersen, R. Morris, D. Amaral, T. Bliss and J. O’Keefe, eds. (Oxford: Oxford University Press), pp. 343–474.Google Scholar

  • Blitzer, R.D., Wong, T., Nouranifar, R., Iyengar, R., and Landau, E.M. (1995). Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403–1414.PubMedGoogle Scholar

  • Bloom, A.S., Quinton, E.E., and Carr, L.A. (1977). Effects of cycloheximide, diethyldithiocarbamate and D-amphetamine on protein and catecholamine biosynthesis in mouse brain. Neuropharmacology 16, 411–418.CrossrefGoogle Scholar

  • Bohley, P., Kirschke, H., Langner, J., Viederanders, B., Ansorge, S., and Hanson, H. (1974). Degradation of rat liver proteins. In: Intracellular Protein Catabolism. Proceedings of the Symposium. H. Hanson and P. Bohley, eds. (Halle: Wissenschaftliche Beiträge der Martin-Luther-Universität Halle-Wittenberg), pp. 201–208.Google Scholar

  • Borges, A.C. and Gomes, S.L. (2000). PEST sequences in cAMP-dependent protein kinase subunits of the aquatic fungus Blastocladiella emersonii are necessary for in vitro degradation by endogenous proteases. Mol. Microbiol. 36, 926–939.CrossrefGoogle Scholar

  • Bortolotto, Z.A. and Collingridge, G.L. (1993). Characterisation of LTP induced by the activation of glutamate metabotropic receptors in area CA1 of the hippocampus. Neuropharmacology 32, 1–9.CrossrefGoogle Scholar

  • Bortolotto, Z.A., Bashir, Z.I., Davies, C.H., and Collingridge, G.L. (1994). A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368, 740–743.CrossrefPubMedGoogle Scholar

  • Bortolotto, Z.A., Bashir, Z.I., Davies, C.H., Taira, T., Kaila, K., and Collingridge, G.L. (1995). Studies on the role of metabotropic glutamate receptors in long-term potentiation: some methodological considerations. J. Neurosci. Methods 59, 19–24.CrossrefGoogle Scholar

  • Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G., and Silva, A.J. (1994). Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68.PubMedCrossrefGoogle Scholar

  • Boynton, S. and Tully, T. (1990). Induction of a long term memory in Drosophila is not affected by protein synthesis inhibitors. In: The Biology of Memory. L.R. Squire and E. Lindenlaub, eds. (Stuttgart: F.K. Schattauer Verlag), pp. 91–102.Google Scholar

  • Bozdagi, O., Shan, W., Tanaka, H., Benson, D.L., and Huntley, G.W. (2000). Increasing numbers of synaptic puncta during late-phase LTP: N-cadherin is synthesized, recruited to synaptic sites, and required for potentiation. Neuron 28, 245–259.CrossrefPubMedGoogle Scholar

  • Bradshaw, K.D., Emptage, N.J., and Bliss, T.V.P. (2003). A role for dendritic protein synthesis in hippocampal late LTP. Eur. J. Neurosci. 18, 3150–3152.PubMedCrossrefGoogle Scholar

  • Breakwell, N.A., Rowan, M.J., and Anwyl, R. (1998). (+)-MCPG blocks induction of LTP in CA1 of rat hippocampus via agonist action at an mGluR group II receptor. J. Neurophysiol. 79, 1270–1276.Google Scholar

  • Brown, T.H., Kairiss, E.W., and Keenan, C.L. (1990). Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475–511.CrossrefPubMedGoogle Scholar

  • Brown, R.E., Rabe, H., and Reymann, K.G. (1994). (RS)-α-methyl-4-carboxyphenylglycine (MCPG) does not block θ burst-induced long-term potentiation in area CA1 of rat hippocampal slices. Neurosci. Lett. 170, 17–21.Google Scholar

  • Bull, R., Ferrera, E., and Orrego, F. (1976). Effects of anisomycin on brain protein synthesis and passive avoidance learning in newborn chicks. J. Neurobiol. 7, 37–49.CrossrefGoogle Scholar

  • Cai, F., Frey, J.U., Sanna, P.P., and Behnisch, T. (2010). Protein degradation by the proteasome is required for synaptic tagging and the heterosynaptic stabilization of hippocampal late-phase long-term potentiation. Neuroscience 169, 1520–1526.CrossrefPubMedGoogle Scholar

  • Cajal, R. (1909). Histologie du Système Nerveux de l’Homme et des Vertébrés, Paris.Google Scholar

  • Calixto, E., Thiels, E., Klann, E., and Barrionuevo, G. (2003). Early maintenance of hippocampal mossy fiber-long-term potentiation depends on protein and RNA synthesis and presynaptic granule cell integrity. J. Neurosci. 23, 4842–4849.Google Scholar

  • Cammalleri, M., Lütjens, R., Berton, F., King, A.R., Simpson, C., Francesconi, W., and Sanna, P.P. (2003). Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1. Proc. Natl. Acad. Sci. USA 100, 14368–14373.CrossrefGoogle Scholar

  • Canal, C.E., Chang, Q., and Gold, P.E. (2007). Amnesia produced by altered release of neurotransmitters after intraamygdala injections of a protein synthesis inhibitor. Proc. Natl. Acad. Sci. USA 104, 12500–12505.CrossrefGoogle Scholar

  • Cano, E., Hazzalin, C.A., and Mahadevan, L.C. (1994). Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol. Cell. Biol. 14, 7352–7362.Google Scholar

  • Cao, G. and Harris, K.M. (2012). Developmental regulation of the late phase of long-term potentiation (L-LTP) and metaplasticity in hippocampal area CA1 of the rat. J. Neurophysiol. 107, 902–912.CrossrefGoogle Scholar

  • Capron, B., Sindic, C., Godaux, E., and Ris, L. (2006). The characteristics of LTP induced in hippocampal slices are dependent on slice-recovery conditions. Learn. Mem. 13, 271–277.PubMedCrossrefGoogle Scholar

  • Carlier, M.F. and Pantaloni, D. (1997). Control of actin dynamics in cell motility. J. Mol. Biol. 269, 459–467.Google Scholar

  • Chain, D.G., Schwartz, J.H., and Hegde, A.N. (1999). Ubiquitin-mediated proteolysis in learning and memory. Mol. Neurobiol. 20, 125–142.PubMedCrossrefGoogle Scholar

  • Chan, C.-S., Weeber, E.J., Kurup, S., Sweatt, J.D., and Davis, R.L. (2003). Integrin requirement for hippocampal synaptic plasticity and spatial memory. J. Neurosci. 23, 7107–7116.Google Scholar

  • Chen, G., Kolbeck, R., Barde, Y.A., Bonhoeffer, T., and Kossel, A. (1999). Relative contribution of endogenous neurotrophins in hippocampal long-term potentiation. J. Neurosci. 19, 7983–7990.Google Scholar

  • Chen, A., Muzzio, I.A., Malleret, G., Bartsch, D., Verbitsky, M., Pavlidis, P., Yonan, A.L., Vronskaya, S., Grody, M.B., Cepeda, I., et al. (2003). Inducible enhancement of memory storage and synaptic plasticity in transgenic mice expressing an inhibitor of ATF4 (CREB-2) and C/EBP proteins. Neuron 39, 655–669.Google Scholar

  • Cherkin, A. (1969). Kinetics of memory consolidation: role of amnesic treatment parameters. Proc. Natl. Acad. Sci. USA 63, 1094–1101.CrossrefGoogle Scholar

  • Chinestra, P., Aniksztejn, L., Diabira, D., and Ben-Ari, Y. (1993). (RS)-α-methyl-4-carboxyphenylglycine neither prevents induction of LTP nor antagonizes metabotropic glutamate receptors in CA1 hippocampal neurons. J. Neurophysiol. 70, 2684–2689.Google Scholar

  • Chorover, S. (1976). An experimental critique of the ‘consolidation studies’ and an alternative ‘model-systems’ approach to the biophysiology of memory. In: Neural Mechanisms of Learning and Memory. M.P. Rosenzweig and E.L. Bennett, eds. (Cambridge: The MIT Press), pp. 561–582.Google Scholar

  • Chorover, S.L. and Schiller, P.H. (1966). Reexamination of prolonged retrograde amnesia in one-trial learning. J. Comp. Physiol. Psychol. 61, 34–41.CrossrefGoogle Scholar

  • Ciechanover, A. (2012). Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim. Biophys. Acta 1824, 3–13.Google Scholar

  • Cipolotti, L., Shallice, T., Chan, D., Fox, N., Scahill, R., Harrison, G., Stevens, J., and Rudge, P. (2001). Long-term retrograde amnesia … the crucial role of the hippocampus. Neuropsychologia 39, 151–172.PubMedCrossrefGoogle Scholar

  • Clark, R.E., Broadbent, N.J., and Squire, L.R. (2005). Impaired remote spatial memory after hippocampal lesions despite extensive training beginning early in life. Hippocampus 15, 340–346.PubMedCrossrefGoogle Scholar

  • Cohen, H.D. and Barondes, S.H. (1967). Puromycin effect on memory may be due to occult seizures. Science 157, 333–334.Google Scholar

  • Cohen, H.D. and Barondes, S.H. (1968). Effect of acetoxycycloheximide on learning and memory of a light-dark discrimination. Nature 218, 271–273.PubMedCrossrefGoogle Scholar

  • Cohen, H.D., Ervin, F., and Barondes, S.H. (1966). Puromycin and cycloheximide: different effects on hippocampal electrical activity. Science 154, 1557–1558.CrossrefPubMedGoogle Scholar

  • Cohen, L.D., Zuchman, R., Sorokina, O., Müller, A., Dieterich, D.C., Armstrong, J.D., Ziv, T., and Ziv, N.E. (2013). Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLoS One 8, e63191.Google Scholar

  • Cohen-Matsliah, S.I., Motanis, H., Rosenblum, K., and Barkai, E. (2010). A novel role for protein synthesis in long-term neuronal plasticity: maintaining reduced postburst after hyperpolarization. J. Neurosci. 30, 4338–4342.CrossrefGoogle Scholar

  • Colledge, M., Snyder, E.M., Crozier, R.A., Soderling, J.A., Jin, Y., Langeberg, L.K., Lu, H., Bear, M.F., and Scott, J.D. (2003). Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40, 595–607.PubMedCrossrefGoogle Scholar

  • Collingridge, G.L. and Bliss, T.V.P. (1987). NMDA receptors – their role in long-term potentiation. Trends Neurosci. 10, 288–293.CrossrefGoogle Scholar

  • Costa-Mattioli, M., Gobert, D., Harding, H., Herdy, B., Azzi, M., Bruno, M., Bidinosti, M., Ben Mamou, C., Marcinkiewicz, E., Yoshida, M., et al. (2005). Translational control of hippocampal synaptic plasticity and memory by the eIF2a kinase GCN2. Nature 436, 1166–1173.Google Scholar

  • Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello, C., Sossin, W., Kaufman, R., Pelletier, J., Rosenblum, K., et al. (2007). eIF2a phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206.CrossrefGoogle Scholar

  • Cracco, J.B., Serrano, P., Moskowitz, S.I., Bergold, P.J., and Sacktor, T.C. (2005). Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus 15, 551–556.CrossrefGoogle Scholar

  • Davies, K.J. (1993). Protein modification by oxidants and the role of proteolytic enzymes. Biochem. Soc. Trans. 21, 346–353.PubMedCrossrefGoogle Scholar

  • Davis, H.P. and Squire, L.R. (1984). Protein synthesis and memory: a review. Psychol. Bull. 96, 518–559.PubMedCrossrefGoogle Scholar

  • Davis, S., Vanhoutte, P., Pages, C., Caboche, J., and Laroche, S. (2000). The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J. Neurosci. 20, 4563–4572.Google Scholar

  • De Jonge, M. and Racine, R.J. (1985). The effects of repeated induction of long-term potentiation in the dentate gyrus. Brain Res. 328, 181–185.CrossrefPubMedGoogle Scholar

  • Deadwyler, S.A., Dunwiddie, T., and Lynch, G. (1987). A critical level of protein synthesis is required for long-term potentiation. Synapse 1, 90–95.CrossrefPubMedGoogle Scholar

  • Debiec, J., LeDoux, J.E., and Nader, K. (2002). Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538.PubMedCrossrefGoogle Scholar

  • Del Cerro, S., Arai, A., Kessler, M., Bahr, B.A., Vanderklish, P., Rivera, S., and Lynch, G. (1994). Stimulation of NMDA receptors activates calpain in cultured hippocampal slices. Neurosci. Lett. 167, 149–152.CrossrefPubMedGoogle Scholar

  • Dennis, P.B., Jaeschke, A., Saitoh, M., Fowler, B., Kozma, S.C., and Thomas, G. (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294, 1102–1105.CrossrefGoogle Scholar

  • Denny, J.B., Polan-Curtain, J., Ghuman, A., Wayner, M.J., and Armstrong, D.L. (1990). Calpain inhibitors block long-term potentiation. Brain Res. 534, 317–320.PubMedCrossrefGoogle Scholar

  • Dewar, M.T., Cowan, N., and Sala, S.D. (2007). Forgetting due to retroactive interference: a fusion of Müller and Pilzecker’s (1900) early insights into everyday forgetting and recent research on anterograde amnesia. Cortex 43, 616–634.CrossrefGoogle Scholar

  • DiAntonio, A. and Hicke, L. (2004). Ubiquitin-dependent regulation of the synapse. Annu. Rev. Neurosci. 27, 223–246.CrossrefPubMedGoogle Scholar

  • Díaz-Trujillo, A., Contreras, J., Medina, A.C., Silveyra-Leon, G.A., Antaramian, A., Quirarte, G.L., and Prado-Alcalá, R.A. (2009). Enhanced inhibitory avoidance learning prevents the long-term memory-impairing effects of cycloheximide, a protein synthesis inhibitor. Neurobiol. Learn. Mem. 91, 310–314.CrossrefGoogle Scholar

