Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 27, Issue 6


Phytochemicals as future drugs for Parkinson’s disease: a comprehensive review

Zahra Shahpiri
  • Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 14176-53761, Iran (Islamic Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roodabeh Bahramsoltani
  • Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 14176-53761, Iran (Islamic Republic of)
  • Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155-6451, Iran (Islamic Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Hosein Farzaei
  • Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran (Islamic Republic of)
  • Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran (Islamic Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fatemeh Farzaei
  • Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran (Islamic Republic of)
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roja Rahimi
  • Corresponding author
  • Department of Traditional Pharmacy, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran 14176-53761, Iran (Islamic Republic of)
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-28 | DOI: https://doi.org/10.1515/revneuro-2016-0004


Parkinson’s disease (PD) is the second most common chronic neurodegenerative disease that affects motor skills and cognitive performance. The conventional therapeutic approaches for the management of PD are just able to alleviate symptoms. Exploring for achieving novel substances with therapeutic benefits in PD patients is the focus of a wide range of current investigations. The aim of the present study is to comprehensively review phytochemicals with protective or therapeutic activities in PD and focus on their neuropsychopharmacological mechanisms. Various subgroups of polyphenols (flavonoids, phenolic acids, stilbenes, and lignanes) and terpenes are the most abundant groups of phytochemicals with well-established antiparkinsonian effects. Other phytochemical categories, such as alkaloids, cinnamates, carbohydrates, amino acids, and fatty acid amides, also have some representatives with positive effects in PD. Phytochemicals perform their antiparkinsonian effect through several mechanisms of action, including suppressing apoptosis (via the reduction of Bax/Bcl-2, caspase-3, -8, and -9, and α-synuclein accumulation), decreasing dopaminergic neuronal loss and dopamine depletion, reducing the expression of proinflammatory cytokines (such as prostaglandin E2, interleukin-6, interleukin-1β, and nuclear factor-κB), and modulating nuclear and cellular inflammatory signaling, elevation of neurotrophic factors, and improvement of antioxidant status. Plant-derived natural products can be considered as future pharmaceutical drugs or adjuvant treatment with conventional therapeutic approaches to improve their efficacy and alleviate their psychological adverse effects in the management of PD. Well-designed clinical trials are mandatory to evaluate the protective and healing benefits of phytochemicals as promising future drugs in the management of neurodegenerative diseases.

Keywords: medicinal plant; natural product; neurodegenerative disease; Parkinson’s disease; phytochemical


  • Agim, Z.S., and Cannon, J.R. (2015). Dietary factors in the etiology of Parkinson’s disease. BioMed. Res. Int. 2015, Article ID 672838, 16 pages.Google Scholar

  • Anandhan, A., Tamilselvam, K., Radhiga, T., Rao, S., Essa, M.M., and Manivasagam T. (2012). Theaflavin, a black tea polyphenol, protects nigral dopaminergic neurons against chronic MPTP/probenecid induced Parkinson’s disease. Brain Res. 1433, 104–113.Google Scholar

  • Anderson, W., Barrows, M., Lopez, F., Rogers, S., Ortiz-Coffie, A., Norman, D., Hodges, J., McDonald, K., Barnes, D., McCall, S., et al. (2012). Investigation of the anxiolytic effects of naringenin, a component of Mentha aquatica, in the male Sprague-Dawley rat. Holist. Nurs. Pract. 26, 52–57.Google Scholar

  • Ang-Lee, M.K., Moss, J., and Yuan, C.S. (2001). Herbal medicines and perioperative care. J. Am. Med. Assoc. 286, 208–216.Google Scholar

  • Ardah, M.T., Paleologou, K.E., Lv, G., Menon, S.A., Abul Khair, S.B., Lu, J.H., Safieh-Garabedian, B., Al-Hayani, A.A., Eliezer, D., Li, M., et al. (2015). Ginsenoside Rb1 inhibits fibrillation and toxicity of α-synuclein and disaggregates preformed fibrils. Neurobiol. Dis. 74, 89–101.Google Scholar

