Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 27, Issue 3

Issues

Angiotensin II-triggered kinase signaling cascade in the central nervous system

Anjana Bali
  • Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Amteshwar Singh Jaggi
  • Corresponding author
  • Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-11-17 | DOI: https://doi.org/10.1515/revneuro-2015-0041

Abstract

Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer’s disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.

Keywords: angiotensin II; GSK 3, kinases; MAPK; p38 MAPK; Rho/ROCK kinase

References

  • Agarwal, D., Dange, R.B., Raizada, M.K., and Francis, J. (2013). Angiotensin II causes imbalance between pro- and anti-inflammatory cytokines by modulating GSK-3β in neuronal culture. Br. J. Pharmacol. 169, 860–874.Google Scholar

  • Alessi, D.R., Saito, Y., Campbell, D.G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C.J., and Cowley, S. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610–1619.Google Scholar

  • Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 271, 20246–20249.Google Scholar

  • Armando, I., Carranza, A., Nishimura, Y., Hoe, K.L., Barontini, M., Terrón, J.A., Falcón-Neri, A., Ito, T., Juorio, A.V., and Saavedra, J.M. (2001). Peripheral administration of an angiotensin I AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to stress. Endocrinology 142, 3880–3889.Google Scholar

  • Bali, A. and Jaggi, A.S. (2013). Angiotensin as stress mediator: role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol. Res. 76, 49–57.Google Scholar

  • Bali, A. and Jaggi, A.S. (2015). Preclinical experimental stress studies: protocols, assessment and comparison. Eur. J. Pharmacol. 746, 282–292.Google Scholar

  • Beaulieu, J.M., Gainetdinov, R.R., and Caron, M.G. (2007). The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci. 28, 166–172.Google Scholar

  • Cai, H., Griendling, K.K., and Harrison, D.G. (2003). The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci. 24, 471–478.Google Scholar

  • Chen, Z.Y. and Yao, W.J. (2013). Role of Rho/ROCK in the migration of vascular smooth muscle cells. Sheng Li KeXue Jin Zhan 44, 269–274.Google Scholar

  • Chen, M., Liu, A., Ouyang, Y., Huang, Y., Chao, X., and Pi, R. (2013). Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert. Opin. Investig. Drugs 22, 537–550.Google Scholar

  • Cheng, W.H., Lu, P.J., Ho, W.Y., Tung, C.S., Cheng, P.W., Hsiao, M., and Tseng, C.J. (2010). Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ. Res. 106, 788–795.Google Scholar

  • Clark, M.A., Landrum, M.H., Tallant, E.A. (2001) Angiotensin II activates mitogen-activated protein kinases and stimulates growth in rat medullary astrocytes. Faseb Journal. 15, A1169.Google Scholar

  • Clark, M.A. and Gonzalez, N. (2007a). Angiotensin II stimulates rat astrocyte mitogen-activated protein kinase activity and growth through EGF and PDGF receptor transactivation. Regul. Pept. 144, 115–122.Google Scholar

  • Clark, M.A. and Gonzalez, N. (2007b). Src and Pyk 2 mediate angiotensin II effects in cultured rat astrocytes. Regul. Pept. 143, 47–55.Google Scholar

  • Coble, J.P., Johnson, R.F., Cassell, M.D., Johnson, A.K., Grobe, J.L., and Sigmund, C.D. (2014a). Activity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brainangiotensin. Hypertension 64, 141–148.Google Scholar

  • Coble, J.P., Cassell, M.D., Davis, D.R., Grobe, J.L., and Sigmund, C.D. (2014b). Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R376–R386.Google Scholar

  • Dasari, V.R., Veeravalli, K.K., Saving, K.L., Gujrati, M., Fassett, D., Klopfenstein, J.D., Dinh, D.H., and Rao J.S. (2008). Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiol. Dis. 32, 486–498.Google Scholar

  • Davies, N.M., Kehoe, P.G., Ben-Shlomo, Y., Martin, R.M. (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis. 26, 699–708.Google Scholar

  • Delaney, J., Chiarello, R., Villar, D., Kandalam, U., Castejon, A.M., and Clark, M.A. (2008). Regulation of c-fos, c-jun and c-myc gene expression by angiotensin II in primary cultured rat astrocytes: role of ERK1/2 MAP kinases. Neurochem. Res. 33, 545–550.Google Scholar

  • Eddleston, M. and Mucke, L. (1993). Molecular profile of reactive astrocytes – implications for their role in neurologic disease. Neuroscience 54, 15–36.Google Scholar

