Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 27, Issue 5


Postural instability and falls in Parkinson’s disease

Jacob J. Crouse
  • School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, 2214, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joseph R. Phillips
  • School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, 2214, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marjan Jahanshahi
  • Cognitive Motor Neuroscience Group and Unit of Functional Neurosurgery Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, The National Hospital for Neurology and Neurosurgery London, WC1N 3BG, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmed A. Moustafa
  • Corresponding author
  • School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, 2214, Australia
  • Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, 2214, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-11 | DOI: https://doi.org/10.1515/revneuro-2016-0002


Postural instability (PI) is one of the most debilitating motor symptoms of Parkinson’s disease (PD), as it is associated with an increased risk of falls and subsequent medical complications (e.g. fractures), fear of falling, decreased mobility, self-restricted physical activity, social isolation, and decreased quality of life. The pathophysiological mechanisms underlying PI in PD remain elusive. This short review provides a critical summary of the literature on PI in PD, covering the clinical features, the neural and cognitive substrates, and the effects of dopaminergic medications and deep brain stimulation. The delayed effect of dopaminergic medication combined with the success of extrastriatal deep brain stimulation suggests that PI involves neurotransmitter systems other than dopamine and brain regions extending beyond the basal ganglia, further challenging the traditional view of PD as a predominantly single-system neurodegenerative disease.

Keywords: deep brain stimulation (DBS); dopamine; extrastriatal system; falls; Parkinson’s disease; postural instability


  • Adkin, A.L., Frank, J.S., and Jog, M.S. (2003). Fear of falling and postural control in Parkinson’s disease. Mov. Disord. 18, 496–502.Google Scholar

  • Allcock, L.M., Rowan, E.N., Steen, I.N., Wesnes, K., Kenny, R.A., and Burn, D.J. (2009). Impaired attention predicts falling in Parkinson’s disease. Parkinsonism Relat. Disord. 15, 110–115.Google Scholar

  • Alves, G., Larsen, J.P., Emre, M., Wentzel-Larsen, T., and Aarsland, D. (2006). Changes in motor subtype and risk for incident dementia in Parkinson’s disease. Mov. Disord. 21, 1123–1130.Google Scholar

  • Armand, S., Landis, T., Sztajzel, R., and Burkhard, P.R. (2009). Dyskinesia-induced postural instability in Parkinson’s disease. Parkinsonism Relat. Disord. 15, 359–364.Google Scholar

  • Ashburn, A., Stack, E., Pickering, R.M., and Ward, C.D. (2001). A community-dwelling sample of people with Parkinson’s disease: characteristics of fallers and non-fallers. Age Ageing 30, 47–52.Google Scholar

  • Balash, Y., Peretz, C., Leibovich, G., Herman, T., Hausdorff, J.M., and Giladi, N. (2005). Falls in outpatients with Parkinson’s disease: frequency, impact and identifying factors. J. Neurol. 252, 1310–1315.Google Scholar

  • Beckley, D.J., Panzer, V.P., Remler, M.P., Ilog, L.B., and Bloem, B.R. (1995). Clinical correlates of motor performance during paced postural tasks in Parkinson’s disease. J. Neurol. Sci. 132, 133–138.Google Scholar

  • Bejjani, B.P., Gervais, D., Arnulf, I., Papadopoulos, S., Demeret, S., Bonnet, A.M., Cornu, P., Damier, P., and Agid, Y. (2000). Axial parkinsonian symptoms can be improved: the role of levodopa and bilateral subthalamic stimulation. J. Neurol. Neurosurg. Psychiatry 68, 595–600.Google Scholar

  • Bloem, B.R., Beckley, D.J., van Dijk, J.G., Zwinderman, A.H., Remler, M.P., and Roos, R.A. (1996). Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson’s disease. Mov. Disord. 11, 509–521.Google Scholar

  • Bloem, B.R., Grimbergen, Y.A., Cramer, M., Willemsen, M., and Zwinderman, A.H. (2001). Prospective assessment of falls in Parkinson’s disease. J. Neurol. 248, 950–958.Google Scholar