  • Bahramsoltani, R., Farzaei, M.H., Farahani, M.S., and Rahimi, R. (2015). Phytochemical constituents as future antidepressants: a comprehensive review. Rev. Neurosci. 26, 699–719.Google Scholar

  • Barbosa-Filho, J.M., Piuvezam, M.R., Moura, M.D., Silva, M.S., Lima, K.V.B., da-Cunha, E.V.L., Fechine, I.M., and Takemura, O.S. (2006). Anti-inflammatory activity of alkaloids: a twenty-century review. Braz. J. Pharmacogn. 16, 109–139.Google Scholar

  • Basheer, L., and Kerem, Z. (2015). Interactions between CYP3A4 and dietary polyphenols. Oxid. Med. Cell. Longev. 2015, Article ID 854015, 15 pages.Google Scholar

  • Bassani, T.B., Vital, M.A., and Rauh, L.K. (2015). Neuroinflammation in the pathophysiology of Parkinson’s disease and therapeutic evidence of anti-inflammatory drugs. Arq. Neuropsiquiatr. 73, 616–623.Google Scholar

  • Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., and Jackson-Lewis, V.R. (2015). Oxidative stress and Parkinson’s disease. Front. Neuroanat. 9, 91.Google Scholar

  • Brandenburg, L.O., Kipp, M., Lucius, R., Pufe, T., and Wruck, C.J. (2010). Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflamm. Res. 59, 443–450.Google Scholar

  • Chakroborty, D., Sarkar, C., Yu, H., Wang, J., Liu, Z., Dasgupta, P.S., and Basu, S. (2011). Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Krüppel-like factor-2 expression in tumor endothelial cells. Proc. Natl. Acad. Sci. USA. 108, 20730–20735.Google Scholar

  • Chao, J., Yu, M.S., Ho, Y.S., Wang, M., and Chang, R.C. (2008). Dietary oxyresveratrol prevents parkinsonian mimetic 6-hydroxydopamine neurotoxicity. Free Radic. Biol. Med. 45, 1019–1026.Google Scholar

  • Chen, J.H., Ou, H.P., Lin, C.Y., Lin, F.J., Wu, C.R., Chang, S.W., and Tsai, C.W. (2012). Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem. Res. Toxicol. 25, 1893–1901.Google Scholar

  • Cheung, Z.H., and Ip, N.Y. (2009). The emerging role of autophagy in Parkinson’s disease. Mol. Brain 2, 29.Google Scholar

  • Choi, S.Y., Son, T.G., Park, H.R., Jang, Y.J., Oh, S.B., Jin, B., and Lee, J. (2012). Naphthazarin has a protective effect on the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model. J. Neurosci. Res. 90, 1842–1849.Google Scholar

  • Cleren, C., Calingasan, N.Y., Chen, J., and Beal, M.F. (2005). Celastrol protects against MPTP- and 3-nitropropionic acid-induced neurotoxicity. J. Neurochem. 94, 995–1004.Google Scholar

  • De Sousa Falcão, H., Leite, J.A., Barbosa-Filho, J.M., de Athayde-Filho, P.F., de Oliveira Chaves, M.C., Moura, M.D., Ferreira, A.L., de Almeida, A.B.A., Souza-Brito, A.R.M., de Fátima Formiga Melo Diniz, M., et al. (2008). Gastric and duodenal antiulcer activity of alkaloids: a review. Molecules 13, 3198–3223.Google Scholar

  • Deng, C., Tao, R., Yu, S.Z., and Jin, H. (2012a). Sulforaphane protects against 6-hydroxydopamine-induced cytotoxicity by increasing expression of heme oxygenase-1 in a PI3K/Akt-dependent manner. Mol. Med. Rep. 5, 847–851.Google Scholar

  • Deng, C., Tao, R., Yu, S.Z., and Jin, H. (2012b). Inhibition of 6-hydroxydopamine-induced endoplasmic reticulum stress by sulforaphane through the activation of Nrf2 nuclear translocation. Mol. Med. Rep. 6, 215–219.Google Scholar