  • Djakovic, S.N., Schwarz, L.A., Barylko, B., DeMartino, G.N., and Patrick, G.N. (2009). Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II. J. Biol. Chem. 284, 26655–26665.CrossrefGoogle Scholar

  • Dong, C., Upadhya, S.C., Ding, L., Smith, T.K., and Hegde, A.N. (2008). Proteasome inhibition enhances the induction and impairs the maintenance of late-phase long-term potentiation. Learn. Mem. 15, 335–347.PubMedCrossrefGoogle Scholar

  • Dong, C., Bach, S.V., Haynes, K.A., and Hegde, A.N. (2014). Proteasome modulates positive and negative translational regulators in long-term synaptic plasticity. J. Neurosci. 34, 3171–3182.CrossrefGoogle Scholar

  • Doyère, V. and Laroche, S. (1992). Linear relationship between the maintenance of hippocampal long-term potentiation and retention of an associative memory. Hippocampus 2, 39–48.CrossrefPubMedGoogle Scholar

  • Dudai, Y. (1995). On relevance of long-term potentiation to learning and memory. In: Brain and Memory. G. McGaugh, N. Weinberger and G. Lynch, eds. (New York: Oxford University Press), pp. 319–327.Google Scholar

  • Dudai, Y. (1997). Time to remember. Neuron 18, 179–182.CrossrefPubMedGoogle Scholar

  • Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86.CrossrefPubMedGoogle Scholar

  • Dudai, Y. and Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100.PubMedCrossrefGoogle Scholar

  • Dudek, S.M. and Fields, R.D. (2002). Somatic action potentials are sufficient for late-phase LTP-related cell signaling. Proc. Natl. Acad. Sci. USA 99, 3962–3967.CrossrefGoogle Scholar

  • Dufner, A. and Thomas, G. (1999). Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100–109.CrossrefPubMedGoogle Scholar

  • Dunn, A.J., Gray, H.E., and Iuvone, P.M. (1977). Protein synthesis and amnesia: studies with emetine and pactamycin. Pharmacol. Biochem. Behav. 6, 1–4.PubMedCrossrefGoogle Scholar

  • Edwards, D.R. and Mahadevan, L.C. (1992). Protein synthesis inhibitors differentially superinduce c-fos and c-jun by three distinct mechanisms: lack of evidence for labile repressors. EMBO J. 11, 2415–2424.PubMedGoogle Scholar

  • Ehlers, M.R. (2000). CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect. 2, 289–294.CrossrefGoogle Scholar

  • Ehlers, M.D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nat. Neurosci. 6, 231–242.PubMedCrossrefGoogle Scholar

  • Etlinger, J.D. and Goldberg, A.L. (1977). A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc. Natl. Acad. Sci. USA 74, 54–58.CrossrefGoogle Scholar

  • Fagan, J.M. and Waxman, L. (1992). The ATP-independent pathway in red blood cells that degrades oxidant-damaged hemoglobin. J. Biol. Chem. 267, 23015–23022.Google Scholar

  • Fanselow, M.S. (1997). Without LTP the learning circuit is broken. Behav. Brain Sci. 20, 616.CrossrefGoogle Scholar

  • Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T., and Lu, B. (1996). Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. Nature 381, 706–709.Google Scholar

  • Fioravante, D. and Byrne, J.H. (2011). Protein degradation and memory formation. Brain Res. Bull. 85, 14–20.PubMedCrossrefGoogle Scholar

  • Fischer, A., Sananbenesi, F., Schrick, C., Spiess, J., and Radulovic, J. (2004). Distinct roles of hippocampal de novo protein synthesis and actin rearrangement in extinction of contextual fear. J. Neurosci. 24, 1962–1966.CrossrefGoogle Scholar

  • Fitzjohn, S.M., Bortolotto, Z.A., Palmer, M.J., Doherty, A.J., Ornstein, P.L., Schoepp, D.D., Kingston, A.E., Lodge, D., and Collingridge, G.L. (1998). The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 37, 1445–1458.CrossrefPubMedGoogle Scholar

  • Flexner, L.B. and Flexner, J.B. (1966). Effect of acetoxycycloheximide and of an acetoxycycloheximide-puromycin mixture on cerebral protein synthesis and memory in mice. Proc. Natl. Acad. Sci. USA 55, 369–374.CrossrefGoogle Scholar

  • Flexner, J.B., Flexner, L.B., and Stellar, E. (1963). Memory in mice as affected by intracerebral puromycin. Science 141, 57–59.CrossrefPubMedGoogle Scholar

  • Flexner, L.B., Flexner, J.B., De La Haba, G., and Roberts, R.B. (1965). Loss of memory as related to inhibition of cerebral protein synthesis. J. Neurochem. 12, 535–541.CrossrefGoogle Scholar

  • Flexner, L.B., Flexner, J.B., and Roberts, R.B. (1966). Stages of memory in mice treated with acetoxycycloheximide before or immediately after learning. Proc. Natl. Acad. Sci. USA 56, 730–735.CrossrefGoogle Scholar

  • Flood, J.F. and Jarvik, M.E. (1976). Drug influences on learning and memory. In: Neural Mechanisms of Learning and Memory. M. Rosenzweig and E. Bennet, eds. (Cambridge: The MIT Press), pp. 483–507.Google Scholar

  • Flood, J.F., Bennett, E.L., Rosenzweig, M.R., and Orme, A.E. (1972). Influence of training strength on amnesia induced by pretraining injections of cycloheximide. Physiol. Behav. 9, 589–600.CrossrefPubMedGoogle Scholar

  • Flood, J.F., Rosenzweig, M.R., Bennett, E.L., and Orme, A.E. (1973). The influence of duration of protein synthesis inhibition on memory. Physiol. Behav. 10, 555–562.PubMedCrossrefGoogle Scholar

  • Flood, J.F., Bennett, E.L., Orme, A.E., and Rosenzweig, M.R. (1975). Effects of protein synthesis inhibition on memory for active avoidance training. Physiol. Behav. 14, 177–184.PubMedCrossrefGoogle Scholar

  • Flood, J.F., Bennett, E.L., Orme, A.E., Rosenzweig, M.R., and Jarvik, M.E. (1978). Memory: modification of anisomycin-induced amnesia by stimulants and depressants. Science 199, 324–326.Google Scholar

  • Fonseca, R., Nägerl, U.V., Morris, R.G.M., and Bonhoeffer, T. (2004). Competing for memory: hippocampal LTP under regimes of reduced protein synthesis. Neuron 44, 1011–1020.PubMedGoogle Scholar

  • Fonseca, R., Nägerl, U.V., and Bonhoeffer, T. (2006a). Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nat. Neurosci. 9, 478–480.PubMedCrossrefGoogle Scholar

  • Fonseca, R., Vabulas, R.M., Hartl, F.U., Bonhoeffer, T., and Nägerl, U.V. (2006b). A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP. Neuron 52, 239–245.PubMedCrossrefGoogle Scholar

  • Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L., and Silva, A.J. (2004). The involvement of the anterior cingulate cortex in remote contextual fear memory. Science 304, 881–883.PubMedCrossrefGoogle Scholar

  • Fraser, H.B., Hirsh, A.E., Giaever, G., Kumm, J., and Eisen, M.B. (2004). Noise minimization in eukaryotic gene expression. PLoS Biol. 2, e137.CrossrefGoogle Scholar

  • Frey, S. and Frey, J.U. (2008). ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog. Brain Res. 169, 117–143.PubMedCrossrefGoogle Scholar

  • Frey, U. and Morris, R.G. (1997). Synaptic tagging and long-term potentiation. Nature 385, 533–536.CrossrefPubMedGoogle Scholar

  • Frey, U. and Morris, R.G. (1998a). Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci. 21, 181–188.CrossrefPubMedGoogle Scholar

  • Frey, U. and Morris, R.G. (1998b). Weak before strong: dissociating synaptic tagging and plasticity-factor accounts of late-LTP. Neuropharmacology 37, 545–552.CrossrefPubMedGoogle Scholar

  • Frey, U., Krug, M., Reymann, K.G., and Matthies, H. (1988). Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro. Brain Res. 452, 57–65.Google Scholar

  • Frey, U., Krug, M., Brödemann, R., Reymann, K., and Matthies, H. (1989). Long-term potentiation induced in dendrites separated from rat’s CA1 pyramidal somata does not establish a late phase. Neurosci. Lett. 97, 135–139.CrossrefGoogle Scholar

  • Frey, U., Schroeder, H., and Matthies, H. (1990). Dopaminergic antagonists prevent long-term maintenance of posttetanic LTP in the CA1 region of rat hippocampal slices. Brain Res. 522, 69–75.Google Scholar

  • Frey, S., Schwiegert, C., Krug, M., and Lössner, B. (1991). Long-term potentiation induced changes in protein synthesis of hippocampal subfields of freely moving rats: time-course. Biomed. Biochim. Acta 50, 1231–1240.PubMedGoogle Scholar

  • Frey, U., Huang, Y.Y., and Kandel, E.R. (1993). Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons. Science 260, 1661–1664.CrossrefGoogle Scholar

  • Frey, U., Schollmeier, K., Reymann, K.G., and Seidenbecher, T. (1995). Asymptotic hippocampal long-term potentiation in rats does not preclude additional potentiation at later phases. Neuroscience 67, 799–807.CrossrefPubMedGoogle Scholar

  • Frey, U., Frey, S., Schollmeier, F., and Krug, M. (1996a). Influence of actinomycin D, a RNA synthesis inhibitor, on long-term potentiation in rat hippocampal neurons in vivo and in vitro. J. Physiol. 490, 703–711.CrossrefGoogle Scholar

  • Frey, U., Müller, M., and Kuhl, D. (1996b). A different form of long-lasting potentiation revealed in tissue plasminogen activator mutant mice. J. Neurosci. 16, 2057–2063.Google Scholar

  • Fucci, L., Oliver, C.N., Coon, M.J., and Stadtman, E.R. (1983). Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc. Natl. Acad. Sci. USA 80, 1521–1525.CrossrefGoogle Scholar

  • Fujii, S. and Sumikawa, K. (2001). Acute and chronic nicotine exposure reverse age-related declines in the induction of long-term potentiation in the rat hippocampus. Brain Res. 894, 347–353.Google Scholar

  • Fujii, S., Saito, K., Miyakawa, H., Ito, K., and Kato, H. (1991). Reversal of long-term potentiation (depotentiation) induced by tetanus stimulation of the input to CA1 neurons of guinea pig hippocampal slices. Brain Res. 555, 112–122.Google Scholar

  • Fukazawa, Y., Saitoh, Y., Ozawa, F., Ohta, Y., Mizuno, K., and Inokuchi, K. (2003). Hippocampal LTP is accompanied by enhanced F-actin content within the dendritic spine that is essential for late LTP maintenance in vivo. Neuron 38, 447–460.CrossrefGoogle Scholar

  • Gall, C.M. and Lynch, G. (2005). Consolidation: a view from the synapse. In: Synaptic Plasticity and Transsynaptic Signaling. P.K. Stanton and H.E. Scharfman, eds. (New York: Springer Science), pp. 469–494.Google Scholar

  • Garcia-Osta, A., Tsokas, P., Pollonini, G., Landau, E.M., Blitzer, R., and Alberini, C.M. (2006). MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. J. Neurosci. 26, 7919–7932.CrossrefGoogle Scholar

  • Gaskell, M.G. and Dumay, N. (2003). Lexical competition and the acquisition of novel words. Cognition 89, 105–132.PubMedCrossrefGoogle Scholar

  • Gelinas, J.N. and Nguyen, P.V. (2005). β-Adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J. Neurosci. 25, 3294–3303.CrossrefGoogle Scholar

  • Geller, A., Robustelli, F., Barondes, S.H., Cohen, H.D., and Jarvik, M.E. (1969). Impaired performance by post-trial injections of cycloheximide in a passive avoidance task. Psychopharmacologia 14, 371–376.CrossrefGoogle Scholar

  • Gerard, R.W. (1949). Physiology and psychiatry. Am. J. Psychiatry 106, 161–173.Google Scholar

  • Gibbs, M.E. and Ng, K.T. (1976). Memory formation: a new three-phase model. Neurosci. Lett. 2, 165–169.CrossrefPubMedGoogle Scholar

  • Gibbs, M.E. and Ng, K.T. (1979). Similar effects of a monoamine oxidase inhibitor and a sympathomimetic amine on memory formation. Pharmacol. Biochem. Behav. 11, 335–339.CrossrefGoogle Scholar

  • Gladding, C.M., Fitzjohn, S.M., and Molnár, E. (2009). Metabotropic glutamate receptor-mediated long-term depression: molecular mechanisms. Pharmacol. Rev. 61, 395–412.CrossrefPubMedGoogle Scholar

  • Glassman, E. (1969). The biochemistry of learning: an evaluation of the role of RNA and protein. Annu. Rev. Biochem. 38, 605–646.CrossrefPubMedGoogle Scholar

  • Glickman, S.E. (1961). Perseverative neural processes and consolidation of the memory trace. Psychol. Bull. 58, 218–233.PubMedCrossrefGoogle Scholar

  • Goelet, P., Castellucci, V.F., Schacher, S., and Kandel, E.R. (1986). The long and the short of long-term memory – a molecular framework. Nature 322, 419–422.Google Scholar

  • Gold, P.E. (2006). The many faces of amnesia. Learn. Mem. 13, 506–514.PubMedCrossrefGoogle Scholar

  • Gold, P.E. (2008). Protein synthesis inhibition and memory: formation vs amnesia. Neurobiol. Learn. Mem. 89, 201–211.PubMedCrossrefGoogle Scholar

  • Gold, P.E. and McGaugh, J.L. (1975). A single-trace, two-process view of memory storage processes. In: Short-Term Memory. D. Deutsch and J.A. Deutsch, eds. (New York: Academic Press), pp. 355–378.Google Scholar

  • Gold, P.E. and Sternberg, D.B. (1978). Retrograde amnesia produced by several treatments: evidence for a common neurobiological mechanism. Science 201, 367–369.Google Scholar

