Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 27, Issue 5


Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: behavioral and neural studies

Ahmed A. Moustafa
  • Corresponding author
  • School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales 2214, Australia
  • Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Srinivasa Chakravarthy / Joseph R. Phillips
  • School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacob J. Crouse
  • School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ankur Gupta / Michael J. Frank
  • Department of Cognitive, Linguistic Sciences and Psychological Sciences, Brown Institute for Brain Science, Brown University, Providence, RI 02912, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Julie M. Hall
  • School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marjan Jahanshahi
  • Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-16 | DOI: https://doi.org/10.1515/revneuro-2015-0070


Parkinson’s disease (PD) is characterized by a range of motor symptoms. Besides the cardinal symptoms (tremor, bradykinesia/akinesia, and rigidity), PD patients also show other motor deficits, including gait disturbance, speech deficits, and impaired handwriting. However, along with these key motor symptoms, PD patients also experience cognitive deficits in attention, executive function, working memory, and learning. Recent evidence suggests that these motor and cognitive deficits of PD are not completely dissociable, as aspects of cognitive dysfunction can impact motor performance in PD. In this article, we provide a review of behavioral and neural studies on the associations between motor symptoms and cognitive deficits in PD, specifically akinesia/bradykinesia, tremor, gait, handwriting, precision grip, and speech production. This review paves the way for providing a framework for understanding how treatment of cognitive dysfunction, for example cognitive rehabilitation programs, may in turn influence the motor symptoms of PD.

Keywords: akinesia; bradykinesia; cognitive dysfunction; cognitive training; freezing of gait; grip force; Parkinson’s disease; postural instability; tremor


  • Aarsland, D., Andersen, K., Larsen, J.P., Lolk, A., and Kragh-Sorensen, P. (2003). Prevalence and characteristics of dementia in Parkinson disease: an 8-year prospective study. Arch. Neurol. 60, 387–392.Google Scholar

  • Aarsland, D., Bronnick, K., Alves, G., Tysnes, O.B., Pedersen, K.F., Ehrt, U., and Larsen J.P. (2009). The spectrum of neuropsychiatric symptoms in patients with early untreated Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 80, 928–930.Google Scholar

  • Alexander, G.E., DeLong, M.R., and Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381.Google Scholar

  • Altmann, L.J. and Troche, M.S. (2011). High-level language production in Parkinson’s disease: a review. Parkinsons Dis. 2011, Article ID 238956, 12.Google Scholar

  • Altmann, L.J., Kempler, D., and Andersen, E.S. (2001). Speech errors in Alzheimer’s disease: reevaluating morphosyntactic preservation. J. Speech Lang. Hear. Res. 44, 1069–1082.Google Scholar

  • Amboni, M., Cozzolino, A., Longo, K., Picillo, M., and Barone, P. (2008). Freezing of gait and executive functions in patients with Parkinson’s disease. Mov. Disord. 23, 395–400.Google Scholar

  • Ambrose, S.H. (2001). Paleolithic technology and human evolution. Science 291, 1748–1753.Google Scholar

  • Amos, A. (2000). A computational model of information processing in the frontal cortex and basal ganglia. J. Cogn. Neurosci. 12, 505–519.Google Scholar

  • Andres, M., Ostry, D.J., Nicol, F., and Paus, T. (2008). Time course of number magnitude interference during grasping. Cortex 44, 414–419.Google Scholar

  • Aosaki, T., Miura, M., Suzuki, T., Nishimura, K., and Masuda, M. (2010). Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr. Gerontol. Int. 10, S148–S157.Google Scholar

  • Azevedo, L.L.d., Reis, C.A.d.C., Souza, I.S.d., and Cardoso, F.E.C. (2013). Prosody and levodopa in Parkinson’s disease. Arq. Neuropsiquiatr. 71, 835–840.Google Scholar

  • Badets, A., Andres, M., Di Luca, S., and Pesenti, M. (2007). Number magnitude potentiates action judgements. Exp. Brain Res. 180, 525–534.Google Scholar

  • Ballanger, B., Thobois, S., Baraduc, P., Turner, R.S., Broussolle, E., and Desmurget, M. (2006). “Paradoxical kinesis” is not a hallmark of Parkinson’s disease but a general property of the motor system. Mov. Disord. 21 1490–1495.Google Scholar

  • Ballanger, B., Baraduc, P., Broussolle, E., Bars, D.L., Desmurget, M., and Thobois, S. (2008). Motor urgency is mediated by the contralateral cerebellum in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 79, 1110–1116.Google Scholar

  • Beeler, J.A., Frank, M.J., McDaid, J., Alexander, E., Turkson, S., Bernardez Sarria, M.S., McGehee, D.S., and Zhuang, X. (2012). A role for dopamine-mediated learning in the pathophysiology and treatment of Parkinson’s disease. Cell Rep. 2, 1747–1761.Google Scholar

  • Benamer, H.T., Patterson, J., Wyper, D.J., Hadley, D.M., Macphee, G.J., and Grosset, D.G. (2000). Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov. Disord. 15, 692–698.Google Scholar

  • Benamer, H.T., Oertel, W.H., Patterson, J., Hadley, D.M., Pogarell, O., Hoffken, H., Gerstner, A., and Grosset, D.G. (2003). Prospective study of presynaptic dopaminergic imaging in patients with mild parkinsonism and tremor disorders: part 1. Baseline and 3-month observations. Mov. Disord. 18, 977–984.Google Scholar