  • Bloem, B.R., Hausdorff, J.M., Visser, J.E., and Giladi, N. (2004). Falls and freezing of gait in Parkinson’s disease: a review of two interconnected, episodic phenomena. Mov. Disord. 19, 871–884.Google Scholar

  • Bohnen, N.I., Muller, M.L., Koeppe, R.A., Studenski, S.A., Kilbourn, M.A., Frey, K.A., and Albin, R.L. (2009). History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 73, 1670–1676.Google Scholar

  • Bohnen, N.I., Muller, M.L., Kotagal, V., Koeppe, R.A., Kilbourn, M.R., Gilman, S., Albin, R.L., and Frey, K.A. (2012). Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J. Cereb. Blood Flow Metab. 32, 1609–1617.Google Scholar

  • Borel, L. and Alescio-Lautier, B. (2014). Posture and cognition in the elderly: interaction and contribution to the rehabilitation strategies. Neurophysiol. Clin. 44, 95–107.Google Scholar

  • Bronte-Stewart, H.M., Minn, A.Y., Rodrigues, K., Buckley, E.L., and Nashner, L.M. (2002). Postural instability in idiopathic Parkinson’s disease: the role of medication and unilateral pallidotomy. Brain 125, 2100–2114.Google Scholar

  • Burn, D.J., Rowan, E.N., Allan, L.M., Molloy, S., O’Brien, J.T., and McKeith, I.G. (2006). Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 77, 585–589.Google Scholar

  • Cakit, B.D., Saracoglu, M., Genc, H., Erdem, H.R., and Inan, L. (2007). The effects of incremental speed-dependent treadmill training on postural instability and fear of falling in Parkinson’s disease. Clin. Rehabil. 21, 698–705.Google Scholar

  • Camicioli, R. and Majumdar, S.R. (2010). Relationship between mild cognitive impairment and falls in older people with and without Parkinson’s disease: 1-year prospective cohort study. Gait Posture 32, 87–91.Google Scholar

  • Chastan, N., Debono, B., Maltete, D., and Weber, J. (2008). Discordance between measured postural instability and absence of clinical symptoms in Parkinson’s disease patients in the early stages of the disease. Mov. Disord. 23, 366–372.Google Scholar

  • Chong, R.K., Horak, F.B., and Woollacott, M.H. (2000). Parkinson’s disease impairs the ability to change set quickly. J. Neuro. Sci. 175, 13.Google Scholar

  • Chong, R.K., Morgan, J., Mehta, S.H., Pawlikowska, I., Hall, P., Ellis, A.V., Ibanez-Wong, A.D., Miller, G.M., Baugh, K., and Sethi, K. (2011). Rapid Assessment of Postural Instability in Parkinson’s Disease (RAPID): a pilot study. Eur. J. Neurol. 18, 260–265.Google Scholar

  • Chung, K.A., Lobb, B.M., Nutt, J.G., and Horak, F.B. (2010). Effects of a central cholinesterase inhibitor on reducing falls in Parkinson disease. Neurology 75, 1263–1269.Google Scholar

  • Domellof, M.E., Elgh, E., and Forsgren, L. (2011). The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov. Disord. 26, 2183–2189.Google Scholar

  • Gervais-Bernard, H., Xie-Brustolin, J., Mertens, P., Polo, G., Klinger, H., Adamec, D., Broussolle, E., and Thobois, S. (2009). Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. J. Neurol. 256, 225–233.Google Scholar

  • Geurts, A.C., Boonstra, T.A., Voermans, N.C., Diender, M.G., Weerdesteyn, V., and Bloem, B.R. (2011). Assessment of postural asymmetry in mild to moderate Parkinson’s disease. Gait Posture 33, 143–145.Google Scholar

  • Gratwicke, J., Jahanshahi, M., and Foltynie, T. (2015). Parkinson’s disease dementia: a neural networks perspective. Brain 138, 1454–1476.Google Scholar

  • Gray, P. and Hildebrand, K. (2000). Fall risk factors in Parkinson’s disease. J. Neurosci. Nurs. 32, 222–228.Google Scholar

  • Grimbergen, Y.A., Munneke, M., and Bloem, B.R. (2004). Falls in Parkinson’s disease. Curr. Opin. Neurol. 17, 405–415.Google Scholar