  • Gold, P.E. and Wrenn, S.M. (2012). Cycloheximide impairs and enhances memory depending on dose and footshock intensity. Behav. Brain Res. 233, 293–297.CrossrefPubMedGoogle Scholar

  • Gold, P.E., Macri, J., and McGaugh, J.L. (1973). Retrograde amnesia gradients: effects of direct cortical stimulation. Science 179, 1343–1345.Google Scholar

  • Gold, P., McIntyre, C., McNay, E., Stefani, M., and Korol, D. (2001). Neurochemical referees of dueling memory systems. In: Memory Consolidation. P.E. Gold and W.T. Greenough, eds. (Washington, DC: American Psychological Association), pp. 219–248.Google Scholar

  • Goldberg, A.L. (2007). Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem. Soc. Trans. 35, 12–17.CrossrefPubMedGoogle Scholar

  • Goldberg, A.L. and St John, A.C. (1976). Intracellular protein degradation in mammalian and bacterial cells: part 2. Annu. Rev. Biochem. 45, 747–803.CrossrefGoogle Scholar

  • Grant, S.G., O’Dell, T.J., Karl, K.A., Stein, P.L., Soriano, P., and Kandel, E.R. (1992). Impaired long-term potentiation, spatial learning, and hippocampal development in fyn mutant mice. Science 258, 1903–1910.CrossrefPubMedGoogle Scholar

  • Grecksch, G. and Matthies, H. (1980). Two sensitive periods for the amnesic effect of anisomycin. Pharmacol. Biochem. Behav. 12, 663–665.PubMedCrossrefGoogle Scholar

  • Greenberg, A., Ward-Flanagan, R., Dickson, C.T., and Treit, D. (2014). ANI inactivation: unconditioned anxiolytic effects of anisomycin in the ventral hippocampus. Hippocampus 24, 1308–1316.CrossrefPubMedGoogle Scholar

  • Greenough, W. (1984). Structural correlates of information storage in the mammalian brain: a review and hypothesis. Trends Neurosci. 7, 229–233.CrossrefGoogle Scholar

  • Groll, M., Ditzel, L., Löwe, J., Stock, D., Bochtler, M., Bartunik, H.D., and Huber, R. (1997). Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471.CrossrefGoogle Scholar

  • Grollman, A.P. (1968). Inhibitors of protein biosynthesis. V. Effects of emetine on protein and nucleic acid biosynthesis in HeLa cells. J. Biol. Chem. 243, 4089–4094.Google Scholar

  • Grollman, A.P. and Huang, M. (1973). Inhibitors of protein synthesis in eukaryotes: tools in cell research. Fed. Proc. 32, 1673–1678.PubMedGoogle Scholar

  • Grollman, A. and Huang, M. (1976). Inhibitors of protein synthesis in eukaryotes. In: Protein Synthesis. E.H. McConkey, ed. (New York: Marcel Dekker, Inc.), pp. 125–167.Google Scholar

  • Grover, L.M. and Teyler, T.J. (1995). Different mechanisms may be required for maintenance of NMDA receptor-dependent and independent forms of long-term potentiation. Synapse 19, 121–133.PubMedCrossrefGoogle Scholar

  • Gustafsson, B. and Wigström, H. (1990). Long-term potentiation in the hippocampal CA1 region: its induction and early temporal development. Prog. Brain Res. 83, 223–232.CrossrefGoogle Scholar

  • Habib, D. and Dringenberg, H.C. (2010). Surprising similarity between mechanisms mediating low (1 Hz)-and high (100 Hz)-induced long-lasting synaptic potentiation in CA1 of the intact hippocampus. Neuroscience 170, 489–496.Google Scholar

  • Hall, M.E., Schlesinger, K., and Stamm, E. (1976). Prevention of memory loss following puromycin treatment. Pharmacol. Biochem. Behav. 4, 353–355.CrossrefPubMedGoogle Scholar

  • Hamakubo, T., Kannagi, R., Murachi, T., and Matus, A. (1986). Distribution of calpains I and II in rat brain. J. Neurosci. 6, 3103–3111.Google Scholar

  • Hamilton, R.T., Nilsen-Hamilton, M., and Adams, G. (1985). Superinduction by cycloheximide of mitogen-induced secreted proteins produced by BALB/c 3T3 cells. J. Cell. Physiol. 123, 201–208.CrossrefGoogle Scholar

  • Hara, K.I. and Kitajima, T. (1997). LTP plays a distinct role in various brain structures. Behav. Brain Sci. 20, 620.CrossrefGoogle Scholar

  • Hazzalin, C.A., Le Panse, R., Cano, E., and Mahadevan, L.C. (1998). Anisomycin selectively desensitizes signalling components involved in stress kinase activation and fos and jun induction. Mol. Cell. Biol. 18, 1844–1854.PubMedGoogle Scholar

  • Hebb, D.O. (1949). The Organization of Behavior (New York: John Wiley & Sons).Google Scholar

  • Hegde, A.N. (2004). Ubiquitin-proteasome-mediated local protein degradation and synaptic plasticity. Prog. Neurobiol. 73, 311–357.PubMedCrossrefGoogle Scholar

  • Hegde, A.N. (2010). The ubiquitin-proteasome pathway and synaptic plasticity. Learn. Mem. 17, 314–327.PubMedCrossrefGoogle Scholar

  • Helmstetter, F.J., Parsons, R.G., and Gafford, G.M. (2008). Macromolecular synthesis, distributed synaptic plasticity, and fear conditioning. Neurobiol. Learn. Mem. 89, 324–337.PubMedCrossrefGoogle Scholar

  • Hernandez, P.J. and Abel, T. (2008). The role of protein synthesis in memory consolidation: progress amid decades of debate. Neurobiol. Learn. Mem. 89, 293–311.PubMedCrossrefGoogle Scholar

  • Hershko, A. and Tomkins, G.M. (1971). Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J. Biol. Chem. 246, 710–714.Google Scholar

  • Hesse, G.W., Hofstein, R., and Shashoua, V.E. (1984). Protein release from hippocampus in vitro. Brain Res. 305, 61–66.CrossrefPubMedGoogle Scholar

  • Ho, N., Liauw, J.A., Blaeser, F., Wei, F., Hanissian, S., Muglia, L.M., Wozniak, D.F., Nardi, A., Arvin, K.L., Holtzman, D.M., et al. (2000). Impaired synaptic plasticity and cAMP response element-binding protein activation in Ca2+/calmodulin-dependent protein kinase type IV/Gr-deficient mice. J. Neurosci. 20, 6459–6472.Google Scholar

  • Ho, O.H., Delgado, J.Y., and O’Dell, T.J. (2004). Phosphorylation of proteins involved in activity-dependent forms of synaptic plasticity is altered in hippocampal slices maintained in vitro. J. Neurochem. 91, 1344–1357.CrossrefGoogle Scholar

  • Hoffman, K.B., Martinez, J., and Lynch, G. (1998). Proteolysis of cell adhesion molecules by serine proteases: a role in long term potentiation? Brain Res. 811, 29–33.Google Scholar

  • Hoffman, J.F., Dodson, A., and Proverbio, F. (2009). On the functional use of the membrane compartmentalized pool of ATP by the Na+ and Ca++ pumps in human red blood cell ghosts. J. Gen. Physiol. 134, 351–361.CrossrefGoogle Scholar

  • Holscher, C. (2001). Long-term potentiation as a model for memory mechanisms. In: Neuronal Mechanisms of Memory Formation. C. Holscher, ed. (Cambridge: Cambridge University Press), pp. 1–34.Google Scholar

  • Holzer, H. and Duntze, W. (1971). Metabolic regulation by chemical modification of enzymes. Annu. Rev. Biochem. 40, 345–374.PubMedCrossrefGoogle Scholar

  • Hou, L., Antion, M.D., Hu, D., Spencer, C.M., Paylor, R., and Klann, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454.CrossrefPubMedGoogle Scholar

  • Hoyt, M.A. and Coffino, P. (2004). Ubiquitin-free routes into the proteasome. Cell. Mol. Life Sci. 61, 1596–1600.CrossrefPubMedGoogle Scholar

  • Huang, C.C. and Hsu, K.S. (2004). Local protein synthesis and GABAB receptors regulate the reversibility of long-term potentiation at murine hippocampal mossy fibre-CA3 synapses. J. Physiol. 561, 91–108.Google Scholar

  • Huang, Y.Y. and Kandel, E.R. (1994). Recruitment of long-lasting and protein kinase A-dependent long-term potentiation in the CA1 region of hippocampus requires repeated tetanization. Learn. Mem. 1, 74–82.Google Scholar

  • Huang, Y.Y. and Kandel, E.R. (1996). Modulation of both the early and the late phase of mossy fiber LTP by the activation of β-adrenergic receptors. Neuron 16, 611–617.CrossrefPubMedGoogle Scholar

  • Huang, Y.Y. and Kandel, E.R. (2006). Age-related enhancement of a protein synthesis-dependent late phase of LTP induced by low frequency paired-pulse stimulation in hippocampus. Learn. Mem. 13, 298–306.CrossrefPubMedGoogle Scholar

  • Huang, Y.Y., Li, X.C., and Kandel, E.R. (1994). cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79, 69–79.CrossrefPubMedGoogle Scholar

  • Huang, Y.Y., Bach, M.E., Lipp, H.P., Zhuo, M., Wolfer, D.P., Hawkins, R.D., Schoonjans, L., Kandel, E.R., Godfraind, J.M., Mulligan, R., et al. (1996). Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc. Natl. Acad. Sci. USA 93, 8699–8704.CrossrefGoogle Scholar

  • Huang, C.C., Liang, Y.C., and Hsu, K.S. (1999). A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J. Neurosci. 19, 9728–9738.Google Scholar

  • Huang, Y.Y., Zakharenko, S.S., Schoch, S., Kaeser, P.S., Janz, R., Südhof, T.C., Siegelbaum, S.A., and Kandel, E.R. (2005). Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proc. Natl. Acad. Sci. USA 102, 9365–9370.CrossrefGoogle Scholar

  • Huang, Q., Wang, H., Perry, S.W., and Figueiredo-Pereira, M.E. (2013). Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J. Biol. Chem. 288, 12161–12174.CrossrefGoogle Scholar

  • Huber, K.M., Gallagher, S.M., Warren, S.T., and Bear, M.F. (2002). Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750.CrossrefGoogle Scholar

  • Huh, K.H. and Wenthold, R.J. (1999). Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NR1, in cultured cerebellar granule cells. J. Biol. Chem. 274, 151–157.CrossrefGoogle Scholar

  • Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738.CrossrefPubMedGoogle Scholar

  • Impey, S., Mark, M., Villacres, E.C., Poser, S., Chavkin, C., and Storm, D.R. (1996). Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973–982.CrossrefGoogle Scholar

  • Inda, M.C., Delgado-García, J.M., and Carrión, A.M. (2005). Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J. Neurosci. 25, 2070–2080.CrossrefGoogle Scholar

  • Ingram, P.J., Stumpf, M.P.H., and Stark, J. (2006). Network motifs: structure does not determine function. BMC Genomics 7, 108.PubMedCrossrefGoogle Scholar

  • Ito, I., Sakimura, K., Mishina, M., and Sugiyama, H. (1996). Age-dependent reduction of hippocampal LTP in mice lacking N-methyl-D-aspartate receptor ε1 subunit. Neurosci. Lett. 203, 69–71.CrossrefGoogle Scholar

  • Izquierdo, I. (1993). Long-term potentiation and the mechanisms of memory. Drug Dev. Res. 30, 1–17.CrossrefGoogle Scholar

  • Izquierdo, I., Bevilaqua, L.R.M., Rossato, J.I., Bonini, J.S., Medina, J.H., and Cammarota, M. (2006). Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci. 29, 496–505.PubMedCrossrefGoogle Scholar

  • Izumi, Y. and Zorumski, C.F. (1994). Developmental changes in the effects of metabotropic glutamate receptor antagonists on CA1 long-term potentiation in rat hippocampal slices. Neurosci. Lett. 176, 89–92.CrossrefGoogle Scholar

  • James, W. (1984). Psychology: Briefer Course. (Cambridge: Harvard University Press).Google Scholar

  • Jarome, T.J. and Helmstetter, F.J. (2013). The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol. Learn. Mem. 105, 107–116.PubMedCrossrefGoogle Scholar

  • Jeffery, K.J., Abraham, W.C., Dragunow, M., and Mason, S.E. (1990). Induction of Fos-like immunoreactivity and the maintenance of long-term potentiation in the dentate gyrus of unanesthetized rats. Brain Res. Mol. Brain Res. 8, 267–274.PubMedCrossrefGoogle Scholar

  • Ji, Y., Pang, P.T., Feng, L., and Lu, B. (2005). Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat. Neurosci. 8, 164–172.PubMedCrossrefGoogle Scholar

  • Jiang, Y.H., Armstrong, D., Albrecht, U., Atkins, C.M., Noebels, J.L., Eichele, G., Sweatt, J.D., and Beaudet, A.L. (1998). Mutation of the angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811.PubMedCrossrefGoogle Scholar

  • Johannes, G., Carter, M.S., Eisen, M.B., Brown, P.O., and Sarnow, P. (1999). Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc. Natl. Acad. Sci. USA 96, 13118–13123.CrossrefGoogle Scholar

  • Johnstone, V.P.A. and Raymond, C.R. (2011). A protein synthesis and nitric oxide-dependent presynaptic enhancement in persistent forms of long-term potentiation. Learn. Mem. 18, 625–633.PubMedCrossrefGoogle Scholar

  • Jones, M.W., Errington, M.L., French, P.J., Fine, A., Bliss, T.V., Garel, S., Charnay, P., Bozon, B., Laroche, S., and Davis, S. (2001). A requirement for the immediate early gene Zif268 in the expression of late LTP and long-term memories. Nat. Neurosci. 4, 289–296.CrossrefGoogle Scholar

  • Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell 157, 163–186.Google Scholar

  • Kang, H. and Schuman, E.M. (1995). Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult hippocampus. Science 267, 1658–1662.Google Scholar

  • Kang, H., Welcher, A.A., Shelton, D., and Schuman, E.M. (1997). Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 19, 653–664.PubMedCrossrefGoogle Scholar