  • Berardelli, A., Rothwell, J.C., Thompson, P.D., and Hallett, M. (2001). Pathophysiology of bradykinesia in Parkinson’s disease. Brain 124, 2131–2146.Google Scholar

  • Bloem, B.R., Beckley, D.J., van Dijk, J.G., Zwinderman, A.H., Remler, M.P., and Roos, R.A. (1996). Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson’s disease. Mov. Disord. 11, 509–521.Google Scholar

  • Bloem, B.R., Valkenburg, V.V., Slabbekoorn, M., and van Dijk, J.G. (2001). The multiple tasks test. Strategies in Parkinson’s disease. Exp. Brain Res. 137, 478–486.Google Scholar

  • Bohnen, N.I. and Albin, R.L. (2011). The cholinergic system and Parkinson disease. Behav. Brain Res. 221, 564–573.Google Scholar

  • Bond, J.M. and Morris, M. (2000). Goal-directed secondary motor tasks: their effects on gait in subjects with Parkinson disease. Arch. Phys. Med. Rehabil. 81, 110–116.Google Scholar

  • Burn, D.J., Rowan, E.N., Allan, L.M., Molloy, S., O’Brien, J.T., and McKeith, I.G. (2006). Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 77, 585–589.Google Scholar

  • Callesen, M.B., Weintraub, D., Damholdt, M.F., and Moller, A. (2014). Impulsive and compulsive behaviors among Danish patients with Parkinson’s disease: prevalence, depression, and personality. Parkinsonism Relat. Disord. 20, 22–26.Google Scholar

  • Cameron, I.G., Watanabe, M., Pari, G., and Munoz, D.P. (2010). Executive impairment in Parkinson’s disease: response automaticity and task switching. Neuropsychologia 48, 1948–1957.Google Scholar

  • Caproni, S., Muti, M., Di Renzo, A., Principi, M., Caputo, N., Calabresi, P., and Tambasco, N. (2014). Subclinical visuospatial impairment in Parkinson’s disease: the role of basal ganglia and limbic system. Front. Neurol. 5, 7.Google Scholar

  • Catalan, M.J., Ishii, K., Honda, M., Samii, A., and Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson’s disease. Brain 122, 483–495.Google Scholar

  • Catalan, M.J., de Pablo-Fernandez, E., Villanueva, C., Fernandez-Diez, S., Lapena-Montero, T., Garcia-Ramos, R., and López-Valdés, E. (2013). Levodopa infusion improves impulsivity and dopamine dysregulation syndrome in Parkinson’s disease. Mov. Disord. 28, 2007–2010.Google Scholar

  • Collins, A.G. and Frank, M.J. (2014). Opponent actor learning (OpAL): modeling interactive effects of striatal dopamine on reinforcement learning and choice incentive. Psychol. Rev. 121, 337–366.Google Scholar

  • Colman, K.S., Koerts, J., van Beilen, M., Leenders, K.L., Post, W.J., and Bastiaanse, R. (2009). The impact of executive functions on verb production in patients with Parkinson’s disease. Cortex 45, 930–942.Google Scholar

  • Contreras-Vidal, J.L. and Stelmach, G.E. (1995). A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol. Cybern. 73, 467–476.Google Scholar

  • Contreras-Vidal, J.L., Teulings, H.L., and Stelmach, G.E. (1995). Micrographia in Parkinson’s disease. Neuroreport 6, 2089–2092.Google Scholar

  • DeLong, M.R. and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch. Neurol. 64, 20–24.Google Scholar

  • Demura, S. and Uchiyama, M. (2009). Influence of cell phone email use on characteristics of gait. Eur. J. Sport Sci. 9, 303–309.Google Scholar

  • Diaz-Hung, M.L., Blanco, L., Pavon, N., Leon, R., Estupinan, B., Orta, E., MartíDnez, K., and Fernández, I. (2014). Sensory-motor performance after acute glutathione depletion by l-buthionine sulfoximine injection into substantia nigra pars compacta. Behav. Brain Res. 271, 286–293.Google Scholar

  • Djurfeldt, M., Ekeberg, Ö., and Graybiel, A.M. (2001). Cortex-basal ganglia interaction and attractor states. Neurocomputing 3840, 573–579.Google Scholar

  • Domellof, M.E., Elgh, E., and Forsgren, L. (2011). The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov. Disord. 26, 2183–2189.Google Scholar

  • Domellof, M.E., Forsgren, L., and Elgh, E. (2013). Persistence of associations between cognitive impairment and motor dysfunction in the early phase of Parkinson’s disease. J. Neurol. 260, 2228–2236.Google Scholar

  • Eggers, C., Pedrosa, D.J., Kahraman, D., Maier, F., Lewis, C.J., Fink, G.R., Schmidt, M., and Timmermann, L. (2012). Parkinson subtypes progress differently in clinical course and imaging pattern. PLoS One 7, e46813, 8.Google Scholar

  • Elgh, E., Domellof, M., Linder, J., Edstrom, M., Stenlund, H., and Forsgren, L. (2009). Cognitive function in early Parkinson’s disease: a population-based study. Eur. J. Neurol. 16, 1278–1284.Google Scholar