  • Eguchi, S., Iwasaki, H., Inagami, T., Numaguchi, K., Yamakawa, T., Motley, E.D., Owada, K.M., Marumo, F., and Hirata, Y. (1999). Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertensión 33, 201–206.Google Scholar

  • Endoh, T. (2005). Involvement of Src tyrosine kinase and mitogen-activated protein kinase in the facilitation of calcium channels in rat nucleus of the tractussolitarius by angiotensin II. J. Physiol. 568, 851–865.Google Scholar

  • Gendron, L., Laflamme, L., Rivard, N., Asselin, C., Payet, M.D., and Gallo-Payet, N. (1999). Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol. Endocrinol. 13, 1615–1626.Google Scholar

  • Gendron, L., Oligny, J.F., Payet, M.D., and Gallo-Payet, N. (2003). Cyclic AMP-independent involvement of Rap1/B-Raf in the angiotensin II AT2 receptor signaling pathway in NG108-15 cells. J. Biol. Chem. 278, 3606–3614.Google Scholar

  • Gong, W.K., Lü, J., Wang, F., Wang, B., Wang, M.Y., and Huang, H.P. (2015). Effects of angiotensin type 2 receptor on secretion of the locus coeruleus in stress-induced hypertension rats. Brain Res. Bull. 111, 62–68.Google Scholar

  • Gould, T.D. and Manji, H.K. (2005). Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30, 1223–1237.Google Scholar

  • Guan, R., Xu, X., Chen, M., Hu, H., Ge, H., Wen, S., Zhou, S., and Pi, R. (2013). Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur. J. Med. Chem. 70, 613–622.Google Scholar

  • Guimond, M.O., Roberge, C., and Gallo-Payet, N. (2010). Fyn is involved in angiotensin II type 2 receptor-induced neurite outgrowth, but not in p42/p44mapk in NG108-15 cells. Mol. Cell Neurosci. 45, 201–212.Google Scholar

  • Higuchi, S., Ohtsu, H., Suzuki, H., Shirai, H., Frank, G.D., and Eguchi, S. (2007). Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond). 112, 417–428.Google Scholar

  • Hu, S., Cui, W., Mak, S., Tang, J., Choi, C., Pang, Y., and Han, Y. (2013). Bis(propyl)-cognitin protects against glutamateinduced neuro-excitotoxicity via concurrent regulation of NO, MAPK/ERK and PI3-K/Akt/ GSK3β pathways. Neurochem. Int. 62, 468–477.Google Scholar

  • Hubbard, S.R. and Till, J.H. (2000). Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398.Google Scholar

  • Joglar, B., Rodriguez-Pallares, J., Rodriguez-Perez, A.I., Rey, P., Guerra, M.J., and Labandeira-Garcia, J.L. (2009). The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J. Neurochem. 109, 656–669.Google Scholar

  • Jope, R.S. (1999). Anti-bipolar therapy: mechanism of action of lithium. Mol. Psychiatry 4, 117–128.Google Scholar

  • Jope, R.S. and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95–102.Google Scholar

  • Jope, R.S. and Roh, M.S. (2006). Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr. Drug Targets 7, 1421–1434.Google Scholar

  • Justicia, C., Gabriel, C., and Planas, A.M. (2000). Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30, 253–270.Google Scholar

  • Kaminska, B., Gozdz, A., Zawadzka, M., Ellert-Miklaszewska, A., and Lipko, M. (2009). MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat. Rec. (Hoboken) 292, 1902–1913.Google Scholar

  • Kandalam, U. and Clark, M.A. (2010). Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes. Regul. Pept. 159, 110–116.Google Scholar

  • Kim, E.K. and Choi, E.J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta. 1802, 396–405.Google Scholar

  • Klein, P.S. and Melton, D.A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.Google Scholar

  • Kozak, W., Kozak, A., Johnson, M.H., Elewa, H.F., and Fagan, S.C. (2008). Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study. J. Pharamcol. Exp. Ther. 326, 773–782.Google Scholar

  • Kyriakis, J.M., App, H., Zhang, X.F., Banerjee, P., Brautigan, D.L., Rapp, U.R., and Avruch, J. (1992). Raf-1 activates MAP kinase-kinase. Nature 358, 417–421.Google Scholar

  • Lal, H., Ahmad, F., Woodgett, J., and Force, T. (2015). The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 116, 138–149.Google Scholar

  • Lee, B.H. and Kim, Y.K. (2009). Increased plasma brain-derived neurotropic factor, not nerve growth factor-Beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology 59, 51–58.Google Scholar