  • Du, T., Li, L., Song, N., Xie, J., and Jiang, H. (2010). Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in MES23.5 dopaminergic cells. Int. J. Toxicol. 29, 625–633.Google Scholar

  • Du, X.X., Xu, H.M., Jiang, H., Song, N., Wang, J., and Xie, J.X. (2012). Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci. Bull. 28, 253–258.Google Scholar

  • Fabio, G.D., Romanucci, V., Marco, A.D., and Zarrelli, A. (2014). Triterpenoids from Gymnema sylvestre and their pharmacological activities. Molecules 19, 10956–10981.Google Scholar

  • Farahani, M.S., Bahramsoltani, R., Farzaei, M.H., Abdollahi, M., and Rahimi, R. (2015). Plant-derived natural medicines for the management of depression: an overview of mechanisms of action. Rev. Neurosci. 26, 305–321.Google Scholar

  • Farzaei, M.H., Abdollahi, M., and Rahimi, R. (2015). Role of dietary polyphenols in the management of peptic ulcer. World J. Gastroenterol. 21, 6499–6517.Google Scholar

  • Farzaei, M.H., Bahramsoltani, R., Rahimi, R., Abbasabadi, F., and Abdollahi, M. (2016). A systematic review of plant-derived natural compounds for anxiety disorders. Curr. Top. Med. Chem. Epub ahead of print.Google Scholar

  • Filomeni, G., Graziani, I., De Zio, D., Dini, L., Centonze, D., Rotilio, G., and Ciriolo, M.R. (2012). Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol. Aging 33, 767–785.Google Scholar

  • Fu, R.H., Harn, H.J., Liu, S.P., Chen, C.S., Chang, W.L., Chen, Y.M., Huang, J.E., Li, R.J., Tsai, S.Y., Hung, H.S., et al. (2014). n-Butylidenephthalide protects against dopaminergic neuron degeneration and α-synuclein accumulation in Caenorhabditis elegans models of Parkinson’s disease. PLoS ONE 9:e85305.Google Scholar

  • Fujikawa, T., Kanada, N., Shimada, A., Ogata, M., Suzuki, I., Hayashi, I., and Nakashima, K. (2005). Effect of sesamin in Acanthopanax senticosus HARMS on behavioral dysfunction in rotenone-induced parkinsonian rats. Biol. Pharm. Bull. 28, 169–172.Google Scholar

  • García, C., Palomo-Garo, C., García-Arencibia, M., Ramos, J., Pertwee, R., and Fernández-Ruiz, J. (2011). Symptom-relieving and neuroprotective effects of the phytocannabinoid Δ9-THCV in animal models of Parkinson’s disease. Br. J. Pharmacol. 163, 1495–1506.Google Scholar

  • Geng, X., Tian, X., Tu, P., and Pu, X. (2007). Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson’s disease. Eur. J. Pharmacol. 564, 66–74.Google Scholar

  • González-Burgos, E., and Gómez-Serranillos, M.P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19, 5319–5341.Google Scholar

  • Gopalakrishna, A., and Alexander, S.A. (2015). Understanding Parkinson disease: a complex and multifaceted illness. J. Neurosci. Nurs. 47, 320–326.Google Scholar

  • Ham, A., Lee, H.J., Hong, S.S., Lee, D., and Mar, W. (2012). Moracenin D from Mori cortex radicis protects SH-SY5Y cells against dopamine-induced cell death by regulating nurr1 and α-synuclein expression. Phytother. Res. 26, 620–624.Google Scholar

  • Han, J.M., Lee, Y.J., Lee, S.Y., Kim, E.M., Moon, Y., Kim, H.W., and Hwang, O. (2007). Protective effect of sulforaphane against dopaminergic cell death. J. Pharmacol. Exp. Ther. 321, 249–256.Google Scholar