  • Ellfolk, U., Joutsa, J., Rinne, J.O., Parkkola, R., Jokinen, P., and Karrasch, M. (2014). Striatal volume is related to phonemic verbal fluency but not to semantic or alternating verbal fluency in early Parkinson’s disease. J. Neural. Transm. 121, 33–40.Google Scholar

  • Fellows, S.J., Noth, J., and Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain 121, 1771–1784.Google Scholar

  • Flanagan, J.R. and Beltzner, M.A. (2000). Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat. Neurosci. 3, 737–741.Google Scholar

  • Foltynie, T., Brayne, C.E., Robbins, T.W., and Barker, R.A. (2004). The cognitive ability of an incident cohort of Parkinson’s patients in the UK. The CamPaIGN study. Brain 127, 550–560.Google Scholar

  • Frank, M.J. and O’Reilly, R.C. (2006). A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav. Neurosci. 120, 497–517.Google Scholar

  • Frank, M.J., Loughry, B., and O’Reilly, R.C. (2001). Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect. Behav. Neurosci. 1, 137–160.Google Scholar

  • Gangadhar, G., Joseph, D., and Chakravarthy, V.S. (2008). Understanding Parkinsonian handwriting through a computational model of basal ganglia. Neural Comput. 20, 2491–2525.Google Scholar

  • Glover, S., Rosenbaum, D.A., Graham, J., and Dixon, P. (2004). Grasping the meaning of words. Exp. Brain Res. 154, 103–108.Google Scholar

  • Grafton, S.T. (2010). The cognitive neuroscience of prehension: recent developments. Exp. Brain Res. 204, 475–491.Google Scholar

  • Gratwicke, J., Jahanshahi, M., and Foltynie, T. (2015a). Parkinson’s disease dementia: a neural networks perspective. Brain 138, 1454–1476.Google Scholar

  • Gratwicke, J., Kahan, J., Zrinzo, L., Hariz, M., Limousin, P., Foltynie, T., and Jahanshahi, M. (2015b). The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci. Rev. 37, 2676–2688.Google Scholar

  • Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires. Neurobiol. Learn. Mem. 70, 119–136.Google Scholar

  • Grimbergen, Y.A., Langston, J.W., Roos, R.A., and Bloem, B.R. (2009). Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus. Exp. Rev. Neurother. 9, 279–290.Google Scholar

  • Guillery, E., Mouraux, A., and Thonnard, J.-L. (2013). Cognitive-motor interference while grasping, lifting and holding objects. PLoS One 8, e80125, 8.Google Scholar

  • Gupta, A., Balasubramani, P.P., and Chakravarthy, S. (2013). Computational model of precision grip in Parkinson’s disease: a utility based approach [original research]. Front. Computat. Neurosci. 7, 16.Google Scholar

  • Hall, J.M., Shine, J.M., Walton, C.C., Gilat, M., Kamsma, Y.P., Naismith, S.L., and Lewis, S.J. (2014). Early phenotypic differences between Parkinson’s disease patients with and without freezing of gait. Parkinsonism Relat. Disord. 20, 604–607.Google Scholar

  • Hausdorff, J.M., Schaafsma, J.D., Balash, Y., Bartels, A.L., Gurevich, T., and Giladi, N. (2003). Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 149, 187–194.Google Scholar

  • Haynes, W.I. and Haber, S.N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for basal ganglia models and deep brain stimulation. J. Neurosci. 33, 10.Google Scholar

  • Helie, S., Chakravarthy, S., and Moustafa, A.A. (2013). Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Front. Comput. Neurosci. 7, 174, 16.Google Scholar

  • Helmich, R.C., Hallett, M., Deuschl, G., Toni, I., and Bloem, B.R. (2012). Cerebral causes and consequences of parkinsonian resting tremor: a tale of two circuits? Brain 135, 3206–3226.Google Scholar

  • Hesse, C. and Deubel, H. (2011). Efficient grasping requires attentional resources. Vision Res. 51, 1223–1231.Google Scholar

  • Hesse, C., Schenk, T., and Deubel, H. (2012). Attention is needed for action control: further evidence from grasping. Vision Res. 71, 37–43.Google Scholar

  • Ho, A.K., Iansek, R., Marigliani, C., Bradshaw, J.L., and Gates, S. (1998). Speech impairment in a large sample of patients with Parkinson’s disease. Behav. Neurol. 11, 131–137.Google Scholar

  • Horak, F.B., Dimitrova, D., and Nutt, J.G. (2005). Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol. 193, 504–521.Google Scholar

  • Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376.Google Scholar

  • Jankovic, J. and Tolosa, E. (2007). Parkinson’s Disease and Movement Disorders (Philadelphia: Lippincott Williams and Wilkins).Google Scholar

  • Jankovic, J., McDermott, M., Carter, J., Gauthier, S., Goetz, C., Golbe, L., Huber, S., Koller, W., Olanow, C., Shoulson, I., et al. (1990). Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 40, 1529–1534.Google Scholar

  • Joel, D. and Weiner, I. (1994). The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63, 363–379.Google Scholar

  • Joel, D. and Weiner, I. (1997). The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res. Brain Res. Rev. 23, 62–78.Google Scholar