  • Grimbergen, Y.A., Langston, J.W., Roos, R.A., and Bloem, B.R. (2009). Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus. Exp. Rev. Neurother. 9, 279–290.Google Scholar

  • Hilker, R., Thomas, A.V., Klein, J.C., Weisenbach, S., Kalbe, E., Burghaus, L., Jacobs, A.H., Herholz, K., and Heiss, W.D. (2005). Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65, 1716–1722.Google Scholar

  • Holmes, J.D., Jenkins, M.E., Johnson, A.M., Adams, S.G., and Spaulding, S.J. (2010). Dual-task interference: the effects of verbal cognitive tasks on upright postural stability in Parkinson’s disease. Parkinsons Dis. 2010, 696492.Google Scholar

  • Horak, F.B., Frank, J., and Nutt, J. (1996). Effects of dopamine on postural control in parkinsonian subjects: scaling, set, and tone. J. Neurophysiol. 75, 16.Google Scholar

  • Horak, F.B., Dimitrova, D., and Nutt, J.G. (2005). Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol. 193, 504–521.Google Scholar

  • Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376.Google Scholar

  • Jankovic, J., McDermott, M., Carter, J., Gauthier, S., Goetz, C., Golbe, L., Huber, S., Koller, W., Olanow, C., Shoulson, I., et al. (1990). Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology 40, 1529–1534.Google Scholar

  • Karachi, C., Grabli, D., Bernard, F.A., Tande, D., Wattiez, N., Belaid, H., Bardinet, E., Prigent, A., Nothacker, H.P., Hunot, S., et al. (2010). Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J. Clin. Invest. 120, 2745–2754.Google Scholar

  • Kelly, V.E., Johnson, C.O., McGough, E.L., Shumway-Cook, A., Horak, F.B., Chung, K.A., Espay, A.J., Revilla, F.J., Devoto, J., Wood-Siverio, C., et al. (2015). Association of cognitive domains with postural instability/gait disturbance in Parkinson’s disease. Parkinsonism Relat. Disord. 21, 692–697.Google Scholar

  • Kim, S.D., Allen, N.E., Canning, C.G., and Fung, V.S. (2013). Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 27, 97–112.Google Scholar

  • King, L.A. and Horak, F.B. (2008). Lateral stepping for postural correction in Parkinson’s disease. Arch. Phys. Med. Rehabil. 89, 492–499.Google Scholar

  • Koller, W.C., Glatt, S., Vetere-Overfield, B., and Hassanein, R. (1989). Falls and Parkinson’s disease. Clin. Neuropharmacol. 12, 98–105.Google Scholar

  • Kringelbach, M.L., Jenkinson, N., Owen, S.L., and Aziz, T.Z. (2007). Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8, 623–635.Google Scholar

  • Lee, J.E., Cho, K.H., Kim, M., Sohn, Y.H., and Lee, P.H. (2012). The pattern of cortical atrophy in Parkinson’s disease with mild cognitive impairment according to the timing of cognitive dysfunction. J. Neurol. 259, 469–473.Google Scholar

  • Lord, S., Galna, B., Coleman, S., Yarnall, A., Burn, D., and Rochester, L. (2014). Cognition and gait show a selective pattern of association dominated by phenotype in incident Parkinson’s disease. Front. Aging Neurosci. 6, 249.Google Scholar

  • Lyons, K.E., Wilkinson, S.B., Troster, A.I., and Pahwa, R. (2002). Long-term efficacy of globus pallidus stimulation for the treatment of Parkinson’s disease. Stereotact. Funct. Neurosurg. 79, 214–220.Google Scholar

  • Lyoo, C.H., Aalto, S., Rinne, J.O., Lee, K.O., Oh, S.H., Chang, J.W., and Lee, M.S. (2007). Different cerebral cortical areas influence the effect of subthalamic nucleus stimulation on parkinsonian motor deficits and freezing of gait. Mov Disord. 22, 6.Google Scholar