  • Kardalinou, E., Zhelev, N., Hazzalin, C.A., and Mahadevan, L.C. (1994). Anisomycin and rapamycin define an area upstream of p70/85S6k containing a bifurcation to histone H3-HMG-like protein phosphorylation and c-fos-c-jun induction. Mol. Cell. Biol. 14, 1066–1074.Google Scholar

  • Karpova, A., Mikhaylova, M., Thomas, U., Knöpfel, T., and Behnisch, T. (2006). Involvement of protein synthesis and degradation in long-term potentiation of Schaffer collateral CA1 synapses. J. Neurosci. 26, 4949–4955.CrossrefGoogle Scholar

  • Kasahara, J., Fukunaga, K., and Miyamoto, E. (2001). Activation of calcium/calmodulin-dependent protein kinase IV in long term potentiation in the rat hippocampal CA1 region. J. Biol. Chem. 276, 24044–24050.CrossrefGoogle Scholar

  • Kauer, J.A., Malenka, R.C., and Nicoll, R.A. (1988). NMDA application potentiates synaptic transmission in the hippocampus. Nature 334, 250–252.PubMedCrossrefGoogle Scholar

  • Keith, J.R. and Rudy, J.W. (1990). Why NMDA-receptor-dependent long-term potentiation may not be a mechanism of learning and memory: reappraisal of the NMDA-receptor blockade strategy. Psychobiology 18, 251–257.Google Scholar

  • Kelleher, R.J. 3rd, Govindarajan, A., Jung, H.-Y., Kang, H., and Tonegawa, S. (2004). Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116, 467–479.CrossrefGoogle Scholar

  • Kelly, M.T., Yao, Y., Sondhi, R., and Sacktor, T.C. (2007). Actin polymerization regulates the synthesis of PKMζ in LTP. Neuropharmacology 52, 41–45.PubMedCrossrefGoogle Scholar

  • Khoutorsky, A., Yanagiya, A., Gkogkas, C.G., Fabian, M.R., Prager-Khoutorsky, M., Cao, R., Gamache, K., Bouthiette, F., Parsyan, A., Sorge, R.E., et al. (2013). Control of synaptic plasticity and memory via suppression of poly(A)-binding protein. Neuron 78, 298–311.CrossrefPubMedGoogle Scholar

  • Kim, J.J. and Fanselow, M.S. (1992). Modality-specific retrograde amnesia of fear. Science 256, 675–677.CrossrefPubMedGoogle Scholar

  • Kirkwood, A., Silva, A., and Bear, M.F. (1997). Age-dependent decrease of synaptic plasticity in the neocortex of aCaMKII mutant mice. Proc. Natl. Acad. Sci. USA 94, 3380–3383.CrossrefGoogle Scholar

  • Klann, E. and Sweatt, J.D. (2008). Altered protein synthesis is a trigger for long-term memory formation. Neurobiol. Learn. Mem. 89, 247–259.CrossrefPubMedGoogle Scholar

  • Klann, E., Antion, M.D., Banko, J.L., and Hou, L. (2004). Synaptic plasticity and translation initiation. Learn. Mem. 11, 365–372.CrossrefPubMedGoogle Scholar

  • Kleim, J.A., Bruneau, R., Calder, K., Pocock, D., VandenBerg, P.M., MacDonald, E., Monfils, M.H., Sutherland, R.J., and Nader, K. (2003). Functional organization of adult motor cortex is dependent upon continued protein synthesis. Neuron 40, 167–176.CrossrefPubMedGoogle Scholar

  • Kleppisch, T., Wolfsgruber, W., Feil, S., Allmann, R., Wotjak, C.T., Goebbels, S., Nave, K.-A., Hofmann, F., and Feil, R. (2003). Hippocampal cGMP-dependent protein kinase I supports an age- and protein synthesis-dependent component of long-term potentiation but is not essential for spatial reference and contextual memory. J. Neurosci. 23, 6005–6012.Google Scholar

  • Koekkoek, S.K., Yamaguchi, K., Milojkovic, B.A., Dortland, B.R., Ruigrok, T.J., Maex, R., De Graaf, W., Smit, A.E., VanderWerf, F., Bakker, C.E., et al. (2005). Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in fragile X syndrome. Neuron 47, 339–352.Google Scholar

  • Korol, D.L., Abel, T.W., Church, L.T., Barnes, C.A., and McNaughton, B.L. (1993). Hippocampal synaptic enhancement and spatial learning in the Morris swim task. Hippocampus 3, 127–132.CrossrefPubMedGoogle Scholar

  • Korte, M., Kang, H., Bonhoeffer, T., and Schuman, E. (1998). A role for BDNF in the late-phase of hippocampal long-term potentiation. Neuropharmacology 37, 553–559.PubMedCrossrefGoogle Scholar

  • Korz, V. and Frey, J.U. (2004). Emotional and cognitive reinforcement of rat hippocampal long-term potentiation by different learning paradigms. Neuron Glia Biol. 1, 253–261.PubMedCrossrefGoogle Scholar

  • Kotaleski, J.H. and Blackwell, K.T. (2010). Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat. Rev. Neurosci. 11, 239–251.CrossrefPubMedGoogle Scholar

  • Kozak, M. (1980). Role of ATP in binding and migration of 40S ribosomal subunits. Cell 22, 459–467.CrossrefPubMedGoogle Scholar

  • Kroker, K.S., Rast, G., and Rosenbrock, H. (2011a). Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP. Eur. J. Pharmacol. 671, 26–32.Google Scholar

  • Kroker, K.S., Rosenbrock, H., and Rast, G. (2011b). A multi-slice recording system for stable late phase hippocampal long-term potentiation experiments. J. Neurosci. Methods 194, 394–401.Google Scholar

  • Krug, M., Lössner, B., and Ott, T. (1984). Anisomycin blocks the late phase of long-term potentiation in the dentate gyrus of freely moving rats. Brain Res. Bull. 13, 39–42.PubMedCrossrefGoogle Scholar

  • Kurotani, T., Higashi, S., Inokawa, H., and Toyama, K. (1996). Protein and RNA synthesis-dependent and -independent LTPs in developing rat visual cortex. Neuroreport 8, 35–39.PubMedCrossrefGoogle Scholar

  • Lajtha, A. (1964). Protein Metabolism of the nervous system. Int. Rev. Neurobiol. 6, 1–98.CrossrefGoogle Scholar

  • Lanté, F., de Jésus Ferreira, M.-C., Guiramand, J., Récasens, M., and Vignes, M. (2006). Low-frequency stimulation induces a new form of LTP, metabotropic glutamate (mGlu5) receptor- and PKA-dependent, in the CA1 area of the rat hippocampus. Hippocampus 16, 345–360.Google Scholar

  • Laroche, S., Doyere, V., and Bloch, V. (1989). Linear relation between the magnitude of long-term potentiation in the dentate gyrus and associative learning in the rat. A demonstration using commissural inhibition and local infusion of an N-methyl-D-aspartate receptor antagonist. Neuroscience 28, 375–386.CrossrefGoogle Scholar

  • Larson, J., Wong, D., and Lynch, G. (1986). Patterned stimulation at the θ frequency is optimal for the induction of hippocampal long-term potentiation. Brain Res. 368, 347–350.CrossrefPubMedGoogle Scholar

  • Lattal, K.M. and Abel, T. (2001). Different requirements for protein synthesis in acquisition and extinction of spatial preferences and context-evoked fear. J. Neurosci. 21, 5773–5780.Google Scholar

  • Lattal, K.M. and Abel, T. (2004). Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. Proc. Natl. Acad. Sci. USA 101, 4667–4672.CrossrefGoogle Scholar

  • Lee, S.-H., Choi, J.-H., Lee, N., Lee, H.-R., Kim, J.-I., Yu, N.-K., Choi, S.-L., Lee, S.-H., Kim, H., and Kaang, B.-K. (2008). Synaptic protein degradation underlies destabilization of retrieved fear memory. Science 319, 1253–1256.Google Scholar

  • Lee, S.H., Kwak, C., Shim, J., Kim, J.E., Choi, S.L., Kim, H.F., Jang, D.J., Lee, J.A., Lee, K., Lee, C.H., et al. (2012). A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia. Proc. Natl. Acad. Sci. USA 109, 14200–14205.CrossrefGoogle Scholar

  • Lehmann, H., Lecluse, V., Houle, A., and Mumby, D.G. (2006). Retrograde amnesia following hippocampal lesions in the shock-probe conditioning test. Hippocampus 16, 379–387.CrossrefPubMedGoogle Scholar

  • Lehmann, H., Lacanilao, S., and Sutherland, R.J. (2007). Complete or partial hippocampal damage produces equivalent retrograde amnesia for remote contextual fear memories. Eur. J. Neurosci. 25, 1278–1286.PubMedCrossrefGoogle Scholar

  • Li, S., Cullen, W.K., Anwyl, R., and Rowan, M.J. (2003). Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat. Neurosci. 6, 526–531.Google Scholar

  • Ling, D.S.F., Benardo, L.S., Serrano, P.A., Blace, N., Kelly, M.T., Crary, J.F., and Sacktor, T.C. (2002). Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nat. Neurosci. 5, 295–296.PubMedCrossrefGoogle Scholar

  • Lipton, P. and Whittingham, T.S. (1984). Energy metabolism and brain slice function. In: Brain Slices. R. Dingledine, ed. (New York: Plenum Press), pp. 113–153.Google Scholar

  • Lisman, J. (2003). Long-term potentiation: outstanding questions and attempted synthesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 829–842.CrossrefGoogle Scholar

  • Lisman, J., Raghavachari, S., Otmakhov, N., and Otmakhova, N. (2005). The phases of LTP: the new complexities. In: Synaptic Plasticity and Transsynaptic Signaling. P. Stanton, C. Bramham and H. Scharfman, eds. (Springer: US), pp. 343–357.Google Scholar

  • Little, Z., Grover, L.M., and Teyler, T.J. (1995). Metabotropic glutamate receptor antagonist, (R,S)-α-methyl-4-carboxyphenyglycine, blocks two distinct forms of long-term potentiation in area CA1 of rat hippocampus. Neurosci. Lett. 201, 73–76.CrossrefGoogle Scholar

  • Loftus, E. and Yuille, J. (1984). Departures from reality in human perception and memory. In: Memory Consolidation: Psychobiology of Cognition. H. Weingartner and E. Parker, eds. (Hillsdale: Lawrence Erlbaum Associates), pp. 163–184.Google Scholar

  • Lopez, J., Gamache, K., Schneider, R., and Nader, K. (2015). Memory retrieval requires ongoing protein synthesis and NMDA receptor activity-mediated AMPA receptor trafficking. J. Neurosci. 35, 2465–2475.CrossrefGoogle Scholar

  • Lovinger, D.M., Wong, K.L., Murakami, K., and Routtenberg, A. (1987). Protein kinase C inhibitors eliminate hippocampal long-term potentiation. Brain Res. 436, 177–183.PubMedCrossrefGoogle Scholar

  • Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268, 533–539.Google Scholar

  • Lu, Y.F., Kandel, E.R., and Hawkins, R.D. (1999). Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J. Neurosci. 19, 10250–10261.Google Scholar

  • Lu, X., Wyszynski, M., Sheng, M., and Baudry, M. (2001). Proteolysis of glutamate receptor-interacting protein by calpain in rat brain: implications for synaptic plasticity. J. Neurochem. 77, 1553–1560.CrossrefGoogle Scholar

  • Lynch, M.A. (2004). Long-term potentiation and memory. Physiol. Rev. 84, 87–136.PubMedCrossrefGoogle Scholar

  • Lynch, G. and Baudry, M. (1984a). Between model systems and memory: the use of physiological plasticity in hippocampus to identify cellular chemistries involved in memory storage. In: Neuropsychology of Memory. L. Squire and N. Butters, eds. (New York: The Guilford Press), pp. 513–520.Google Scholar

  • Lynch, G. and Baudry, M. (1984b). The biochemistry of memory: a new and specific hypothesis. Science 224, 1057–1063.CrossrefPubMedGoogle Scholar

  • Lynch, G. and Staubli, U. (1990). Reply to Rudy and Keith. Psychobiology 18, 369.Google Scholar

  • Lynch, G., Kramar, E.A., Rex, C.S., Jia, Y., Chappas, D., Gall, C.M., and Simmons, D.A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington’s disease. J. Neurosci. 27, 4424–4434.CrossrefGoogle Scholar

  • Lynch, G., Rex, C.S., Chen, L.Y., and Gall, C.M. (2008). The substrates of memory: defects, treatments, and enhancement. Eur. J. Pharmacol. 585, 2–13.Google Scholar

  • Ma’ayan, A. (2009). Insights into the organization of biochemical regulatory networks using graph theory analyses. J. Biol. Chem. 284, 5451–5455.CrossrefGoogle Scholar

  • Mabb, A.M. and Ehlers, M.D. (2010). Ubiquitination in postsynaptic function and plasticity. Annu. Rev. Cell Dev. Biol. 26, 179–210.PubMedCrossrefGoogle Scholar

  • Madani, R., Hulo, S., Toni, N., Madani, H., Steimer, T., Muller, D., and Vassalli, J.D. (1999). Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18, 3007–3012.PubMedCrossrefGoogle Scholar

  • Mahadevan, L.C., Willis, A.C., and Barratt, M.J. (1991). Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783.CrossrefGoogle Scholar

  • Maldonado, H., Jaffé, K., and Baldérrama, N. (1979). The dynamics of learning in the praying mantis (Stagmatoptera biocellata). J. Insect Physiol. 25, 525–533.CrossrefGoogle Scholar

  • Malenka, R.C. (1991). Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6, 53–60.Google Scholar

  • Malenka, R.C. (1994). Multiple forms of NMDA receptor-dependent synaptic plasticity in the hippocampus. In: Long-term Potentiation. M. Baudry and J.L. Davis, eds. (Cambridge: A Bradford Book), pp. 121–141.Google Scholar