  • Jones, L.A. and Lederman, S.J. (2006). Human Hand Function (New York: Oxford University Press).Google Scholar

  • Karachi, C., Grabli, D., Bernard, F.A., Tande, D., Wattiez, N., Belaid, H., Bardinet, E., Prigent, A., Nothacker, H.P., Hunot, S., et al. (2010). Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120, 2745–2754.Google Scholar

  • Kassubek, J., Juengling, F.D., Hellwig, B., Spreer, J., and Lucking, C.H. (2002). Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging. Neurosci. Lett. 323, 29–32.Google Scholar

  • Kim, S.D., Allen, N.E., Canning, C.G., and Fung, V.S. (2013). Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 27, 97–112.Google Scholar

  • Kish, S.J., Shannak, K., and Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N. Engl. J. Med. 318, 876–880.Google Scholar

  • Kojovic, M., Mir, P., Trender-Gerhard, I., Schneider, S.A., Pareés, I., Edwards, M.J., Bhatia, K.P., and Jahanshahi, M. (2014). Motivational modulation of bradykinesia in Parkinson’s disease off and on dopaminergic medication. J. Neurol. 261, 1080–1089.Google Scholar

  • Koller, W.C., Glatt, S., Vetere-Overfield, B., and Hassanein, R. (1989). Falls and Parkinson’s disease. Clin. Neuropharmacol. 12, 98–105.Google Scholar

  • Kostic, V.S., Agosta, F., Pievani, M., Stefanova, E., Jecmenica-Lukic, M., Scarale, A., Spica, V., and Filippi, M. (2012). Pattern of brain tissue loss associated with freezing of gait in Parkinson disease. Neurology 78, 409–416.Google Scholar

  • Lawrence, A.D., Sahakian, B.J., and Robbins, T.W. (1998). Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn. Sci. 2, 379–388.Google Scholar

  • Lee, M.S., Rinne, J.O., and Marsden, C.D. (2000). The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med. J. 41, 167–184.Google Scholar

  • Lee, J.M., Koh, S.B., Chae, S.W., Seo, W.K., Kwon do, Y., Kim, J.H., Oh, K., Baik, J.S., and Park, K.W. (2012). Postural instability and cognitive dysfunction in early Parkinson’s disease. Can. J. Neurol. Sci. 39, 473–482.Google Scholar

  • Lees, A.J., Hardy, J., and Revesz, T. (2009). Parkinson’s disease. Lancet 373, 2055–2066.Google Scholar

  • Lewis, S.J. and Barker, R.A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 15, 333–338.Google Scholar

  • Lewis, S.J.G., Foltynie, T., Blackwell, A.D., Robbins, T.W., Owen, A.M., and Barker, R.A. (2005). Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J. Neurol. Neurosurg. Psychiatry 76, 343–348.Google Scholar

  • Lieberman, P., Kako, E., Friedman, J., Tajchman, G., Feldman, L.S., and Jiminez, E.B. (1992). Speech production, syntax comprehension, and cognitive deficits in Parkinson’s disease. Brain Lang. 43, 169–189.Google Scholar

  • Louis, E.D., Tang, M.X., Cote, L., Alfaro, B., Mejia, H., and Marder, K. (1999). Progression of parkinsonian signs in Parkinson disease. Arch. Neurol. 56, 334–337.Google Scholar

  • Lyros, E., Messinis, L., and Papathanasopoulos, P. (2008). Does motor subtype influence neurocognitive performance in Parkinson’s disease without dementia? Eur. J. Neurol. 15, 262–267.Google Scholar

  • MacDonald, H.J. and Byblow, W.D. (2015). Does response inhibition have pre- and postdiagnostic utility in Parkinson’s disease? J. Motivated Behav. 47, 29–45.Google Scholar

  • Macoir, J., Fossard, M., Mérette, C., Langlois, M., Chantal, S., and Auclair-Ouellet, N. (2013). The role of basal ganglia in language production: evidence from Parkinson’s disease. J. Parkinsons Dis. 3, 393–397.Google Scholar

  • Mancini, M., Rocchi, L., Horak, F.B., and Chiari, L. (2008). Effects of Parkinson’s disease and levodopa on functional limits of stability. Clin. Biomech. (Bristol, Avon) 23, 450–458.Google Scholar

  • Marzke, M.W. (1997). Precision grips, hand morphology, and tools. Am. J. Phys. Anthropol. 102, 91–110.Google Scholar

  • Matsui, H., Udaka, F., Miyoshi, T., Hara, N., Tamaura, A., Oda, M., Oda, M., Kubori, T., Nishinaka, K., and Kameyama, M. (2005). Three-dimensional stereotactic surface projection study of freezing of gait and brain perfusion image in Parkinson’s disease. Mov. Disord. 20, 1272–1277.Google Scholar

  • Matsumoto, K., Suzuki, W., and Tanaka, K. (2003). Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232.Google Scholar

  • McLennan, J.E., Nakano, K., Tyler, H.R., and Schwab, R.S. (1972). Micrographia in Parkinson’s disease. J. Neurol. Sci. 15, 141–152.Google Scholar

  • Middleton, F.A. and Strick, P.L. (1996). The temporal lobe is a target of output from the basal ganglia. Proc. Natl. Acad. Sci. U S A 93, 8683–8687.Google Scholar