  • Lee, J.H., Lee, E.O., Kang, J.L., and Chong, Y.H. (2008a). Concomitant degradation of beta-catenin and GSK-3 beta potently contributes to glutamate-induced neurotoxicity in rat hippocampal slice cultures. J. Neurochem. 106, 1066–1077.Google Scholar

  • Lee, M.H., El-Shewy, H.M., Luttrell, D.K., and Luttrell, L.M. (2008b). Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription. J. Biol. Chem. 283, 2088–2097.Google Scholar

  • Leung, T., Chen, X.Q., Manser, E., and Lim, L. (1996). The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16, 5313–5327.Google Scholar

  • Li, X., Bijur, G.N., and Jope, R.S. (2002). Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar. Disord. 4, 137–144.Google Scholar

  • Li, N.C., Lee, A., Whitmer, R.A., Kivipelto, M., Lawler, E., Kazis, L.E., Wolozin, B. (2010). Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 12, b5465.CrossrefGoogle Scholar

  • Ma, F.Y., Grattan, D.R., Bobrovskaya, L., Dunkley, P.R., and Bunn, S.J. (2004). Angiotensin II regulates tyrosine hydroxylase activity and mRNA expression in rat mediobasal hypothalamic cultures: the role of specific protein kinases. J. Neurochem. 90, 431–441.Google Scholar

  • Maddahi, A. and Edvinsson, L. (2010). Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J. Neuroinflammation. 7, 14.Google Scholar

  • Matavelli, L.C. and Siragy, H.M. (2015). AT2 receptor activities and pathophysiological implications. J. Cardiovasc. Pharmacol. 65, 226–232.Google Scholar

  • Meister, M., Tomasovic, A., Banning, A., and Tikkanen R. (2013). Mitogen-activated protein (MAP) kinase scaffolding proteins: a recount. Int. J. Mol. Sci. 14, 4854–4884.Google Scholar

  • Mueller, B.K., Mack, H., and Teusch, N. (2005). Rho kinase, a promising drug target for neurological disorders. Nat. Rev. Drug Discov. 4, 387–398.Google Scholar

  • Nakagawa, O., Fujisawa, K., Ishizaki, T., Saito, Y., Nakao, K., and Narumiya, S. (1996). ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392, 189–193.Google Scholar

  • Nasr, S.J., Crayton, J.W., Agarwal, B., Wendt, B., and Kora, R. (2011). Lower frequency of antidepressant use in patients on renin-angiotensin-aldosterone system modifying medications. Cell. Mol. Neurobiol. 31, 615–618.Google Scholar

  • Nemoto, W., Nakagawasai, O., Yaoita, F., Kanno, S., Yomogida, S., Ishikawa, M., Tadano, T., and Tan-No, K. (2013). Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice. Mol. Pain. 9, 38.Google Scholar

  • Nishimoto, T., Kihara, T., Akaike, A., Niidome, T., and Sugimoto, H. (2008). Alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3beta. J. Neurosci. Res. 86, 1096–1105.Google Scholar

  • Ohtsu, H., Suzuki, H., Nakashima, H., Dhobale, S., Frank, G.D., Motley, E.D., and Eguchi, S. (2006). Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 48, 534–540.Google Scholar

  • Olson, M.F., Ashworth, A., and Hall, A. (1995). An essential role for Rho, Rac, and Cdc42GTPases in cell cycle progression through G1. Science 269, 1270–1272.Google Scholar

  • Omura-Matsuoka, E., Yagita, Y., Sasaki, T., Terasaki, Y., Oyama, N., Sugiyama, Y., Okazaki, S., Sakoda, S., and Kitagawa, K. (2009). Postischemic administration of angiotensin II type 1 receptor blocker reduces cerebral infarction size in hypertensive rats. Hypertens. Res. 32, 548–553.Google Scholar

  • Pang, T., Wang, J., Benicky, J., Sánchez-Lemus, E., and Saavedra, J.M. (2012). Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J. Neuroinflamm. 9, 102.Google Scholar

  • Pang, T., Sun, L.X., Wang, T., Jiang, Z.Z., Liao, H., and Zhang, L.Y. (2014). Telmisartan protects central neurons against nutrient deprivation-induced apoptosis in vitro through activation of PPARγ and the Akt/GSK-3β pathway. Acta Pharmacol. Sin. 35, 727–737.Google Scholar

  • Phiel, C.J. and Klein, P.S. (2001). Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813.Google Scholar