  • Huang, J.Z., Chen, Y.Z., Su, M., Zheng, H.F., Yang, Y.P., Chen, J., and Liu, C.F. (2010). dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP(+)-induced cellular model of Parkinson’s disease. Neurosci. Lett. 475, 89–94.Google Scholar

  • Ikram, N.K., Zhan, X., Pan, X.W., King, B.C., and Simonsen, H.T. (2015). Stable heterologous expression of biologically active terpenoids in green plant cells. Front. Plant Sci. 18, 129.Google Scholar

  • Kabuto, H., Nishizawa, M., Tada, M., Higashio, C., Shishibori, T., and Kohno, M. (2005). Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum. Neurochem. Res. 30, 325–332.Google Scholar

  • Khadira Sereen, A., Priya, N., and Vijayalakshmi, K. (2014). Effect of sesamol and folic acid on behavioural activity and antioxidant profile of rats induced with 6-hydroxy dopamine. Int. J. Pharmacogn. Phytochem. Res. 6, 930–935.Google Scholar

  • Kim, H.G., Ju, M.S., Ha, S.K., Lee, H., Lee, H., Kim, S.Y., and Oh M.S. (2012a). Acacetin protects dopaminergic cells against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neuroinflammation in vitro and in vivo. Biol. Pharm. Bull. 35, 1287–1294.Google Scholar

  • Kim, K.H., Song, K., Yoon, S.H., Shehzad, O., Kim, Y.S., and Son, J.H. (2012b). Rescue of PINK1 protein null-specific mitochondrial complex IV deficits by ginsenoside reactivation of nitric oxide signaling. J. Biol. Chem. 287, 44109–44120.Google Scholar

  • Klepacka, J., Gujska, E., and Michalak, J. (2011). Phenolic compounds as cultivar- and variety-distinguishing factors in some plant products. Plant Foods Hum. Nutr. 66, 64–69.Google Scholar

  • Kumar, H., Kim, I.S., More, S.V., Kim, B.W., Bahk, Y.Y., and Choi, D.K. (2013). Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evid. Based Complement Alternat. Med. 2013, Article ID 514095, 13 pages.Google Scholar

  • Lakhan, S.E., and Vieira, K.F. (2010). Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr. J. 9, 42.CrossrefGoogle Scholar

  • Lastres-Becker, I., Molina-Holgado, F., Ramos, J.A., Mechoulam, R., and Fernández-Ruiz, J. (2005). Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol. Dis. 19, 96–107.Google Scholar

  • Leal, L.K.A.M., Júnior, H.N., Cunha, G.M.A., Moraes, M.O., Pessoa, C., Oliveira, R.A., Silveira, E.R., Canuto, K.M., and Viana, G.S.B. (2005). Amburoside A, a glucoside from Amburana cearensis, protects mesencephalic cells against 6-hydroxydopamine-induced neurotoxicity. Neurosci. Lett. 388, 86–90.Google Scholar

  • Lee, Y., Park, H.R., Chun, H.J., and Lee, J. (2015). Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. J. Neurosci. Res. 93, 755–765.Google Scholar

  • Levites, Y., Weinreb, O., Maor, G., Youdim, M.B., and Mandel, S. (2001). Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J. Neurochem. 78, 1073–1082.Google Scholar

  • Li, S., and Pu, X.P. (2011). Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol. Pharm. Bull. 34, 1291–1296.Google Scholar

  • Li, Y.Y., Lu, J.H., Li, Q., Zhao, Y.Y., and Pu, X.P. (2008). Pedicularioside A from Buddleia lindleyana inhibits cell death induced by 1-methyl-4-phenylpyridinium ions (MPP+) in primary cultures of rat mesencephalic neurons. Eur. J. Pharmacol. 579, 134–140.Google Scholar

  • Li, B., Jeong, G.S., Kang, D.G., Lee, H.S., and Kim, Y.C. (2009). Cytoprotective effects of lindenenyl acetate isolated from Lindera strychnifolia on mouse hippocampal HT22 cells. Eur. J. Pharmacol. 614, 58–65.Google Scholar