  • Monchi, O., Taylor, J.G., and Dagher, A. (2000). A neural model of working memory processes in normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predictions. Neural Netw. 13, 953–973.Google Scholar

  • Morris, M., Iansek, R., Matyas, T., and Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Mov. Disord. 13, 61–69.Google Scholar

  • Moustafa, A.A. and Maida, A.S. (2007). Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia. Cogn. Syst. Res. 8, 262–281.Google Scholar

  • Moustafa, A.A. and Poletti, M. (2013). Neural and behavioral substrates of subtypes of Parkinson’s disease. Front. Syst. Neurosci. 7, 117.Google Scholar

  • Moustafa, A.A., Sherman, S.J., and Frank, M.J. (2008). A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia 46, 3144–3156.Google Scholar

  • Moustafa, A.A., Bell, P., Eissa, A.M., and Hewedi, D.H. (2013a). The effects of clinical motor variables and medication dosage on working memory in Parkinson’s disease. Brain Cogn. 82, 137–145.Google Scholar

  • Moustafa, A.A., Krishna, R., Eissa, A.M., and Hewedi, D.H. (2013b). Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson’s disease. Neuropsychology 27, 498–510.Google Scholar

  • Moyà-Solà, S., Köhler, M., and Rook, L. (1999). Evidence of hominid-like precision grip capability in the hand of the Miocene ape Oreopithecus. Proc. Natl. Acad. Sci. 96, 313–317.Google Scholar

  • Mure, H., Hirano, S., Tang, C.C., Isaias, I.U., Antonini, A., Ma, Y., Dhawan, V., and Eidelberg, D. (2011). Parkinson’s disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage 54, 1244–1253.Google Scholar

  • Mushiake, H., Saito, N., Sakamoto, K., Itoyama, Y., and Tanji, J. (2006). Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50, 631–641.Google Scholar

  • Naismith, S.L., Shine, J.M., and Lewis, S.J.G. (2010). The specific contributions of set-shifting to freezing of gait in Parkinson’s disease. Mov. Disord. 25, 1000–1004.Google Scholar

  • Napier, J.R. (1956). The prehensile movements of the human hand. J. Bone Joint Surg. Br. 38-B, 902–913.Google Scholar

  • O’Reilly, R.C. and Frank, M.J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328.Google Scholar

  • Oh, J.Y., Kim, Y.S., Choi, B.H., Sohn, E.H., and Lee, A.Y. (2009). Relationship between clinical phenotypes and cognitive impairment in Parkinson’s disease (PD). Arch. Gerontol. Geriatr. 49, 351–354.Google Scholar

  • Ohbayashi, M., Ohki, K., and Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science 301, 233–236.Google Scholar

  • Olivier, E., Davare, M., Andres, M., and Fadiga, L. (2007). Precision grasping in humans: from motor control to cognition. Curr. Opin. Neurobiol. 17, 644–648.Google Scholar

  • Oliveira, R.M., Gurd, J.M., Nixon, P., Marshall, J.C., and Passingham, R.E. (1997). Micrographia in Parkinson’s disease: the effect of providing external cues. J. Neurol. Neurosurg. Psychiatry 63, 429–433.Google Scholar

  • Pagano, G., Rengo, G., Pasqualetti, G., Femminella, G.D., Monzani, F., Ferrara, N., and Tagliati, M. (2015). Cholinesterase inhibitors for Parkinson’s disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 86, 767–773.Google Scholar

  • Pahapill, P.A. and Lozano, A.M. (2000). The pedunculopontine nucleus and Parkinson’s disease. Brain 123, 1767–1783.Google Scholar

  • Phillips, J.G., Bradshaw, J.L., Iansek, R., and Chiu, E. (1993). Motor functions of the basal ganglia. Psychol. Res. 55, 175–181.Google Scholar

  • Piray, P., Zeighami, Y., Bahrami, F., Eissa, A.M., Hewedi, D.H., and Moustafa, A.A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. J. Neurosci. 34, 7814–7824.Google Scholar

  • Pirker, W., Djamshidian, S., Asenbaum, S., Gerschlager, W., Tribl, G., Hoffmann, M., Brücke, T. (2002). Progression of dopaminergic degeneration in Parkinson’s disease and atypical parkinsonism: a longitudinal beta-CIT SPECT study. Mov. Disord. 17, 45–53.Google Scholar

  • Plotnik, M., Giladi, N., Dagan, Y., and Hausdorff, J.M. (2011). Postural instability and fall risk in Parkinson’s disease: impaired dual tasking, pacing, and bilateral coordination of gait during the “ON” medication state. Exp. Brain Res. 210, 529–538.Google Scholar

  • Poletti, M., Emre, M., and Bonuccelli, U. (2011a). Mild cognitive impairment and cognitive reserve in Parkinson’s disease. Parkinsonism Relat. Disord. 17, 579–586.Google Scholar

  • Poletti, M., Frosini, D., Pagni, C., Lucetti, C., Del Dotto, P., Tognoni, G., Ceravolo, R., and Bonuccelli, U. (2011b). The association between motor subtypes and alexithymia in de novo Parkinson’s disease. J. Neurol. 258, 1042–1045.Google Scholar