  • Mancini, M., Rocchi, L., Horak, F.B., and Chiari, L. (2008). Effects of Parkinson’s disease and levodopa on functional limits of stability. Clin. Biomech. (Bristol, Avon) 23, 450–458.Google Scholar

  • Mancini, M., Horak, F.B., Zampieri, C., Carlson-Kuhta, P., Nutt, J.G., and Chiari, L. (2011). Trunk accelerometry reveals postural instability in untreated Parkinson’s disease. Parkinsonism Relat. Disord. 17, 557–562.Google Scholar

  • Marchese, R., Bove, M., and Abbruzzese, G. (2003). Effect of cognitive and motor tasks on postural stability in Parkinson’s disease: a posturographic study. Mov. Disord. 18, 652–658.Google Scholar

  • McVey, M.A., Stylianou, A.P., Luchies, C.W., Lyons, K.E., Pahwa, R., Jernigan, S., and Mahnken, J.D. (2009). Early biomechanical markers of postural instability in Parkinson’s disease. Gait Posture 30, 538–542.Google Scholar

  • Mena-Segovia, J., Bolam, J.P., and Magill, P.J. (2004). Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci. 27, 585–588.Google Scholar

  • Merola, A., Zibetti, M., Angrisano, S., Rizzi, L., Ricchi, V., Artusi, C.A., Lanotte, M., Rizzone, M.G., and Lopiano, L. (2011). Parkinson’s disease progression at 30 years: a study of subthalamic deep brain-stimulated patients. Brain 134, 2074–2084.Google Scholar

  • Michalowska, M., Fiszer, U., Krygowska-Wajs, A., and Owczarek, K. (2005). Falls in Parkinson’s disease. Causes and impact on patients’ quality of life. Funct. Neurol. 20, 163–168.Google Scholar

  • Moro, E., Hamani, C., Poon, Y.Y., Al-Khairallah, T., Dostrovsky, J.O., Hutchison, W.D., and Lozano, A.M. (2010). Unilateral pedunculopontine stimulation improves falls in Parkinson’s disease. Brain 133, 215–224.Google Scholar

  • Muller, M.L. and Bohnen, N.I. (2013). Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 13, 377.Google Scholar

  • Nocera, J.R., Price, C., Fernandez, H.H., Amano, S., Vallabhajosula, S., Okun, M.S., Hwynn, N., and Hass, C.J. (2010). Tests of dorsolateral frontal function correlate with objective tests of postural stability in early to moderate stage Parkinson’s disease. Parkinsonism Relat. Disord. 16, 590–594.Google Scholar

  • Nonnekes, J., de Kam, D., Oude Nijhuis, L.B., van Geel, K., Bloem, B.R., Geurts, A., and Weerdesteyn, V. (2015). StartReact effects support different pathophysiological mechanisms underlying freezing of gait and postural instability in Parkinson’s disease. PLoS One 10, e0122064.Google Scholar

  • Ondo, W.G. and Hunter, C. (2003). Flumazenil, a GABA antagonist, may improve features of Parkinson’s disease. Mov. Disord. 18, 683–685.Google Scholar

  • Paul, S.S., Sherrington, C., Canning, C.G., Fung, V.S., Close, J.C., and Lord, S.R. (2014). The relative contribution of physical and cognitive fall risk factors in people with Parkinson’s disease: a large prospective cohort study. Neurorehabil. Neural Repair 28, 282–290.Google Scholar

  • Perry, E.K., Curtis, M., Dick, D.J., Candy, J.M., Atack, J.R., Bloxham, C.A., Blessed, G., Fairbairn, A., Tomlinson, B.E., and Perry, R.H. (1985). Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J. Neurol. Neurosurg Psychiatry 48, 413–421.Google Scholar

  • Plaha, P. and Gill, S.S. (2005). Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 16, 1883–1887.Google Scholar

  • Poletti, M., Frosini, D., Pagni, C., Baldacci, F., Nicoletti, V., Tognoni, G., Lucetti, C., Del Dotto, P., Ceravolo, R., and Bonuccelli, U. (2012). Mild cognitive impairment and cognitive-motor relationships in newly diagnosed drug-naive patients with Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 83, 601–606.Google Scholar