  • Li, B.Y., Yuan, Y.H., Hu, J.F., Zhao, Q., Zhang, D.M., and Chen, N.H. (2011). Protective effect of Bu-7, a flavonoid extracted from Clausena lansium, against rotenone injury in PC12 cells. Acta Pharmacol. Sin. 32, 1321–1326.Google Scholar

  • Liang, Z., Shi, F., Wang, Y., Lu, L., Zhang, Z., Wang, X., and Wang, X. (2011). Neuroprotective effects of tenuigenin in a SH-SY5Y cell model with 6-OHDA-induced injury. Neurosci. Lett. 497, 104–109.Google Scholar

  • Liu, H.Q., Zhang, W.Y., Luo, X.T., Ye, Y., and Zhu, X.Z. (2006). Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br. J. Pharmacol. 148, 314–325.Google Scholar

  • Mandel, S., Maor, G., and Youdim, M.B. (2004). Iron and a-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J. Mol. Neurosci. 24, 401–416.Google Scholar

  • Meng, H., Li, C., Feng, L., Cheng, B., Wu, F., Wang, X., Li, Z., and Liu, S. (2007). Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int. J. Dev. Neurosci. 25, 509–514.Google Scholar

  • Miller, R.L., James-Kracke, M., Sun, G.Y., and Sun, A.Y. (2009). Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem. Res. 34, 55–65.Google Scholar

  • Moon, H.E., and Paek, S.H. (2015). Mitochondrial dysfunction in Parkinson’s disease. Exp. Neurobiol. 24, 103–116.Google Scholar

  • Morroni, F., Tarozzi, A., Sita, G., Bolondi, C., Moraga, J.M.Z., Cantelli-Forti, G., and Hrelia, P. (2013). Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson’s disease. Neurotoxicology 36, 63–71.Google Scholar

  • Mu, X., He, G., Cheng, Y., Li, X., Xu, B., and Du, G. (2009). Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav. 92, 642–648.Google Scholar

  • Nirumand, M.C., Farzaei, M.H., and Amin, G. (2015). Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: a review. J. Tradit. Chin. Med. 35, 104–109.Google Scholar

  • Ortiz-Ortiz, M.A., Morán, J.M., Ruiz-Mesa, L.M., Niso-Santano, M., Bravo-SanPedro, J.M., Gómez-Sánchez, R., González-Polo, R.A., and Fuentes, J.M. (2010). Curcumin exposure induces expression of the Parkinson’s disease-associated leucine-rich repeat kinase 2 (LRRK2) in rat mesencephalic cells. Neurosci. Lett. 468, 120–124.Google Scholar

  • Paduch, R., Kandefer-Szerszeń, M., Trytek, M., and Fiedurek, J. (2007). Terpenes: substances useful in human healthcare. Arch. Immunol. Ther. Exp. 55, 315–327.Google Scholar

  • Pandey, K.B., and Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2, 270–278.Google Scholar

  • Park, B.C., Lee, Y.S., Park, H.J., Kwak, M.K., Yoo, B.K., Kim, J.Y., and Kim, J.A. (2007). Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death. Exp. Mol. Med. 39, 316–326.Google Scholar

  • Park, J.A., Kim, S., Lee, S.Y., Kim, C.S., Kim do, K, Kim, S.J., and Chun, H.S. (2008). Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death. NeuroReport 19, 1301–1304.Google Scholar

  • Park, G., Kim, H.G., Ju, M.S., Ha, S.K., Park, Y., Kim, S.Y., and Oh, M.S. (2013). 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson’s disease models via anti-neuroinflammation. Acta Pharmacol. Sin. 34, 1131–1139.Google Scholar

  • Pasban-Aliabadi, H., Esmaeili-Mahani, S., Sheibani, V., Abbasnejad, M., Mehdizadeh, A., and Yaghoobi, M.M. (2013). Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein. Rejuv. Res. 16, 134–142.Google Scholar

  • Pérez, H.J., Carrillo, S.C., García, E., Ruiz-Mar, G., Pérez-Tamayo, R., and Chavarría, A. (2014). Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson’s disease. Toxicology 319, 38–43.Google Scholar