  • Poletti, M., Frosini, D., Pagni, C., Baldacci, F., Nicoletti, V., Tognoni, G., Lucetti, C., Del Dotto, P., Ceravolo, R., and Bonuccelli, U. (2012). Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 601–606.Google Scholar

  • Probst-Cousin, S., Druschky, A., and Neundorfer, B. (2003). Disappearance of resting tremor after “stereotaxic” thalamic stroke. Neurology 61, 1013–1014.Google Scholar

  • Rafal, R.D., Posner, M.I., Walker, J.A., and Friedrich, F.J. (1984). Cognition and the basal ganglia. Separating mental and motor components of performance in Parkinson’s disease. Brain 107, 1083–1094.Google Scholar

  • Rajput, A.H. (1993). Diagnosis of PD. Neurology 43, 1629–1630.Google Scholar

  • Randhawa, B.K., Farley, B.G., and Boyd, L.A. (2013). Repetitive transcranial magnetic stimulation improves handwriting in Parkinson’s disease. Parkinsons Dis. 2013, 751925.Google Scholar

  • Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M.C., Lehericy, S., Bergman, H., Bergman, H., Agid, Y., DeLong, M.R., and Obeso, J.A. (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat. Rev. Neurosci. 11, 760–772.Google Scholar

  • Ricciardi, L., Bloem, B.R., Snijders, A.H., Daniele, A., Quaranta, D., Bentivoglio, A.R., and Fasano, A. (2014). Freezing of gait in Parkinson’s disease: The paradoxical interplay between gait and cognition. Parkinsonism Relat. Disord. 20, 824–829.Google Scholar

  • Riggeal, B.D., Crucian, G.P., Seignourel, P., Jacobson, C.E., Okun, M.S., Rodriguez, R., and Fernandez, H.H. (2007). Cognitive decline tracks motor progression and not disease duration in Parkinson patients. Neuropsychiatr. Dis. Treat. 3, 955–958.Google Scholar

  • Rocchi, L., Chiari, L., and Horak, F.B. (2002). Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 73, 267–274.Google Scholar

  • Rocchi, L., Carlson-Kuhta, P., Chiari, L., Burchiel, K.J., Hogarth, P., and Horak, F.B. (2012). Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease. J. Neurosurg. 117, 1141–1149.Google Scholar

  • Rosenberg-Katz, K., Herman, T., Jacob, Y., Giladi, N., Hendler, T., and Hausdorff, J.M. (2013). Gray matter atrophy distinguishes between Parkinson disease motor subtypes. Neurology 80, 1476–1484.Google Scholar

  • Rosenblum, S., Samuel, M., Zlotnik, S., Erikh, I., and Schlesinger, I. (2013). Handwriting as an objective tool for Parkinson’s disease diagnosis. J. Neurol. 260, 2357–2361.Google Scholar

  • Rudzinska, M., Bukowczan, S., Stozek, J., Zajdel, K., Mirek, E., Chwala, W., Wójcik-Pędziwiatr, M., Banaszkiewicz, K., and Szczudlik, A. (2013). Causes and consequences of falls in Parkinson disease patients in a prospective study. Neurol. Neurochir. Pol. 47, 423–430.Google Scholar

  • Schabrun, S.M., van den Hoorn, W., Moorcroft, A., Greenland, C., and Hodges, P.W. (2014). Texting and walking: strategies for postural control and implications for safety. PLoS One 9, e84312, 8.Google Scholar

  • Schiess, M.C., Zheng, H., Soukup, V.M., Bonnen, J.G., and Nauta, H.J. (2000). Parkinson’s disease subtypes: clinical classification and ventricular cerebrospinal fluid analysis. Parkinsonism Relat. Disord. 6, 69–76.Google Scholar

  • Schillaci, O., Chiaravalloti, A., Pierantozzi, M., Di Pietro, B., Koch, G., Bruni, C., and Stefani, A. (2011). Different patterns of nigrostriatal degeneration in tremor type versus the akinetic-rigid and mixed types of Parkinson’s disease at the early stages: molecular imaging with 123I-FP-CIT SPECT. Int. J. Mol. Med. 28, 881–886.Google Scholar

  • Schneider, J.S., Sendek, S., and Yang, C. (2015). Relationship between motor symptoms, cognition, and demographic characteristics in treated mild/moderate Parkinson’s disease. PLoS One 10, 11.Google Scholar

  • Seger, C.A. (2013). The visual corticostriatal loop through the tail of the caudate: circuitry and function. Front. Syst. Neurosci. 7, 104.Google Scholar

  • Shine, J.M., Naismith, S.L., Palavra, N.C., Lewis, S.J., Moore, S.T., Dilda, V., and Morris, T.R. (2012). Attentional set-shifting deficits correlate with the severity of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 19, 388–390.Google Scholar

  • Shine, J.M., Matar, E., Ward, P.B., Bolitho, S.J., Gilat, M., Pearson, M., Naismith, S.L., and Lewis, S.J. (2013a). Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson’s disease [randomized controlled trial research support, non-U.S. Gov’t]. Brain 136, 1204–1215.Google Scholar

  • Shine, J.M., Matar, E., Ward, P.B., Bolitho, S.J., Pearson, M., Naismith, S.L., and Lewis, S.J. (2013b). Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load [research support, non-U.S. Gov’t]. PLoS One 8, e52602, 7.Google Scholar