  • Malenka, R.C. and Nicoll, R.A. (1999). Long-term potentiation – a decade of progress? Science 285, 1870–1874.PubMedCrossrefGoogle Scholar

  • Malinow, R., Madison, D.V., and Tsien, R.W. (1988). Persistent protein kinase activity underlying long-term potentiation. Nature 335, 820–824.PubMedCrossrefGoogle Scholar

  • Malinow, R., Schulman, H., and Tsien, R.W. (1989). Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866.PubMedCrossrefGoogle Scholar

  • Malleret, G., Haditsch, U., Genoux, D., Jones, M.W., Bliss, T.V., Vanhoose, A.M., Weitlauf, C., Kandel, E.R., Winder, D.G., and Mansuy, I.M. (2001). Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell 104, 675–686.CrossrefPubMedGoogle Scholar

  • Manabe, T., Noda, Y., Mamiya, T., Katagiri, H., Houtani, T., Nishi, M., Noda, T., Takahashi, T., Sugimoto, T., Nabeshima, T., et al. (1998). Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Nature 394, 577–581.Google Scholar

  • Manabe, T., Togashi, H., Uchida, N., Suzuki, S.C., Hayakawa, Y., Yamamoto, M., Yoda, H., Miyakawa, T., Takeichi, M., and Chisaka, O. (2000). Loss of cadherin-11 adhesion receptor enhances plastic changes in hippocampal synapses and modifies behavioral responses. Mol. Cell. Neurosci. 15, 534–546.PubMedCrossrefGoogle Scholar

  • Mansuy, I.M., Winder, D.G., Moallem, T.M., Osman, M., Mayford, M., Hawkins, R.D., and Kandel, E.R. (1998). Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21, 257–265.CrossrefGoogle Scholar

  • Manzoni, O.J., Weisskopf, M.G., and Nicoll, R.A. (1994). MCPG antagonizes metabotropic glutamate receptors but not long-term potentiation in the hippocampus. Eur. J. Neurosci. 6, 1050–1054.PubMedCrossrefGoogle Scholar

  • Mao, I., Liu, J., Li, X., and Luo, H. (2008). REGγ, a proteasome activator and beyond? Cell. Mol. Life Sci. 65, 3971–3980.PubMedCrossrefGoogle Scholar

  • Maren, S., DeCola, J.P., Swain, R.A., Fanselow, M.S., and Thompson, R.F. (1994). Parallel augmentation of hippocampal long-term potentiation, θ rhythm, and contextual fear conditioning in water-deprived rats. Behav. Neurosci. 108, 44–56.CrossrefPubMedGoogle Scholar

  • Martin, S.J. (1998). Time-dependent reversal of dentate LTP by 5 Hz stimulation. Neuroreport 9, 3775–3781.PubMedCrossrefGoogle Scholar

  • Martin, S.J., Grimwood, P.D., and Morris, R.G. (2000). Synaptic plasticity and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23, 649–711.CrossrefPubMedGoogle Scholar

  • Martin, S.J., de Hoz, L., and Morris, R.G.M. (2005). Retrograde amnesia: neither partial nor complete hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after reminding. Neuropsychologia 43, 609–624.CrossrefGoogle Scholar

  • Martinez, J., Jr., Jensen, R.A., and McGaugh, J.L. (1981). Attenuation of experimentally-induced amnesia. Prog. Neurobiol. 16, 155–186.PubMedCrossrefGoogle Scholar

  • Matsushita, M., Tomizawa, K., Moriwaki, A., Li, S.T., Terada, H., and Matsui, H. (2001). A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. J. Neurosci. 21, 6000–6007.Google Scholar

  • Matthies, H. (1973). Biochemical regulation of synaptic connectivity. In: Memory and Transfer of Information. H. Zippel, ed. (New York: Plenum Press), pp. 531–547.Google Scholar

  • Matthies, H. (1974). The biochemical basis of learning and memory. Life Sci. 15, 2017–2031.PubMedCrossrefGoogle Scholar

  • Matthies, H. (1988). Long-term synaptic potentiation and macromolecular changes in memory formation. In: Synaptic Plasticity in the Hippocampus. H. Haas and G. Buzsaki, eds. (Berlin: Springer-Verlag), pp. 119–121.Google Scholar

  • Matthies, H. (1989). In search of cellular mechanisms of memory. Prog. Neurobiol. 32, 277–349.CrossrefPubMedGoogle Scholar

  • Matthies, H. and Reymann, K.G. (1993). Protein kinase A inhibitors prevent the maintenance of hippocampal long-term potentiation. Neuroreport 4, 712–714.PubMedCrossrefGoogle Scholar

  • Matthies, H., Frey, U., Reymann, K., Krug, M., Jork, R., and Schroeder, H. (1990). Different mechanisms and multiple stages of LTP. Adv. Exp. Med. Biol. 268, 359–368.CrossrefGoogle Scholar

  • Matthies, H., Becker, A., Schröeder, H., Kraus, J., Höllt, V., and Krug, M. (1997). Dopamine D1-deficient mutant mice do not express the late phase of hippocampal long-term potentiation. Neuroreport 8, 3533–3535.CrossrefGoogle Scholar

  • Matties, G. (1972). Pharmacological influence on the teaching and memorization processes. Farmakol. Toksikol. 35, 259–265.PubMedGoogle Scholar

  • Matzel, L.D., Talk, A.C., Muzzio, I.A., and Rogers, R.F. (1998). Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation. Rev. Neurosci. 9, 129–167.PubMedGoogle Scholar

  • Maviel, T., Durkin, T.P., Menzaghi, F., and Bontempi, B. (2004). Sites of neocortical reorganization critical for remote spatial memory. Science 305, 96–99.Google Scholar

  • McClelland, J.L., McNaughton, B.L., and O’Reilly, R.C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457.CrossrefGoogle Scholar

  • McEachern, J.C. and Shaw, C.A. (1996). An alternative to the LTP orthodoxy: a plasticity-pathology continuum model. Brain Res. Brain Res. Rev. 22, 51–92.PubMedCrossrefGoogle Scholar

  • McGaugh, J.L. (1966). Time-dependent processes in memory storage. Science 153, 1351–1358.Google Scholar

  • McGaugh, J.L. and Dawson, R.G. (1971). Modification of memory storage processes. In: Animal Memory. W.K. Honig and P.H.R. James, eds. (New York: Academic Press), pp. 215–242.Google Scholar

  • McGaugh, J.L. and Herz, M.J. (1972). Memory Consolidation. San Francisco: Albion Publishing Company.Google Scholar

  • McNaughton, B.L. (1993). The mechanism of expression of long-term enhancement of hippocampal synapses: current issues and theoretical implications. Annu. Rev. Physiol. 55, 375–396.PubMedCrossrefGoogle Scholar

  • McNaughton, B.L., Douglas, R.M., and Goddard, G.V. (1978). Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res. 157, 277–293.PubMedCrossrefGoogle Scholar

  • Meeter, M. and Murre, J.M.J. (2004). Consolidation of long-term memory: evidence and alternatives. Psychol. Bull. 130, 843–857.CrossrefPubMedGoogle Scholar

  • Mei, F., Nagappan, G., Ke, Y., Sacktor, T.C., and Lu, B. (2011). BDNF facilitates L-LTP maintenance in the absence of protein synthesis through PKMζ. PLoS One 6, e21568.Google Scholar

  • Mendez, R., Murthy, K.G., Ryan, K., Manley, J.L., and Richter, J.D. (2000). Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6, 1253–1259.CrossrefGoogle Scholar

  • Meng, J., Meng, Y., Hanna, A., Janus, C., and Jia, Z. (2005). Abnormal long-lasting synaptic plasticity and cognition in mice lacking the mental retardation gene Pak3. J. Neurosci. 25, 6641–6650.CrossrefGoogle Scholar

  • Menzel, R., Gaio, U., Gerberding, M., Nerarava, E., and Wittstock, S. (1993). Formation of long term olfactory memory in honeybees does not require protein synthesis. Naturwissenschaften 80, 380–382.CrossrefGoogle Scholar

  • Messaoudi, E., Kanhema, T., Soulé, J., Tiron, A., Dagyte, G., da Silva, B., and Bramham, C.R. (2007). Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 27, 10445–10455.CrossrefGoogle Scholar

  • Miller, V.M., and Best, P.J. (1980). Spatial correlates of hippocampal unit activity are altered by lesions of the fornix and endorhinal cortex. Brain Res. 194, 311–323.PubMedCrossrefGoogle Scholar

  • Miller, R.R. and Matzel, L.D. (2000). Memory involves far more than ‘consolidation’. Nat. Rev. Neurosci. 1, 214–216.PubMedCrossrefGoogle Scholar

  • Miller, S., Yasuda, M., Coats, J.K., Jones, Y., Martone, M.E., and Mayford, M. (2002). Disruption of dendritic translation of CaMKIIa impairs stabilization of synaptic plasticity and memory consolidation. Neuron 36, 507–519.CrossrefGoogle Scholar

  • Miyashita, T., Kubik, S., Lewandowski, G., and Guzowski, J.F. (2008). Networks of neurons, networks of genes: an integrated view of memory consolidation. Neurobiol. Learn. Mem. 89, 269–284.PubMedCrossrefGoogle Scholar

  • Mochida, H., Sato, K., Sasaki, S., Yazawa, I., Kamino, K., and Momose-Sato, Y. (2001). Effects of anisomycin on LTP in the hippocampal CA1: long-term analysis using optical recording. Neuroreport 12, 987–991.CrossrefGoogle Scholar

  • Mody, I., Baimbridge, K.G., and Miller, J.J. (1984). Blockade of tetanic- and calcium-induced long-term potentiation in the hippocampal slice preparation by neuroleptics. Neuropharmacology 23, 625–631.CrossrefPubMedGoogle Scholar

  • Montarolo, P.G., Goelet, P., Castellucci, V.F., Morgan, J., Kandel, E.R., and Schacher, S. (1986). A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234, 1249–1254.Google Scholar

  • Morgan, S.L. and Teyler, T.J. (2001). Electrical stimuli patterned after the θ-rhythm induce multiple forms of LTP. J. Neurophysiol. 86, 1289–1296.Google Scholar

  • Morley, S.J. and McKendrick, L. (1997). Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J. Biol. Chem. 272, 17887–17893.Google Scholar

  • Morris, R. (1990). It’s heads they win, tails I lose! Psychobiology 18, 261–266.Google Scholar

  • Moser, E.I., Krobert, K.A., Moser, M.B., and Morris, R.G. (1998). Impaired spatial learning after saturation of long-term potentiation. Science 281, 2038–2042.Google Scholar

  • Müller, G. and Pilzecker, A. (1900). Experimentelle beiträge zur lehre vom gedächtnis. Z. Psychol. Ergänz. 1, 1–300.Google Scholar

  • Muller, D., Turnbull, J., Baudry, M., and Lynch, G. (1988). Phorbol ester-induced synaptic facilitation is different than long-term potentiation. Proc. Natl. Acad. Sci. USA 85, 6997–7000.CrossrefGoogle Scholar

  • Mumby, D.G., Astur, R.S., Weisend, M.P., and Sutherland, R.J. (1999). Retrograde amnesia and selective damage to the hippocampal formation: memory for places and object discriminations. Behav. Brain Res. 106, 97–107.CrossrefPubMedGoogle Scholar

  • Musti, A.M., Treier, M., and Bohmann, D. (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science 275, 400–402.CrossrefPubMedGoogle Scholar

  • Nadel, L. and Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227.PubMedCrossrefGoogle Scholar

  • Nakajima, S. (1975). Amnesic effect of cycloheximide in the mouse mediated by adrenocortical hormones. J. Comp. Physiol. Psychol. 88, 378–385.CrossrefGoogle Scholar

  • Navakkode, S., Sajikumar, S., and Frey, J.U. (2004). The type IV-specific phosphodiesterase inhibitor rolipram and its effect on hippocampal long-term potentiation and synaptic tagging. J. Neurosci. 24, 7740–7744.CrossrefGoogle Scholar

  • Nayak, A., Zastrow, D.J., Lickteig, R., Zahniser, N.R., and Browning, M.D. (1998). Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis. Nature 394, 680–683.Google Scholar

  • Nguyen, P.V. and Kandel, E.R. (1996). A macromolecular synthesis-dependent late phase of long-term potentiation requiring cAMP in the medial perforant pathway of rat hippocampal slices. J. Neurosci. 16, 3189–3198.Google Scholar

  • Nguyen, P.V. and Kandel, E.R. (1997). Brief θ-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn. Mem. 4, 230–243.Google Scholar

  • Nguyen, P.V., Abel, T., and Kandel, E.R. (1994). Requirement of a critical period of transcription for induction of a late phase of LTP. Science 265, 1104–1107.CrossrefPubMedGoogle Scholar

  • Nicole, O., Docagne, F., Ali, C., Margaill, I., Carmeliet, P., MacKenzie, E.T., Vivien, D., and Buisson, A. (2001). The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nat. Med. 7, 59–64.CrossrefPubMedGoogle Scholar

  • Niewoehner, B., Single, F.N., Hvalby, Ø., Jensen, V., Meyer zum Alten Borgloh, S., Seeburg, P.H., Rawlins, J.N.P., Sprengel, R., and Bannerman, D.M. (2007). Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur. J. Neurosci. 25, 837–846.CrossrefGoogle Scholar

  • Nosyreva, E.D. and Huber, K.M. (2005). Developmental switch in synaptic mechanisms of hippocampal metabotropic glutamate receptor-dependent long-term depression. J. Neurosci. 25, 2992–3001.CrossrefGoogle Scholar

  • Nosyreva, E.D., and Huber, K.M. (2006). Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J. Neurophysiol. 95, 3291–3295.CrossrefGoogle Scholar

  • O’Carroll, C.M. and Morris, R.G.M. (2004). Heterosynaptic co-activation of glutamatergic and dopaminergic afferents is required to induce persistent long-term potentiation. Neuropharmacology 47, 324–332.CrossrefGoogle Scholar