  • Priyadarshi, A., Khuder, S.A., Schaub, E.A., and Priyadarshi, S.S. (2001). Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ. Res. 86, 122–127.Google Scholar

  • Qualls, Z., Brown, D., Ramlochansingh, C., Hurley, L.L., and Tizabi, Y. (2014). Protective effects of curcumin against rotenone and salsolinol-induced toxicity: implications for Parkinson’s disease. Neurotoxicol. Res. 25, 81–89.Google Scholar

  • Reinisalo, M., Kårlund, A., Koskela, A., Kaarniranta, K., and Karjalainen, R.O. (2015). Polyphenol stilbenes: molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxid. Med. Cell. Longev. 2015, Article ID 340520, 24 pages.Google Scholar

  • Rekha, K.R., Selvakumar, G.P., and Sivakamasundari, R.I. (2014). Effects of syringic acid on chronic MPTP/probenecid induced motor dysfunction, dopaminergic markers expression and neuroinflammation in C57BL/6 mice. Biomed. Aging Pathol. 4, 95–104.Google Scholar

  • Ren, P., Jiang, H., Li, R., Wang, J., Song, N., Xu, H.M., and Xie, J.X. (2009). Rosmarinic acid inhibits 6-OHDA-induced neurotoxicity by anti-oxidation in MES23.5 cells. J. Mol. Neurosci. 39, 220–225.Google Scholar

  • Ryu, H.W., Oh, W.K., Jang, I.S., and Park, J. (2013). Amurensin G induces autophagy and attenuates cellular toxicities in a rotenone model of Parkinson’s disease. Biochem. Biophys. Res. Commun. 433, 121–126.Google Scholar

  • Shay, J., Elbaz, H.A., Lee, I., Zielske, S.P., Malek M.H., and Hüttemann, M. (2015). Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration. Oxid. Med. Cell. Longev. 2015, Article ID 181260, 13 pages.Google Scholar

  • Shukla, V., Phulara, S.C., Yadav, D., Tiwari, S., Kaur, S., Gupta, M.M., Nazir, A., and Pandey, R. (2012). Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces α synuclein aggregation in Caenorhabditis elegans. CNS Neurol. Disord. Drug Targets 11, 984–992.Google Scholar

  • Singh, A., Naidu, P.S., and Kulkarni, S.K. (2003). Quercetin potentiates L-dopa reversal of drug-induced catalepsy in rats: possible COMT/MAO inhibition. Pharmacology 68, 81–88.Google Scholar

  • Sodagari, H.R., Farzaei, M.H., Bahramsoltani, R., Abdolghaffari, A.H., Mahmoudi, M., and Rezaei, N. (2015). Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Exp. Rev. Gastroenterol. Hepatol. 9, 807–820.Google Scholar

  • Stalikas, C.D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 30, 3268–3295.Google Scholar

  • Sun, X., Cao, Y.B., Hu, L.F., Yang, Y.P., Li, J., Wang, F., and Liu, C.F. (2011). ASICs mediate the modulatory effect by paeoniflorin on α-synuclein autophagic degradation. Brain Res. 1396, 77–87.Google Scholar

  • Tai, K.K., and Truong, D.D. (2010). (-)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells. Neurosci. Lett. 482, 183–187.Google Scholar

  • Tamilselvam, K., Braidy, N., Manivasagam, T., Essa, M.M., Prasad, N.R., Karthikeyan, S., Thenmozhi, A.J., Selvaraju, S., and Guillemin, G.J. (2013). Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxid. Med. Cell. Longev. 2013, Article ID 102741, 11 pages.Google Scholar

  • Vauzour, D., Buonfiglio, M., Corona, G., Chirafisi, J., Vafeiadou, K., Angeloni, C., Hrelia, S., Hrelia, P., and Spencer, J.P. (2010). Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Mol. Nutr. Food Res. 54, 532–542.Google Scholar