  • Shine, J.M., Moustafa, A.A., Matar, E., Frank, M.J., and Lewis, S.J. (2013c). The role of frontostriatal impairment in freezing of gait in Parkinson’s disease. Front. Syst. Neurosci. 7, 61.Google Scholar

  • Shine, J.M., Naismith, S.L., and Lewis, S.J.G. (2013d). The differential yet concurrent contributions of motor, cognitive and affective disturbance to freezing of gait in Parkinson’s disease. Clin. Neurol. Neurosurg. 115, 542–545.Google Scholar

  • Shine, J.M., Naismith, S.L., Palavra, N.C., Lewis, S.J., Moore, S.T., Dilda, V., and Morris, T.R. (2013e). Attentional set-shifting deficits correlate with the severity of freezing of gait in Parkinson’s disease. Parkinsonism Relat. Disord. 19, 388–390.Google Scholar

  • Shiner, T., Seymour, B., Symmonds, M., Dayan, P., Bhatia, K.P., and Dolan, R.J. (2012). The effect of motivation on movement: a study of bradykinesia in Parkinson’s disease. PLoS One 7, e47138, 7.Google Scholar

  • Singhal, A., Culham, J.C., Chinellato, E., and Goodale, M.A. (2007). Dual-task interference is greater in delayed grasping than in visually guided grasping. J. Vision 7, 5.CrossrefGoogle Scholar

  • Smith, M.C. and Fucetola, R. (1995). Effects of delayed visual feedback on handwriting in Parkinson’s disease. Hum. Mov. Sci. 14, 109–123.Google Scholar

  • Smulders, K., van Nimwegen, M., Munneke, M., Bloem, B.R., Kessels, R.P., and Esselink, R.A. (2012). Involvement of specific executive functions in mobility in Parkinson’s disease. Parkinsonism Relat. Disord. 114, 331–335Google Scholar

  • Spiegel, J., Hellwig, D., Samnick, S., Jost, W., Mollers, M.O., Fassbender, K., Kirsch, C.M., and Dillmann, U. (2007). Striatal FP-CIT uptake differs in the subtypes of early Parkinson’s disease. J. Neural. Transm. 114, 331–335.Google Scholar

  • Susman, R.L. (1998). Hand function and tool behavior in early hominids. J. Hum. Evol. 35, 23–46.Google Scholar

  • Tessitore, A., Amboni, M., Cirillo, G., Corbo, D., Picillo, M., Russo, A., Vitale, C., Santangelo, G., Erro, R., Cirillo, M., et al. (2012). Regional gray matter atrophy in patients with Parkinson disease and freezing of gait. AJNR Am. J. Neuroradiol. 33, 1804–1809.Google Scholar

  • Teulings, H.L. and Stelmach, G.E. (1991). Control of stroke size, peak acceleration, and stroke duration in Parkinsonian handwriting. Hum. Mov. Sci. 10, 315–334.Google Scholar

  • Teulings, H.L., Contreras-Vidal, J.L., Stelmach, G.E., and Adler, C.H. (2002). Adaptation of handwriting size under distorted visual feedback in patients with Parkinson’s disease and elderly and young controls. J. Neurol. Neurosurg. Psychiatry 72, 315–324.Google Scholar

  • Thomassen, A.J.W.M. and Teulings, H.L. (1985). Time, size, and shape in handwriting: exploring spatio-temporal relationships at different levels. Time, Mind, and Behavior. J.B.J.J.A. Michon, ed. (Heidelberg: Springer-Verlag), pp. 253–263.Google Scholar

  • Troche, M.S. and Lori, J.P.A. (2012). Sentence production in Parkinson disease: effects of conceptual and task complexity. Appl. Psycholinguistics 33, 225–251.Google Scholar

  • Tucha, O., Mecklinger, L., Thome, J., Reiter, A., Alders, G.L., Sartor, H., Naumann, M., and Lange, K.W. (2006). Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. J. Neural. Transm. 113, 609–623.Google Scholar

  • Vakil, E. and Herishanu-Naaman, S. (1998). Declarative and procedural learning in Parkinson’s disease patients having tremor or bradykinesia as the predominant symptom. Cortex 34, 611–620.Google Scholar

  • Van Gemmert, A.W.A., Teulings, H.L., and Stelmach, G.E. (1998). The influence of mental and motor load on handwriting movements in Parkinsonian patients. Acta Psychol. 100, 161–175.Google Scholar

  • Van Gemmert, A.W., Teulings, H.L., Contreras-Vidal, J.L., and Stelmach, G.E. (1999). Parkinson’s disease and the control of size and speed in handwriting. Neuropsychologia 37, 685–694.Google Scholar

  • Vandenbossche, J., Deroost, N., Soetens, E., Spildooren, J., Vercruysse, S., Nieuwboer, A., and Kerckhofs, E. (2011). Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil. Neural Rep. 25, 765–773.Google Scholar

  • Voon, V., Gao, J., Brezing, C., Symmonds, M., Ekanayake, V., Fernandez, H., Dolan, R.J., and Hallett, M. (2011). Dopamine agonists and risk: impulse control disorders in Parkinson’s disease. Brain 134, 1438–1446.Google Scholar