  • Phillips, M.I. (1997). Functions of angiotensin in the central nervous system. Annu. Rev. Physiol. 3, 103–126.Google Scholar

  • Phillips, M.I. and de Oliveira, E.M. (2008). Brain renin angiotensin in disease. J. Mol. Med. (Berl). 86, 715–722.Google Scholar

  • Plouffe, B., Guimond, M.O., Beaudry, H., and Gallo-Payet, N. (2006). Role of tyrosine kinase receptors in angiotensin II AT2 receptor signaling: involvement in neurite outgrowth and in p42/p44mapk activation in NG108-15 cells. Endocrinology 147, 4646–4654.Google Scholar

  • Rey, P., Lopez-Real, A., Sanchez-Iglesias, S., Muñoz, A., Soto-Otero, R., and Labandeira-Garcia, J.L. (2007). Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol. Aging 28, 555–567.Google Scholar

  • Rocic, P., Govindarajan, G., Sabri, A., and Lucchesi P.A. (2001). A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am. J. Physiol. Cell Physiol. 280, C90–C909.Google Scholar

  • Rodriguez-Pallares, J., Rey, P., Parga, J.A., Muñoz, A., Guerra, M.J., and Labandeira-Garcia, J.L. (2008). Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol. Dis. 31, 58–73.Google Scholar

  • Rodriguez-Perez, A.I., Borrajo, A., Rodriguez-Pallares, J., Guerra, M.J., and Labandeira-Garcia, J.L. (2014). Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia. 63, 466–482.Google Scholar

  • Saavedra, J.M. (1992). Brain and pituitary angiotensin. Endocr. Rev. 18, 21–53.Google Scholar

  • Sagara, Y., Hirooka, Y., Nozoe, M., Ito, K., Kimura, Y., and Sunagawa, K. (2007). Pressor response induced by central angiotensin II is mediated by activation of Rho/Rho-kinase pathway via AT1 receptors. J. Hypertens. 25, 399–406.Google Scholar

  • Sakai, K., Agassandian, K., Morimoto, S., Sinnayah, P., Cassell, M.D., Davisson, R.L., and Sigmund, C.D. (2007). Local production of angiotensin II in the subfornical organ causes elevated drinking. J. Clin. Invest. 117, 1088–1095.Google Scholar

  • Satoh, K., Fukumoto, Y., and Shimokawa, H. (2011). Rho-kinase: important new therapeutic target in cardiovascular diseases, Am. J. Physiol. Heart Circ. Physiol. 301, H287–eH296.Google Scholar

  • Saxena, A., Bachelor, M., Park, Y.H., Carreno, F.R., Nedungadi, T.P., and Cunningham, J.T. (2014). Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R945–R955.Google Scholar

  • Sayeski, P.P. and Ali, M.S. (2003). The critical role of c-Src and the Shc/Grb2/ERK2 signaling pathway in angiotensin II-dependent VSMC proliferation. Exp. Cell. Res. 287, 339–349.Google Scholar

  • Seger, R. and Krebs, E.G. (1995). The MAPK signaling cascade. FASEB J. 9, 726–735.Google Scholar

  • Seguin, L.R., Villarreal, R.S., and Ciuffo, G.M. (2012). AT2 receptors recruit c-Src, SHP-1 and FAK upon activation by Ang II in PND15 rat hindbrain. Neurochem. Int. 60, 199–207.Google Scholar

  • Sheikh, A.M., Nagai, A., Ryu, J.K., McLarnon, J.G., Kim, S.U., and Masuda, J. (2009). Lysophosphatidylcholine induces glial cell activation: role of rho kinase. Glia 57, 898–907.Google Scholar

  • Shenkar, R., Yum, H.K., Arcaroli, J., Kupfner, J., and Abraham, E. (2001). Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L418–L426.Google Scholar

  • Simpson, J.B. and Routtenberg, A. (1975). Subfornical organ lesions reduce intravenous angiotensin-induced drinking. Brain Res. 88, 154–161.Google Scholar

  • Simpson, J.B., Epstein, A.N., and Camardo, J.S. Jr. (1978). Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J. Comp. Physiol. Psychol. 92, 581–601.Google Scholar

  • Stornetta, R.L., Hawelu-Johnson, C.L., Guyenet, P.G., and Lynch, K.R. (1988). Astrocytes synthesize angiotensinogen in brain. Science 242, 1444–1446.Google Scholar

  • Sutton, L.P., Honardoust, D., Mouyal, J., Rajakumar, N., and Rushlow, W.J. (2007). Activation of the canonical Wnt pathway by the antipsychotics haloperidol and clozapine involves dishevelled-3. J. Neurochem. 102, 153–169.Google Scholar