  • Wang, X.J., and Xu, J.X. (2005). Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Neurosci. Res. 51, 129–138.Google Scholar

  • Wang, Y., Xu, H., Fu, Q., Ma, R., and Xiang, J. (2011). Protective effect of resveratrol derived from Polygonum cuspidatum and its liposomal form on nigral cells in parkinsonian rats. J. Neurol. Sci. 304, 29–34.Google Scholar

  • Wang, S., Jing, H., Yang H, Liu, Z., Guo, H., Chai, L., and Hu, L. (2015). Tanshinone I selectively suppresses pro-inflammatory genes expression in activated microglia and prevents nigrostriatal dopaminergic neurodegeneration in a mouse model of Parkinson’s disease. J. Ethnopharmacol. 164, 247–255.Google Scholar

  • Wu, C.R., Tsai, C.W., Chang, S.W., Lin, C.Y., Huang, L.C., and Tsai, C.W. (2015). Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: involvement of antioxidative enzymes induction. Chem. Biol. Interact. 225, 40–46.Google Scholar

  • Xie, C.L., Gu, Y., Wang, W.W., Lu, L., Fu, D.L., Liu, A.J., Li, H.Q., Li, J.H., Lin, Y., and Tang, W.J. (2013). Efficacy and safety of Suanzaoren decoction for primary insomnia: a systematic review of randomized controlled trials. BMC Complement. Alternat. Med. 13, 18.Google Scholar

  • Xu, C.L., Qu, R., Zhang, J., Li, L.F., and Ma, S.P. (2013). Neuroprotective effects of madecassoside in early stage of Parkinson’s disease induced by MPTP in rats. Fitoterapia 90, 112–118.Google Scholar

  • Ye, Q., Ye, L., Xu, X., Huang, B., Zhang, X., Zhu, Y., and Chen, X. (2012). Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway. BMC Complement. Alternat. Med. 12, 82.Google Scholar

  • Yu, C.H., Ishii, R., Yu, S.C., and Takeda, M. (2014). Yokukansan and its ingredients as possible treatment options for schizophrenia. Neuropsychiatr. Dis Treat. 10, 1629–1634.Google Scholar

  • Zhao, G., Zheng, X.W., Qin, G.W., Gai, Y., Jiang, Z.H., and Guo, L.H. (2009). In vitro dopaminergic neuroprotective and in vivo antiparkinsonian-like effects of D3,2-hydroxybakuchiol isolated from Psoralea corylifolia (L.). Cell`. Mol. Life Sci. 66, 1617–1629.Google Scholar

About the article

Received: 2016-02-05

Accepted: 2016-03-18

Published Online: 2016-04-28

Published in Print: 2016-08-01

Conflict of interest statement: The authors declare that they have no conflict of interest.

Citation Information: Reviews in the Neurosciences, Volume 27, Issue 6, Pages 651–668, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0004.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mohammad Hosein Farzaei, Roodabeh Bahramsoltani, Zahra Abbasabadi, Nady Braidy, and Seyed Mohammad Nabavi
Journal of Cellular Physiology, 2018
Mohammad Hosein Farzaei, Devesh Tewari, Saeideh Momtaz, Sandro Argüelles, and Seyed Mohammad Nabavi
Food and Chemical Toxicology, 2018
Małgorzata Kujawska and Jadwiga Jodynis-Liebert
Nutrients, 2018, Volume 10, Number 5, Page 642
Un Ju Jung and Sang Ryong Kim
Journal of Medicinal Food, 2018
Lívia Cristina R.F. Lins, Marina F. Souza, José Marcos M. Bispo, Auderlan M. Gois, Thaís Cristina S. Melo, Rayr Antonio S. Andrade, Lucindo J. Quintans-Junior, Alessandra M. Ribeiro, Regina H. Silva, José R. Santos, and Murilo Marchioro
Brain Research Bulletin, 2018, Volume 139, Page 9
Marcela Dvorakova and Premysl Landa
Pharmacological Research, 2017, Volume 124, Page 126

Comments (0)

Please log in or register to comment.
Log in