  • O’Connor, J.J., Rowan, M.J., and Anwyl, R. (1995). Tetanically induced LTP involves a similar increase in the AMPA and NMDA receptor components of the excitatory postsynaptic current: investigations of the involvement of mGlu receptors. J. Neurosci. 15, 2013–2020.Google Scholar

  • O’Dell, T.J., Kandel, E.R., and Grant, S.G. (1991). Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353, 558–560.Google Scholar

  • O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51, 78–109.CrossrefGoogle Scholar

  • O’Keefe, J. and Conway, D. (1978). Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31, 573–590.CrossrefGoogle Scholar

  • O’Keefe, J. and Nadel, L. (1978). The Hippocampus as a Cognitive Map (Oxford: Clarendon Press).Google Scholar

  • O’Reilly, R.C. and Rudy, J.W. (2000). Computational principles of learning in the neocortex and hippocampus. Hippocampus 10, 389–397.CrossrefGoogle Scholar

  • Okabe, S., Collin, C., Auerbach, J.M., Meiri, N., Bengzon, J., Kennedy, M.B., Segal, M., and McKay, R.D. (1998). Hippocampal synaptic plasticity in mice overexpressing an embryonic subunit of the NMDA receptor. J. Neurosci. 18, 4177–4188.Google Scholar

  • Oliet, S.H., Malenka, R.C., and Nicoll, R.A. (1997). Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982.CrossrefGoogle Scholar

  • Oliver, G.W., Rose, G.P., Brimblecombe, R.W., and Livett, B.H. (1979). Analysis of Y-maze learning in mice using cycloheximide. Gen. Pharmacol. 10, 489–497.CrossrefGoogle Scholar

  • Oliver, M.W., Baudry, M., and Lynch, G. (1989). The protease inhibitor leupeptin interferes with the development of LTP in hippocampal slices. Brain Res. 505, 233–238.Google Scholar

  • Olton, D., Shapiro, M., and Hulse, S. (1984). Working memory of serial patterns. In: Animal Cognition. H. Roitblat, T. Bever and H. Terrace, eds. (Hillsdale: Lawrence Erlbaum Associates Publishers), pp. 171–182.Google Scholar

  • Orlowski, M. and Wilk, S. (2003). Ubiquitin-independent proteolytic functions of the proteasome. Arch. Biochem. Biophys. 415, 1–5.Google Scholar

  • Orrego, F. and Lipmann, F. (1967). Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids. J. Biol. Chem. 242, 665–671.Google Scholar

  • Osten, P., Valsamis, L., Harris, A., and Sacktor, T.C. (1996). Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation. J. Neurosci. 16, 2444–2451.Google Scholar

  • Otani, S., Marshall, C., Tate, W., Goddard, G., and Abraham, W. (1989). Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519–526.CrossrefPubMedGoogle Scholar

  • Otani, S., Roisin-Lallemand, M.P., and Ben-Ari, Y. (1992). Enhancement of extracellular protein concentrations during long-term potentiation in the rat hippocampal slice. Neuroscience 47, 265–272.CrossrefPubMedGoogle Scholar

  • Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W.-H., Hempstead, B.L., and Lu, B. (2004). Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306, 487–491.PubMedCrossrefGoogle Scholar

  • Panja, D. and Bramham, C.R. (2014). BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76, 664–676.PubMedCrossrefGoogle Scholar

  • Park, S., Park, J.M., Kim, S., Kim, J.A., Shepherd, J.D., Smith-Hicks, C.L., Chowdhury, S., Kaufmann, W., Kuhl, D., Ryazanov, A.G., et al. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59, 70–83.CrossrefGoogle Scholar

  • Park, P., Volianskis, A., Sanderson, T.M., Bortolotto, Z.A., Jane, D.E., Zhuo, M., Kaang, B.-K., and Collingridge, G.L. (2013). NMDA receptor-dependent long-term potentiation comprises a family of temporally overlapping forms of synaptic plasticity that are induced by different patterns of stimulation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130131.CrossrefGoogle Scholar

  • Parsons, R.G., Gafford, G.M., and Helmstetter, F.J. (2006). Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983.CrossrefGoogle Scholar

  • Parvez, S., Ramachandran, B., and Frey, J.U. (2010a). Functional differences between and across different regions of the apical branch of hippocampal CA1 dendrites with respect to long-term depression induction and synaptic cross-tagging. J. Neurosci. 30, 5118–5123.Google Scholar

  • Parvez, S., Ramachandran, B., and Frey, J.U. (2010b). Properties of subsequent induction of long-term potentiation and/or depression in one synaptic input in apical dendrites of hippocampal CA1 neurons in vitro. Neuroscience 171, 712–720.Google Scholar

  • Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C., and Kandel, E.R. (1996). Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16, 1137–1145.CrossrefPubMedGoogle Scholar

  • Paulus, H. and Alpers, J.B. (1971). Preconditioning: an obligatory step in the biosynthesis of oligomeric enzymes and its promotion by allosteric ligands. Enzyme 12, 385–401.PubMedGoogle Scholar

  • Popov, N.S., Reymann, K.G., Schulzeck, K., Schulzeck, S., and Matthies, H. (1988). Alterations in calmodulin content in fractions of rat hippocampal slices during tetanic- and calcium-induced long-term potentiation. Brain Res. Bull. 21, 201–206.CrossrefPubMedGoogle Scholar

  • Power, A.E., Berlau, D.J., McGaugh, J.L., and Steward, O. (2006). Anisomycin infused into the hippocampus fails to block ‘reconsolidation’ but impairs extinction: the role of re-exposure duration. Learn. Mem. 13, 27–34.PubMedCrossrefGoogle Scholar

  • Proverbio, F. and Hoffman, J.F. (1977). Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J. Gen. Physiol. 69, 605–632.CrossrefGoogle Scholar

  • Qi, Z. and Gold, P.E. (2009). Intrahippocampal infusions of anisomycin produce amnesia: contribution of increased release of norepinephrine, dopamine, and acetylcholine. Learn. Mem. 16, 308–314.CrossrefPubMedGoogle Scholar

  • Qi, M., Zhuo, M., Skålhegg, B.S., Brandon, E.P., Kandel, E.R., McKnight, G.S., and Idzerda, R.L. (1996). Impaired hippocampal plasticity in mice lacking the Cb1 catalytic subunit of cAMP-dependent protein kinase. Proc. Natl. Acad. Sci. USA 93, 1571–1576.CrossrefGoogle Scholar

  • Quartermain, D. (1976). The influence of drugs on learning and memory. In: Neural Mechanisms of Learning and Memory. M. Rosenzweig and E. Bennett, eds. (Cambridge: The MIT Press), pp. 508–518.Google Scholar

  • Quartermain, D. and Botwinick, C.Y. (1975). Role of the biogenic amines in the reversal of cycloheximide-induced amnesia. J. Comp. Physiol. Psychol. 88, 386–401.CrossrefGoogle Scholar

  • Quartermain, D., and McEwen, B.S. (1970). Temporal characteristics of amnesia induced by protein synthesis inhibitor: determination by shock level. Nature 228, 677–678.CrossrefPubMedGoogle Scholar

  • Quartermain, D., McEwen, B.S., and Azmitia, E., Jr. (1972). Recovery of memory following amnesia in the rat and mouse. J. Comp. Physiol. Psychol. 79, 360–370.CrossrefGoogle Scholar

  • Quevedo, J., Vianna, M.R., Roesler, R., de-Paris, F., Izquierdo, I., and Rose, S.P. (1999). Two time windows of anisomycin-induced amnesia for inhibitory avoidance training in rats: protection from amnesia by pretraining but not pre-exposure to the task apparatus. Learn. Mem. 6, 600–607.PubMedCrossrefGoogle Scholar

  • Racine, R.J. and de Jonge, M. (1988). Short-term and long-term potentiation in projection pathways and local circuits. In: Long-term Potentiation: From Biophysics to Behavior. P.W. Landfield and S.A. Deadwyler, eds. (New York: Alan R. Liss), pp. 167–197.Google Scholar

  • Racine, R.J., Milgram, N.W., and Hafner, S. (1983). Long-term potentiation phenomena in the rat limbic forebrain. Brain Res. 260, 217–231.CrossrefPubMedGoogle Scholar

  • Radulovic, J. and Tronson, N.C. (2008). Protein synthesis inhibitors, gene superinduction and memory: too little or too much protein? Neurobiol. Learn. Mem. 89, 212–218.CrossrefPubMedGoogle Scholar

  • Rainbow, T.C., Adler, J.E., and Flexner, L.B. (1976). Comparison in mice of the amnestic effects of cycloheximide and 6-hydroxydopamine in a one-trial passive avoidance task. Pharmacol. Biochem. Behav. 4, 347–349.CrossrefGoogle Scholar

  • Rainbow, T.C., Hoffman, P.L., and Flexner, L.B. (1980). Studies of memory: a reevaluation in mice of the effects of inhibitors on the rate of synthesis of cerebral proteins as related to amnesia. Pharmacol. Biochem. Behav. 12, 79–84.CrossrefPubMedGoogle Scholar

  • Randt, C.T., Barnett, B.M., McEwen, B.S., and Quartermain, D. (1971). Amnesic effects of cycloheximide on two strains of mice with different memory characteristics. Exp. Neurol. 30, 467–474.CrossrefPubMedGoogle Scholar

  • Randt, C.T., Korein, J., and Levidow, L. (1973). Localization of action of two amnesia producing drugs in freely moving mice. Exp. Neurol. 41, 628–634.CrossrefPubMedGoogle Scholar

  • Raymond, C.R. (2007). LTP forms 1, 2 and 3: different mechanisms for the ‘long’ in long-term potentiation. Trends Neurosci. 30, 167–175.Google Scholar

  • Raymond, C.R. and Redman, S.J. (2006). Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J. Physiol. 570, 97–111.Google Scholar

  • Raymond, C.R., Thompson, V.L., Tate, W.P., and Abraham, W.C. (2000). Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J. Neurosci. 20, 969–976.Google Scholar

  • Rechsteiner, M. (1987). Ubiquitin-mediated pathways for intracellular proteolysis. Annu. Rev. Cell Biol. 3, 1–30.CrossrefPubMedGoogle Scholar

  • Redondo, R.L., Okuno, H., Spooner, P.A., Frenguelli, B.G., Bito, H., and Morris, R.G.M. (2010). Synaptic tagging and capture: differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation. J. Neurosci. 30, 4981–4989.CrossrefGoogle Scholar

  • Reymann, K.G. (1997). As in long-term memory, LTP is consolidated by reinforcers. Behav. Brain Sci. 20, 627–628.CrossrefGoogle Scholar

  • Reymann, K.G. and Frey, J.U. (2007). The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52, 24–40.CrossrefPubMedGoogle Scholar

  • Reymann, K.G., Malisch, R., Schulzeck, K., Brödemann, R., Ott, T., and Matthies, H. (1985). The duration of long-term potentiation in the CA1 region of the hippocampal slice preparation. Brain Res. Bull. 15, 249–255.CrossrefGoogle Scholar

  • Reymann, K.G., Brödemann, R., Kase, H., and Matthies, H. (1988a). Inhibitors of calmodulin and protein kinase C block different phases of hippocampal long-term potentiation. Brain Res. 461, 388–392.CrossrefPubMedGoogle Scholar

  • Reymann, K.G., Frey, U., Jork, R., and Matthies, H. (1988b). Polymyxin B, an inhibitor of protein kinase C, prevents the maintenance of synaptic long-term potentiation in hippocampal CA1 neurons. Brain Res. 440, 305–314.CrossrefGoogle Scholar

  • Reymann, K.G., Frey, U., and Matthies, H. (1988c). A multi-phase model of synaptic long-term potentiation in hippocampal CA1 neurones: protein kinase C activation and protein synthesis are required for the maintenance of the trace. In: Synaptic Plasticity in the Hippocampus. H. Haas and G. Buzsaki, eds. (Berlin: Springer-Verlag), pp. 126–129.Google Scholar

  • Ribot, T. (1882). Diseases of Memory (London: Kegan Paul, Trench & Co.).Google Scholar

  • Ringold, G.M., Dieckmann, B., Vannice, J.L., Trahey, M., and McCormick, F. (1984). Inhibition of protein synthesis stimulates the transcription of human β-interferon genes in Chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA 81, 3964–3968.CrossrefGoogle Scholar

  • Ris, L. and Godaux, E. (2007). Synapse specificity of long-term potentiation breaks down with aging. Learn. Mem. 14, 185–189.CrossrefPubMedGoogle Scholar

  • Ris, L., Villers, A., and Godaux, E. (2009). Synaptic capture-mediated long-lasting long-term potentiation is strongly dependent on mRNA translation. Neuroreport 20, 1572–1576.PubMedCrossrefGoogle Scholar

  • Rodriguez-Ortiz, C.J., Garcia-DeLaTorre, P., Benavidez, E., Ballesteros, M.A., and Bermudez-Rattoni, F. (2008). Intrahippocampal anisomycin infusions disrupt previously consolidated spatial memory only when memory is updated. Neurobiol. Learn. Mem. 89, 352–359.CrossrefGoogle Scholar

  • Rosenbaum, R.S., Moscovitch, M., Foster, J.K., Schnyer, D.M., Gao, F., Kovacevic, N., Verfaellie, M., Black, S.E., and Levine, B. (2008). Patterns of autobiographical memory loss in medial-temporal lobe amnesic patients. J. Cogn. Neurosci. 20, 1490–1506.Google Scholar

  • Rothman, S. (2010). How is the balance between protein synthesis and degradation achieved? Theor. Biol. Med. Model 7, 25.CrossrefPubMedGoogle Scholar

  • Routtenberg, A. (2008). The substrate for long-lasting memory: if not protein synthesis, then what? Neurobiol. Learn. Mem. 89, 225–233.CrossrefPubMedGoogle Scholar

  • Routtenberg, A. and Rekart, J.L. (2005). Post-translational protein modification as the substrate for long-lasting memory. Trends Neurosci. 28, 12–19.CrossrefPubMedGoogle Scholar

  • Rudy, J.W. and Sutherland, R.J. (1995). Configural association theory and the hippocampal formation: an appraisal and reconfiguration. Hippocampus 5, 375–389.CrossrefPubMedGoogle Scholar