  • Tallant, E.A. and Higson, J.T. (1997). Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia 19, 333–342.Google Scholar

  • Tian, M., Zhu, D., Xie, W., and Shi, J. (2012). Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 586, 3737–3745.Google Scholar

  • Touyz, R.M., He, G., El Mabrouk, M., Diep, Q., Mardigyan, V., and Schiffrin E.L. (2001). Differential activation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen activated-protein kinase by AT1 receptors in vascular smooth muscle cells from Wistar-Kyoto rats and spontaneously hypertensive rats. J. Hypertens. 19, 553–559.Google Scholar

  • Ueda, Y., Hirai, S., Osada, S., Suzuki, A., Mizuno, K., and Ohno, S. (1996). Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271, 23512–23519.Google Scholar

  • Umschweif, G., Liraz-Zaltsman, S., Shabashov, D., Alexandrovich, A., Trembovler, V., Horowitz, M., and Shohami, E. (2014). Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 11, 665–678.Google Scholar

  • Villar-Cheda, B., Dominguez-Meijide, A., Joglar, B., Rodriguez-Perez, A.I., Guerra, M.J., and Labandeira-Garcia, J.L. (2012). Involvement of microglial RhoA/Rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol. Dis. 47, 268–279.Google Scholar

  • Wang, J., Pang, T., Hafko, R., Benicky, J., Sanchez-Lemus, E., and Saavedra, J.M. (2014). Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγ activation. Neuropharmacology 79, 249–261.Google Scholar

  • Wei, S.G., Yu, Y., Zhang, Z.H., Weiss, R.M., and Felder, R.B. (2008). Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats. Hypertension 52, 342–350.Google Scholar

  • Weng, H.R., Gao, M., and Maixner, D.W. (2014). Glycogen synthase kinase 3 beta regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain. Exp. Neurol. 252, 18–27.Google Scholar

  • Wright, J.W. and Harding, J.W. (2013). The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflüger’s Arch. 465, 133–151.Google Scholar

  • Yagita, Y., Kitagawa, K., Sasaki, T., Terasaki, Y., Todo, K., Omura-Matsuoka, E., Kaibuchi, K., and Hori, M. (2007). Rho-kinase activation in endothelial cells contributes to expansion of infarction after focal cerebral ischemia. J. Neurosci. Res. 85, 2460–2469.Google Scholar

  • Yu, Y., Xue, B.J., Zhang, Z.H., Wei, S.G., Beltz, T.G., Guo, F., Johnson, A.K., and Felder, R.B. (2013). Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 61, 842–849.Google Scholar

  • Zhang, T.L., Fu, J.L., Geng, Z., Yang, J.J., and Sun, X.J. (2012a). The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci. Ther. 18, 981–987.Google Scholar

  • Zhang, Z.H., Yu, Y., Wei, S.G., and Felder, R.B. (2012b). Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am. J. Physiol. Heart Circ. Physiol. 302, H742–H751.Google Scholar

  • Zou, Y., Komuro, I., Yamazaki, T., Aikawa, R., Kudoh, S., Shiojima, I., Hiroi, Y., Mizuno, T., and Yazaki Y. (1996). Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J. Biol. Chem. 271, 33592–33597.Google Scholar

About the article

Corresponding author: Amteshwar Singh Jaggi, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India, e-mail: ;


Received: 2015-08-17

Accepted: 2015-09-26

Published Online: 2015-11-17

Published in Print: 2016-04-01


Citation Information: Reviews in the Neurosciences, Volume 27, Issue 3, Pages 301–315, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2015-0041.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Xiaoxue Gong, Hui Hu, Yi Qiao, Pengfei Xu, Mengqi Yang, Ruili Dang, Wenxiu Han, Yujin Guo, Dan Chen, and Pei Jiang
Frontiers in Pharmacology, 2019, Volume 10
[2]
Amar P. Jadhav and Farid G. Sadaka
The American Journal of Emergency Medicine, 2019, Volume 37, Number 6, Page 1169
[3]
Mariana Rosso Melo, Silvia Gasparini, Guilherme F. Speretta, Elaine Fernanda Silva, Gustavo Rodrigues Pedrino, Jose V. Menani, Daniel B. Zoccal, Débora Simões Almeida Colombari, and Eduardo Colombari
Hypertension Research, 2019, Volume 42, Number 5, Page 587

Comments (0)

Please log in or register to comment.
Log in