  • Putzki, N., Maschke, M., Drepper, J., Diener, H.C., and Timmann, D. (2002). Effect of functional NMDA-antagonist flupirtine on automatic postural responses in Parkinson’s disease. J. Neurol. 249, 824–828.Google Scholar

  • Rahman, S., Griffin, H.J., Quinn, N.P., and Jahanshahi, M. (2011). On the nature of fear of falling in Parkinson’s disease. Behav. Neurol. 24, 219–228.Google Scholar

  • Rocchi, L., Chiari, L., and Horak, F.B. (2002). Effects of deep brain stimulation and levodopa on postural sway in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 73, 267–274.Google Scholar

  • Rocchi, L., Carlson-Kuhta, P., Chiari, L., Burchiel, K.J., Hogarth, P., and Horak, F.B. (2012). Effects of deep brain stimulation in the subthalamic nucleus or globus pallidus internus on step initiation in Parkinson disease. J. Neurosurg. 117, 1141–1149.Google Scholar

  • Rodriguez-Oroz, M.C., Obeso, J.A., Lang, A.E., Houeto, J.L., Pollak, P., Rehncrona, S., Kulisevsky, J., Albanese, A., Volkmann, J., Hariz, M.I., et al. (2005). Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128, 2240–2249.Google Scholar

  • Rosenberg-Katz, K., Herman, T., Jacob, Y., Giladi, N., Hendler, T., and Hausdorff, J.M. (2013). Gray matter atrophy distinguishes between Parkinson disease motor subtypes. Neurology 80, 1476–1484.Google Scholar

  • Sarter, M., Albin, R.L., Kucinski, A., and Lustig, C. (2014). Where attention falls: increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function. Exp. Neurol. 257, 120–129.Google Scholar

  • Schaafsma, J.D., Balash, Y., Gurevich, T., Bartels, A.L., Hausdorff, J.M., and Giladi, N. (2003). Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 10, 391–398.Google Scholar

  • Schmit, J.M., Riley, M.A., Dalvi, A., Sahay, A., Shear, P.K., Shockley, K.D., and Pun, R.Y. (2006). Deterministic center of pressure patterns characterize postural instability in Parkinson’s disease. Exp. Brain Res. 168, 357–367.Google Scholar

  • Shine, J.M., Frank, M.J., Moustafa, A.A., and Lewis, S.J. (2013). Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 136, 3671–3681.Google Scholar

  • Shivitz, N., Koop, M.M., Fahimi, J., Heit, G., and Bronte-Stewart, H.M. (2006). Bilateral subthalamic nucleus deep brain stimulation improves certain aspects of postural control in Parkinson’s disease, whereas medication does not. Mov. Disord. 21, 1088–1097.Google Scholar

  • Sidiropoulos, C., Walsh, R., Meaney, C., Poon, Y.Y., Fallis, M., and Moro, E. (2013). Low-frequency subthalamic nucleus deep brain stimulation for axial symptoms in advanced Parkinson’s disease. J. Neurol. 260, 2306–2311.Google Scholar

  • Stefani, A., Lozano, A.M., Peppe, A., Stanzione, P., Galati, S., Tropepi, D., Pierantozzi, M., Brusa, L., Scarnati, E., and Mazzone, P. (2007). Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 130, 1596–1607.Google Scholar

  • St. George, R.J.S., Nutt, J.G., Burchiel, K.J., and Horak, F.B. (2010). A meta-regression of the long-term effects of deep brain stimulation on balance and gait in PD. Neurology. 75, 7.Google Scholar

  • Tykocki, T., Mandat, T., and Nauman, P. (2011). Pedunculopontine nucleus deep brain stimulation in Parkinson’s disease. Arch. Med. Sci. 7, 555–564.Google Scholar

  • Verbaan, D., Marinus, J., Visser, M., van Rooden, S.M., Stiggelbout, A.M., Middelkoop, H.A., and Hilten, J.J. (2007). Cognitive impairment in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 78, 1182–1187.Google Scholar

  • Visser, J.E., Carpenter, M.G., van der Kooij, H., and Bloem, B.R. (2008). The clinical utility of posturography. Clin. Neurophysiol. 119, 2424–2436.Google Scholar