  • Rudy, J.W. and Sutherland, R.J. (2008). Is it systems or cellular consolidation? Time will tell. An alternative interpretation of the Morris group’s recent science paper. Neurobiol. Learn. Mem. 89, 366–369.CrossrefGoogle Scholar

  • Rudy, J.W., Biedenkapp, J.C., Moineau, J., and Bolding, K. (2006). Anisomycin and the reconsolidation hypothesis. Learn. Mem. 13, 1–3.PubMedCrossrefGoogle Scholar

  • Ryazanov, A.G., Shestakova, E.A., and Natapov, P.G. (1988). Phosphorylation of elongation factor 2 by EF-2 kinase affects rate of translation. Nature 334, 170–173.Google Scholar

  • Sadowski, R.N., Canal, C.E., and Gold, P.E. (2011). Lidocaine attenuates anisomycin-induced amnesia and release of norepinephrine in the amygdala. Neurobiol. Learn. Mem. 96, 136–142.PubMedCrossrefGoogle Scholar

  • Sajikumar, S. and Frey, J.U. (2004). Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD. Neurobiol. Learn. Mem. 82, 12–25.PubMedCrossrefGoogle Scholar

  • Sajikumar, S., Navakkode, S., and Frey, J.U. (2005). Protein synthesis-dependent long-term functional plasticity: methods and techniques. Curr. Opin. Neurobiol. 15, 607–613.CrossrefPubMedGoogle Scholar

  • Sajikumar, S., Navakkode, S., and Frey, J.U. (2008). Distinct single but not necessarily repeated tetanization is required to induce hippocampal late-LTP in the rat CA1. Learn. Mem. 15, 46–49.CrossrefGoogle Scholar

  • Salinska, E., Bourne, R.C., and Rose, S.P. (2004). Reminder effects: the molecular cascade following a reminder in young chicks does not recapitulate that following training on a passive avoidance task. Eur. J. Neurosci. 19, 3042–3047.PubMedCrossrefGoogle Scholar

  • Salmon, D.P., Lasker, B.R., Butters, N., and Beatty, W.W. (1988). Remote memory in a patient with circumscribed amnesia. Brain Cogn. 7, 201–211.CrossrefGoogle Scholar

  • Sarvey, J. (1988). Protein synthesis in long-term potentiation and norepinephrine-induced long-lasting potentiation in hippocampus. In: Long-term Potentiation: From Biophysics to Behavior. P. Landfield and S. Deadwyler, eds. (New York: Alan R. Liss), pp. 329–353.Google Scholar

  • Schacher, S. and Wu, F. (2002). Synapse formation in the absence of cell bodies requires protein synthesis. J. Neurosci. 22, 1831–1839.Google Scholar

  • Schafe, G.E., Nadel, N.V., Sullivan, G.M., Harris, A., and LeDoux, J.E. (1999). Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn. Mem. 6, 97–110.PubMedGoogle Scholar

  • Scharf, M.T., Woo, N.H., Lattal, K.M., Young, J.Z., Nguyen, P.V., and Abel, T. (2002). Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. J. Neurophysiol. 87, 2770–2777.Google Scholar

  • Scheetz, A.J., Nairn, A.C., and Constantine-Paton, M. (1997). N-methyl-D-aspartate receptor activation and visual activity induce elongation factor-2 phosphorylation in amphibian tecta: a role for N-methyl-D-aspartate receptors in controlling protein synthesis. Proc. Natl. Acad. Sci. USA 94, 14770–14775.CrossrefGoogle Scholar

  • Scheetz, A.J., Nairn, A.C., and Constantine-Paton, M. (2000). NMDA receptor-mediated control of protein synthesis at developing synapses. Nat. Neurosci. 3, 211–216.PubMedCrossrefGoogle Scholar

  • Schmaltz, G. and Clement-Forestier, D. (1977). Aversive and amnesic effects of cycloheximide in the rat. Physiol. Behav. 18, 381–386.CrossrefGoogle Scholar

  • Schulz, D., Huston, J.P., Jezek, K., Haas, H.L., Roth-Härer, A., Selbach, O., and Luhmann, H.J. (2002). Water maze performance, exploratory activity, inhibitory avoidance and hippocampal plasticity in aged superior and inferior learners. Eur. J. Neurosci. 16, 2175–2185.PubMedCrossrefGoogle Scholar

  • Schulz, D., Sergeeva, O.A., Ianovskii, E., Luhmann, H.J., Haas, H.L., and Huston, J.P. (2004). Behavioural parameters in aged rats are related to LTP and gene expression of ChAT and NMDA-NR2 subunits in the striatum. Eur. J. Neurosci. 19, 1373–1383.CrossrefGoogle Scholar

  • Seidenbecher, T., Reymann, K.G., and Balschun, D. (1997). A post-tetanic time window for the reinforcement of long-term potentiation by appetitive and aversive stimuli. Proc. Natl. Acad. Sci. USA 94, 1494–1499.CrossrefGoogle Scholar

  • Selig, D.K., Lee, H.K., Bear, M.F., and Malenka, R.C. (1995). Reexamination of the effects of MCPG on hippocampal LTP, LTD, and depotentiation. J. Neurophysiol. 74, 1075–1082.Google Scholar

  • Sergueeva, O.A., Fedorov, N.B., and Reymann, K.G. (1993). An antagonist of glutamate metabotropic receptors, (RS)-α-methyl-4-carboxyphenylglycine, prevents the LTP-related increase in postsynaptic AMPA sensitivity in hippocampal slices. Neuropharmacology 32, 933–935.PubMedCrossrefGoogle Scholar

  • Serota, R.G. (1971). Acetoxycycloheximide and transient amnesia in the rat. Proc. Natl. Acad. Sci. USA 68, 1249–1250.CrossrefGoogle Scholar

  • Serrano, P., Yao, Y., and Sacktor, T.C. (2005). Persistent phosphorylation by protein kinase Mζ maintains late-phase long-term potentiation. J. Neurosci. 25, 1979–1984.CrossrefGoogle Scholar

  • Sharma, A.V., Nargang, F.E., and Dickson, C.T. (2012). Neurosilence: profound suppression of neural activity following intracerebral administration of the protein synthesis inhibitor anisomycin. J. Neurosci. 32, 2377–2387.CrossrefGoogle Scholar

  • Shors, T.J. and Matzel, L.D. (1997). Long-term potentiation: what’s learning got to do with it? Behav. Brain Sci. 20, 597–614; discussion 614–655.Google Scholar

  • Simon, S.M., Peskin, C.S., and Oster, G.F. (1992). What drives the translocation of proteins? Proc. Natl. Acad. Sci. USA 89, 3770–3774.CrossrefGoogle Scholar

  • Smolen, P., Baxter, D.A., and Byrne, J.H. (2009). Interlinked dual-time feedback loops can enhance robustness to stochasticity and persistence of memory. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 79, 031902.CrossrefPubMedGoogle Scholar

  • Spanis, C.W. and Squire, L.R. (1978). Elevation of brain tyrosine by inhibitors of protein synthesis is not responsible for their amnesic effect. Brain Res. 139, 384–388.CrossrefPubMedGoogle Scholar

  • Sparks, F.T., Lehmann, H., Hernandez, K., and Sutherland, R.J. (2011). Suppression of neurotoxic lesion-induced seizure activity: evidence for a permanent role for the hippocampus in contextual memory. PLoS One 6, e27426.Google Scholar

  • Sparks, F.T., Spanswick, S.C., Lehmann, H., and Sutherland, R.J. (2013). Neither time nor number of context-shock pairings affect long-term dependence of memory on hippocampus. Neurobiol. Learn. Mem. 106, 309–315.PubMedCrossrefGoogle Scholar

  • Speese, S.D., Trotta, N., Rodesch, C.K., Aravamudan, B., and Broadie, K. (2003). The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr. Biol. 13, 899–910.PubMedCrossrefGoogle Scholar

  • Spencer, H. (1855). The Principles of Psychology (London: Longman, Brown, Green, and Longmans).Google Scholar

  • Spencer, H. (1862). A System of Synthetic Philosophy: First Principles (Auburn: Molinari Institute).Google Scholar

  • Squire, L.R. (1986). Mechanisms of memory. Science 232, 1612–1619.PubMedCrossrefGoogle Scholar

  • Squire, L. and Barondes, S. (1972). Inhibitors of cerebral protein or RNA synthesis and memory. In: Macromolecules and Behavior. J. Gaito, ed. (New York: Appleton-Century-Crofts), pp. 61–82.Google Scholar

  • Squire, L.R. and Barondes, S.H. (1976). Amnesic effect of cycloheximide not due to depletion of a constitutive brain protein with short half-life. Brain Res. 103, 183–189.CrossrefGoogle Scholar

  • Squire, L.R. and Davis, H.P. (1981). The pharmacology of memory: a neurobiological perspective. Annu. Rev. Pharmacol. Toxicol. 21, 323–356.PubMedCrossrefGoogle Scholar

  • Squire, L.R. and Wixted, J.T. (2011). The cognitive neuroscience of human memory since H.M. Annu. Rev. Neurosci. 34, 259–288.PubMedCrossrefGoogle Scholar

  • Squire, L.R., Kuczenski, R., and Barondes, S.H. (1974). Tyrosine hydroxylase inhibition by cycloheximide and anisomycin is not responsible for their amnesic effect. Brain Res. 82, 241–248.CrossrefPubMedGoogle Scholar

  • Squire, L.R., Shimamura, A.P., and Amaral, D.G. (1989). Memory and the hippocampus. In: Neural Models of Plasticity. J.H. Byrne and W.O. Berry, eds. (San Diego: Academic Press), pp. 208–239.Google Scholar

  • Squire, L.R., Zola-Morgan, S., Cave, C.B., Haist, F., Musen, G., and Suzuki, W.A. (1990). Memory: organization of brain systems and cognition. Cold Spring Harb. Symp. Quant. Biol. 55, 1007–1023.CrossrefGoogle Scholar

  • Stanton, P.K. and Sarvey, J.M. (1984). Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J. Neurosci. 4, 3080–3088.Google Scholar

  • Stanton, P.K. and Sarvey, J.M. (1985). Blockade of norepinephrine-induced long-lasting potentiation in the hippocampal dentate gyrus by an inhibitor of protein synthesis. Brain Res. 361, 276–283.CrossrefPubMedGoogle Scholar

  • Star, E.N., Kwiatkowski, D.J., and Murthy, V.N. (2002). Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 5, 239–246.CrossrefPubMedGoogle Scholar

  • Staubli, U. (1990). Behavioral reflections of the NMDA system. Psychobiology 18, 267–268.Google Scholar

  • Staubli, U. and Lynch, G. (1987). Stable hippocampal long-term potentiation elicited by ‘θ’ pattern stimulation. Brain Res. 435, 227–234.Google Scholar

  • Stäubli, U., Faraday, R., and Lynch, G. (1985). Pharmacological dissociation of memory: anisomycin, a protein synthesis inhibitor, and leupeptin, a protease inhibitor, block different learning tasks. Behav. Neural Biol. 43, 287–297.PubMedCrossrefGoogle Scholar

  • Stäubli, U., Chun, D., and Lynch, G. (1998). Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 18, 3460–3469.Google Scholar

  • Steward, O. and Schuman, E.M. (2001). Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24, 299–325.PubMedCrossrefGoogle Scholar

  • Straube, T., Korz, V., Balschun, D., and Frey, J.U. (2003). Requirement of β-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus. J. Physiol. 552, 953–960.Google Scholar

  • Sutherland, R.J., Weisend, M.P., Mumby, D., Astur, R.S., Hanlon, F.M., Koerner, A., Thomas, M.J., Wu, Y., Moses, S.N., Cole, C., et al. (2001). Retrograde amnesia after hippocampal damage: recent vs. remote memories in two tasks. Hippocampus 11, 27–42.PubMedCrossrefGoogle Scholar

  • Sutherland, R.J., Lehmann, H., Spanswick, S.C., Sparks, F.T., and Melvin, N.R. (2006). Growth points in research on memory and hippocampus. Can. J. Exp. Psychol. Rev. Can. Psychol. Exp. 60, 166–174.Google Scholar

  • Sutherland, R.J., O’Brien, J., and Lehmann, H. (2008). Absence of systems consolidation of fear memories after dorsal, ventral, or complete hippocampal damage. Hippocampus 18, 710–718.CrossrefPubMedGoogle Scholar

  • Sutherland, R.J., Sparks, F.T., and Lehmann, H. (2010). Hippocampus and retrograde amnesia in the rat model: A modest proposal for the situation of systems consolidation. Neuropsychologia 48, 2357–2369.CrossrefGoogle Scholar

  • Sutton, M.A., Ito, H.T., Cressy, P., Kempf, C., Woo, J.C., and Schuman, E.M. (2006). Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125, 785–799.CrossrefPubMedGoogle Scholar

  • Sutton, M.A., Taylor, A.M., Ito, H.T., Pham, A., and Schuman, E.M. (2007). Postsynaptic decoding of neural activity: eEF2 as a biochemical sensor coupling miniature synaptic transmission to local protein synthesis. Neuron 55, 648–661.CrossrefGoogle Scholar

  • Tai, H.-C. and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826–838.PubMedCrossrefGoogle Scholar

  • Tang, S.J., Reis, G., Kang, H., Gingras, A.-C., Sonenberg, N., and Schuman, E.M. (2002). A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc. Natl. Acad. Sci. USA 99, 467–472.CrossrefGoogle Scholar

  • Tanzi, E. (1893). I fatti e la induzioni nell ‘odierna istologia del sistema nervoso. Riv. Sper. Freniatr. Med. Leg. Alienazioni Met. Soc. Ital. Psichiatria 19, 419–472.Google Scholar

  • Teyler, T.J. and DiScenna, P. (1986). The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154.CrossrefPubMedGoogle Scholar

  • Thomas, M.J. and O’Dell, T.J. (1995). The molecular switch hypothesis fails to explain the inconsistent effects of the metabotropic glutamate receptor antagonist MCPG on long-term potentiation. Brain Res. 695, 45–52.Google Scholar