  • Wagle Shukla, A., Ounpraseuth, S., Okun, M.S., Gray, V., Schwankhaus, J., and Metzer, W.S. (2012). Micrographia and related deficits in Parkinson’s disease: a cross-sectional study. BMJ Open 2, 6.Google Scholar

  • Walton, C.C., Shine, J.M., Mowszowski, L., Gilat, M., Hall, J.M., O’Callaghan, C., Naismith, S.L., and Lewis, S.J. (2014). Impaired cognitive control in Parkinson’s disease patients with freezing of gait in response to cognitive load. J. Neural Transm. 122, 653–660.Google Scholar

  • Weinberger, M., Hutchison, W.D., Lozano, A.M., Hodaie, M., and Dostrovsky, J.O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. J. Neurophysiol. 101, 789–802.Google Scholar

  • Weintraub, D. and Burn, D.J. (2011). Parkinson’s disease: the quintessential neuropsychiatric disorder. Mov. Disord. 26, 1022–1031.Google Scholar

  • Wiecki, T.V. and Frank, M.J. (2010). Neurocomputational models of motor and cognitive deficits in Parkinson’s disease. Prog. Brain Res. 183, 275–297.Google Scholar

  • Wiecki, T.V., Riedinger, K., von Ameln-Mayerhofer, A., Schmidt, W.J., and Frank, M.J. (2009). A neurocomputational account of catalepsy sensitization induced by D2 receptor blockade in rats: context dependency, extinction, and renewal. Psychopharmacology (Berl) 204, 265–277.Google Scholar

  • Williams-Gray, C.H., Foltynie, T., Brayne, C.E., Robbins, T.W., and Barker, R.A. (2007a). Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130, 1787–1798.Google Scholar

  • Williams-Gray, C.H., Hampshire, A., Robbins, T.W., Owen, A.M., and Barker, R.A. (2007b). Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J. Neurosci. 27, 4832–4838.Google Scholar

  • Wiseheart, R., Altmann, L.J., Park, H., and Lombardino, L.J. (2009). Sentence comprehension in young adults with developmental dyslexia. Ann. Dyslexia 59, 151–167.Google Scholar

  • Woollacott, M. and Shumway-Cook, A. (2002). Attention and the control of posture and gait: a review of an emerging area of research. Gait Posture 16, 1–14.Google Scholar

  • Wu, T. and Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain 136, 696–709.Google Scholar

  • Wylie, S.A., van den Wildenberg, W., Ridderinkhof, K.R., Claassen, D.O., Wooten, G.F., and Manning, C.A. (2012). Differential susceptibility to motor impulsivity among functional subtypes of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 1149–1154.Google Scholar

  • Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E.S., and Hausdorff, J.M. (2005). Dual tasking, gait rhythmicity, and Parkinso’s disease: which aspects of gait are attention demanding? Eur. J. Neurosci. 22, 1248–1256.Google Scholar

  • Young, R.W. (2003). Evolution of the human hand: the role of throwing and clubbing. J. Anat. 202, 165–174.Google Scholar

  • Yu, H., Sternad, D., Corcos, D.M., and Vaillancourt, D.E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson’s disease. Neuroimage 35, 222–233.Google Scholar

  • Zaidel, A., Arkadir, D., Israel, Z., and Bergman, H. (2009). Akineto-rigid vs. tremor syndromes in Parkinsonism. Curr. Opin. Neurol. 22, 387–393.Google Scholar

  • Zetusky, W.J. and Jankovic, J. (1985). Laterality and symptom association in Parkinson’s disease. Arch. Neurol. 42, 1132–1133.Google Scholar

  • Zhao-Shea, R., Cohen, B.N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S.R., Salminen, O., Gardner, P.D., Lester, H.A., and Tapper, A.R. (2010). Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive {alpha}4 nicotinic receptors via a cholinergic-dependent mechanism. FASEB J. 24, 49–57.Google Scholar

About the article

Corresponding author: Ahmed A. Moustafa, School of Social Sciences and Psychology and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales 2214, Australia, e-mail: ; and Department of Veterans Affairs, New Jersey Health Care System, East Orange, NJ 07018, USA

Received: 2015-12-15

Accepted: 2016-02-21

Published Online: 2016-03-16

Published in Print: 2016-07-01

Citation Information: Reviews in the Neurosciences, Volume 27, Issue 5, Pages 535–548, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2015-0070.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Fernanda Silva Rodrigues, Viviane Nogueira de Zorzi, Marla Parizzi Funghetto, Fernanda Haupental, Alexandra Seide Cardoso, Sara Marchesan, Andréia M. Cardoso, Maria Rosa C. Schinger, Alencar Kolinski Machado, Ivana Beatrice Mânica da Cruz, Marta Maria Medeiros Frescura Duarte, Léder L. Xavier, Ana Flavia Furian, Mauro Schneider Oliveira, Adair Roberto Soares Santos, Luiz Fernando Freire Royes, and Michele Rechia Fighera
Molecular Neurobiology, 2018
Simon Steib, Philipp Wanner, Werner Adler, Jürgen Winkler, Jochen Klucken, and Klaus Pfeifer
Frontiers in Aging Neuroscience, 2018, Volume 10

Comments (0)

Please log in or register to comment.
Log in