  • Volkmann, J., Allert, N., Voges, J., Sturm, V., Schnitzler, A., and Freund, H.J. (2004). Long-term results of bilateral pallidal stimulation in Parkinson’s disease. Ann. Neurol. 55, 871–875.Google Scholar

  • Welter, M.L., Demain, A., Ewenczyk, C., Czernecki, V., Lau, B., El Helou, A., Belaid, H., Yelnik, J., François, C., Bardinet, E., et al. (2015). PPNa-DBS for gait and balance disorders in Parkinson’s disease: a double-blind, randomised study. J. Neurol. 262, 10.Google Scholar

  • Whitehouse, P.J., Hedreen, J.C., White, C.L., 3rd, and Price, D.L. (1983). Basal forebrain neurons in the dementia of Parkinson disease. Ann. Neurol. 13, 243–248.Google Scholar

  • Williams-Gray, C.H., Hampshire, A., Robbins, T.W., Owen, A.M., and Barker, R.A. (2007). Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J. Neurosci. 27, 4832–4838.Google Scholar

  • Wood, B.H., Bilclough, J.A., Bowron, A., and Walker, R.W. (2002). Incidence and prediction of falls in Parkinson’s disease: a prospective multidisciplinary study. J. Neurol. Neurosurg. Psychiatry 72, 721–725.Google Scholar

  • Yamada, K., Goto, S., Hamasaki, T., and Kuratsu, J.I. (2008). Effect of bilateral subthalamic nucleus stimulation on levodopa-unresponsive axial symptoms in Parkinson’s disease. Acta Neurochir. (Wien) 150, 15–22.Google Scholar

  • Yarnall, A., Rochester, L., and Burn, D.J. (2011). The interplay of cholinergic function, attention, and falls in Parkinson’s disease. Mov. Disord. 26, 2496–2503.Google Scholar

About the article

Corresponding author: Ahmed A. Moustafa, School of Social Sciences and Psychology, Western Sydney University, Sydney, New South Wales, Australia, e-mail: ; and Marcs Institute for Brain and Behaviour, Western Sydney University, Sydney, New South Wales, 2214, Australia

Received: 2016-01-31

Accepted: 2016-02-14

Published Online: 2016-03-11

Published in Print: 2016-07-01

Citation Information: Reviews in the Neurosciences, Volume 27, Issue 5, Pages 549–555, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0002.

Export Citation

©2016 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Elizabeth P. Pasman, Martin J. McKeown, Taylor W. Cleworth, Bastiaan R. Bloem, J. Timothy Inglis, and Mark G. Carpenter
Frontiers in Neurology, 2019, Volume 10
Francesco Serio, Cosimo Minosa, Matteo De Luca, Pierguido Conte, Giovanni Albani, and Antonella Peppe
Sensors, 2019, Volume 19, Number 9, Page 2101
Hsin-Hsuan Liu, Nai-Chen Yeh, Yi-Fan Wu, Yea-Ru Yang, Ray-Yau Wang, and Fang-Yu Cheng
Parkinson's Disease, 2019, Volume 2019, Page 1
Tee-Tau Eric Nyam, Chung-Han Ho, Yu-Lin Wang, Sher-Wei Lim, Jhi-Joung Wang, Chung-Ching Chio, Jinn-Rung Kuo, and Che-Chuan Wang
World Neurosurgery, 2018
E. Pawlitzki, C. Schlenstedt, N. Schmidt, I. Tödt, F. Gövert, G. Hartwigsen, and K. Witt
Gait & Posture, 2018, Volume 60, Page 50
Joseph F. Baker, Shearwood McClelland, Robert A. Hart, and R. Shay Bess
Journal of the American Academy of Orthopaedic Surgeons, 2017, Volume 25, Number 8, Page e157
Ahmed A. Moustafa, Srinivasa Chakravarthy, Joseph R. Phillips, Ankur Gupta, Szabolcs Keri, Bertalan Polner, Michael J. Frank, and Marjan Jahanshahi
Neuroscience & Biobehavioral Reviews, 2016, Volume 68, Page 727

Comments (0)

Please log in or register to comment.
Log in