  • Thompson, R.F. (1986). The neurobiology of learning and memory. Science 233, 941–947.CrossrefPubMedGoogle Scholar

  • Tischmeyer, W., Schicknick, H., Kraus, M., Seidenbecher, C.I., Staak, S., Scheich, H., and Gundelfinger, E.D. (2003). Rapamycin-sensitive signalling in long-term consolidation of auditory cortex-dependent memory. Eur. J. Neurosci. 18, 942–950.PubMedCrossrefGoogle Scholar

  • Tokuda, H., Hatakeyama, D., Shibata, T., Akamatsu, S., Oiso, Y., and Kozawa, O. (2003). p38 MAP kinase regulates BMP-4-stimulated VEGF synthesis via p70 S6 kinase in osteoblasts. Am. J. Physiol. Endocrinol. Metab. 284, E1202–E1209.CrossrefGoogle Scholar

  • Trachsel, H., Erni, B., Schreier, M.H., and Staehelin, T. (1977). Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J. Mol. Biol. 116, 755–767.CrossrefGoogle Scholar

  • Tsien, J.Z. (2000). Linking Hebb’s coincidence-detection to memory formation. Curr. Opin. Neurobiol. 10, 266–273.CrossrefGoogle Scholar

  • Tsokas, P., Grace, E.A., Chan, P., Ma, T., Sealfon, S.C., Iyengar, R., Landau, E.M., and Blitzer, R.D. (2005). Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation. J. Neurosci. 25, 5833–5843.CrossrefGoogle Scholar

  • Tsvetkov, P., Myers, N., Eliav, R., Adamovich, Y., Hagai, T., Adler, J., Navon, A., and Shaul, Y. (2014). NADH binds and stabilizes the 26S proteasomes independent of ATP. J. Biol. Chem. 289, 11272–11281.CrossrefGoogle Scholar

  • Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M. (1994). Genetic dissection of consolidated memory in Drosophila. Cell 79, 35–47.CrossrefGoogle Scholar

  • Turrigiano, G.G. and Nelson, S.B. (2004). Homeostatic plasticity in the developing nervous system. Nat. Rev. Neurosci. 5, 97–107.PubMedCrossrefGoogle Scholar

  • Ungar, G., Aschheim, I., Psychoyos, S., and Romano, D.V. (1957). Reversible changes of protein configuration in stimulated nerve structures. J. Gen. Physiol. 40, 635–652.CrossrefGoogle Scholar

  • Van Oudenaarden, A. and Theriot, J.A. (1999). Cooperative symmetry-breaking by actin polymerization in a model for cell motility. Nat. Cell Biol. 1, 493–499.CrossrefGoogle Scholar

  • Vanderklish, P., Saido, T.C., Gall, C., Arai, A., and Lynch, G. (1995). Proteolysis of spectrin by calpain accompanies θ-burst stimulation in cultured hippocampal slices. Brain Res. Mol. Brain Res. 32, 25–35.PubMedCrossrefGoogle Scholar

  • Vanderklish, P.W., Krushel, L.A., Holst, B.H., Gally, J.A., Crossin, K.L., and Edelman, G. M. (2000). Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. USA 97, 2253–2258.CrossrefGoogle Scholar

  • Verity, M.A., Brown, W.J., and Cheung, M.K. (1979). On the mechanism of ouabain inhibition of synaptosome protein synthesis. J. Neurochem. 32, 1295–1301.CrossrefGoogle Scholar

  • Vickers, C.A. and Wyllie, D.J.A. (2007). Late-phase, protein synthesis-dependent long-term potentiation in hippocampal CA1 pyramidal neurones with destabilized microtubule networks. Br. J. Pharmacol. 151, 1071–1077.Google Scholar

  • Vickers, C.A., Dickson, K.S., and Wyllie, D.J.A. (2005). Induction and maintenance of late-phase long-term potentiation in isolated dendrites of rat hippocampal CA1 pyramidal neurones. J. Physiol. 568, 803–813.Google Scholar

  • Villers, A., Godaux, E., and Ris, L. (2010). Late phase of L-LTP elicited in isolated CA1 dendrites cannot be transferred by synaptic capture. Neuroreport 21, 210–215.Google Scholar

  • Villers, A., Godaux, E., and Ris, L. (2012). Long-lasting LTP requires neither repeated trains for its induction nor protein synthesis for its development. PLoS One 7, e40823.Google Scholar

  • Volianskis, A. and Jensen, M.S. (2003). Transient and sustained types of long-term potentiation in the CA1 area of the rat hippocampus. J. Physiol. 550, 459–492.Google Scholar

  • Von Manteuffel, S.R., Gingras, A.C., Ming, X.F., Sonenberg, N., and Thomas, G. (1996). 4E-BP1 phosphorylation is mediated by the FRAP-p70S6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl. Acad. Sci. USA 93, 4076–4080.Google Scholar

  • Wallace, C.S., Lyford, G.L., Worley, P.F., and Steward, O. (1998). Differential intracellular sorting of immediate early gene mRNAs depends on signals in the mRNA sequence. J. Neurosci. 18, 26–35.Google Scholar

  • Wang, S.-H., Redondo, R.L., and Morris, R.G.M. (2010). Relevance of synaptic tagging and capture to the persistence of long-term potentiation and everyday spatial memory. Proc. Natl. Acad. Sci. USA 107, 19537–19542.CrossrefGoogle Scholar

  • Wang, Y., Zhu, G., Briz, V., Hsu, Y.-T., Bi, X., and Baudry, M. (2014). A molecular brake controls the magnitude of long-term potentiation. Nat. Commun. 5, 3051.PubMedGoogle Scholar

  • Waterlow, J.C., Garlick, P.J., and Millward, D. (1978). Protein turnover in mammalian tissues and in the whole body (Amsterdam: Elsevier/North-Holland Biomedical Press).Google Scholar

  • Weiskrantz, L. (1966). Experimental studies of amnesia. In: Amnesia. G. Whitty and O. Zangwill, eds. (London: Butterworths), pp. 1–35.Google Scholar

  • White, J.A., Rubinstein, J.T., and Kay, A.R. (2000). Channel noise in neurons. Trends Neurosci. 23, 131–137.PubMedCrossrefGoogle Scholar

  • Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097.Google Scholar

  • Willeumier, K., Pulst, S.M., and Schweizer, F.E. (2006). Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons. J. Neurosci. 26, 11333–11341.CrossrefGoogle Scholar

  • Williams, J., Dragunow, M., Lawlor, P., Mason, S., Abraham, W.C., Leah, J., Bravo, R., Demmer, J., and Tate, W. (1995). Krox20 may play a key role in the stabilization of long-term potentiation. Brain Res. Mol. Brain Res. 28, 87–93.CrossrefGoogle Scholar

  • Wilsch, V.W., Behnisch, T., Jäger, T., Reymann, K.G., and Balschun, D. (1998). When are class I metabotropic glutamate receptors necessary for long-term potentiation? J. Neurosci. 18, 6071–6080.Google Scholar

  • Wilson, D.A., Willner, J., Kurz, E.M., and Nadel, L. (1986). Early handling increases hippocampal long-term potentiation in young rats. Behav. Brain Res. 21, 223–227.CrossrefPubMedGoogle Scholar

  • Winder, D.G., Mansuy, I.M., Osman, M., Moallem, T.M., and Kandel, E.R. (1998). Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell 92, 25–37.CrossrefPubMedGoogle Scholar

  • Winocur, G., Moscovitch, M., and Bontempi, B. (2010). Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48, 2339–2356.PubMedCrossrefGoogle Scholar

  • Wittenberg, G.M. and Tsien, J.Z. (2002). An emerging molecular and cellular framework for memory processing by the hippocampus. Trends Neurosci. 25, 501–505.PubMedCrossrefGoogle Scholar

  • Wittstock, S. and Menzel, R. (1994). Color learning and memory in honey bees are not affected by protein synthesis inhibition. Behav. Neural Biol. 62, 224–229.PubMedCrossrefGoogle Scholar

  • Wittstock, S., Kaatz, H.H., and Menzel, R. (1993). Inhibition of brain protein synthesis by cycloheximide does not affect formation of long-term memory in honeybees after olfactory conditioning. J. Neurosci. 13, 1379–1386.Google Scholar

  • Woo, N.H. and Nguyen, P.V. (2002). ‘Silent’ metaplasticity of the late phase of long-term potentiation requires protein phosphatases. Learn. Mem. 9, 202–213.CrossrefPubMedGoogle Scholar

  • Woo, N.H. and Nguyen, P.V. (2003). Protein synthesis is required for synaptic immunity to depotentiation. J. Neurosci. 23, 1125–1132.Google Scholar

  • Woo, N.H., Duffy, S.N., Abel, T., and Nguyen, P.V. (2000). Genetic and pharmacological demonstration of differential recruitment of cAMP-dependent protein kinases by synaptic activity. J. Neurophysiol. 84, 2739–2745.Google Scholar

  • Woo, N.H., Duffy, S.N., Abel, T., and Nguyen, P.V. (2003). Temporal spacing of synaptic stimulation critically modulates the dependence of LTP on cyclic AMP-dependent protein kinase. Hippocampus 13, 293–300.CrossrefPubMedGoogle Scholar

  • Wood, M.A., Kaplan, M.P., Park, A., Blanchard, E.J., Oliveira, A.M.M., Lombardi, T.L., and Abel, T. (2005). Transgenic mice expressing a truncated form of CREB-binding protein (CBP) exhibit deficits in hippocampal synaptic plasticity and memory storage. Learn. Mem. 12, 111–119.PubMedCrossrefGoogle Scholar

  • Wu, Z.L., Thomas, S.A., Villacres, E.C., Xia, Z., Simmons, M.L., Chavkin, C., Palmiter, R.D., and Storm, D.R. (1995). Altered behavior and long-term potentiation in type I adenylyl cyclase mutant mice. Proc. Natl. Acad. Sci. USA. 92, 220–224.CrossrefGoogle Scholar

  • Xiong, W., Kojic, L.Z., Zhang, L., Prasad, S.S., Douglas, R., Wang, Y., and Cynader, M.S. (2006). Anisomycin activates p38 MAP kinase to induce LTD in mouse primary visual cortex. Brain Res. 1085, 68–76.Google Scholar

  • Yang, H.-W., Zhou, L.-J., Hu, N.-W., Xin, W.-J., and Liu, X.-G. (2005). Activation of spinal D1/D5 receptors induces late-phase LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. J. Neurophysiol. 94, 961–967.Google Scholar

  • Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, N., Yuasa, S., et al. (2007). SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell 130, 943–957.CrossrefGoogle Scholar

  • Yao, Y., Kelly, M.T., Sajikumar, S., Serrano, P., Tian, D., Bergold, P.J., Frey, J.U., and Sacktor, T.C. (2008). PKMζ maintains late long-term potentiation by N-ethylmaleimide-sensitive factor/GluR2-dependent trafficking of postsynaptic AMPA receptors. J. Neurosci. 28, 7820–7827.CrossrefGoogle Scholar

  • Yarmolinsky, M.B. and Haba, G.L. (1959). Inhibition by puromycin of amino acid incorporation into protein. Proc. Natl. Acad. Sci. USA 45, 1721–1729.CrossrefGoogle Scholar

  • Yi, J.J. and Ehlers, M.D. (2007). Emerging roles for ubiquitin and protein degradation in neuronal function. Pharmacol. Rev. 59, 14–39.PubMedCrossrefGoogle Scholar

  • Yin, X., Takei, Y., Kido, M.A., and Hirokawa, N. (2011). Molecular motor KIF17 is fundamental for memory and learning via differential support of synaptic NR2A/2B levels. Neuron 70, 310–325.Google Scholar

  • Young, J.Z. and Nguyen, P.V. (2005). Homosynaptic and heterosynaptic inhibition of synaptic tagging and capture of long-term potentiation by previous synaptic activity. J. Neurosci. 25, 7221–7231.CrossrefGoogle Scholar

  • Young, J.Z., Isiegas, C., Abel, T., and Nguyen, P.V. (2006). Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic tagging. Eur. J. Neurosci. 23, 1784–1794.CrossrefPubMedGoogle Scholar

  • Zandi, I. (2000). Science and engineering in the age of systems. A lecture presented at the International Council on System Engineering, September 2000, Philadelphia.Google Scholar

  • Zeng, H., Chattarji, S., Barbarosie, M., Rondi-Reig, L., Philpot, B.D., Miyakawa, T., Bear, M.F., and Tonegawa, S. (2001). Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell 107, 617–629.CrossrefPubMedGoogle Scholar

  • Zhang, L., Meng, K., Li, Y.-H., and Han, T.-Z. (2009). NR2A-containing NMDA receptors are required for L-LTP induction and depotentiation in CA1 region of hippocampal slices. Eur. J. Neurosci. 29, 2137–2144.CrossrefGoogle Scholar

  • Zhuo, M., Holtzman, D.M., Li, Y., Osaka, H., DeMaro, J., Jacquin, M., and Bu, G. (2000). Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20, 542–549.Google Scholar

About the article

Corresponding author: Abdul-Karim Abbas, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 432, S-40530 Gothenburg, Sweden, e-mail:


Received: 2014-10-16

Accepted: 2015-03-12

Published Online: 2015-05-20

Published in Print: 2015-10-01


Citation Information: Reviews in the Neurosciences, Volume 26, Issue 5, Pages 507–546, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0072.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alexander V. Maltsev, Natalia V. Bal, and Pavel M. Balaban
Neuropharmacology, 2018
[3]
Siamak Shahidi, Somayeh Zargooshnia, Sara Soleimani Asl, Alireza Komaki, and Abdolrahman Sarihi
Brain Research Bulletin, 2017, Volume 131, Page 142
[4]
[5]
Fiorenza Stagni, Andrea Giacomini, Sandra Guidi, Elisabetta Ciani, and Renata Bartesaghi
Frontiers in Behavioral Neuroscience, 2015, Volume 9

Comments (0)

Please log in or register to comment.
Log in