Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 27, Issue 7

Issues

Incretin-based therapy for type 2 diabetes mellitus is promising for treating neurodegenerative diseases

Yanwei Li
  • Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
  • Department of Human Anatomy, Shaoyang Medical College, Shaoyang, Hunan 422000, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Li
  • Corresponding author
  • Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Hölscher
  • Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, United Kingdom of Great Britain and Northern Ireland
  • Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-08 | DOI: https://doi.org/10.1515/revneuro-2016-0018

Abstract

Incretin hormones include glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Due to their promising action on insulinotropic secretion and improving insulin resistance (IR), incretin-based therapies have become a new class of antidiabetic agents for the treatment of type 2 diabetes mellitus (T2DM). Recently, the links between neurodegenerative diseases and T2DM have been identified in a number of studies, which suggested that shared mechanisms, such as insulin dysregulation or IR, may underlie these conditions. Therefore, the effects of incretins in neurodegenerative diseases have been extensively investigated. Protease-resistant long-lasting GLP-1 mimetics such as lixisenatide, liraglutide, and exenatide not only have demonstrated promising effects for treating neurodegenerative diseases in preclinical studies but also have shown first positive results in Alzheimer’s disease (AD) and Parkinson’s disease (PD) patients in clinical trials. Furthermore, the effects of other related incretin-based therapies such as GIP agonists, dipeptidyl peptidase-IV (DPP-IV) inhibitors, oxyntomodulin (OXM), dual GLP-1/GIP, and triple GLP-1/GIP/glucagon receptor agonists on neurodegenerative diseases have been tested in preclinical studies. Incretin-based therapies are a promising approach for treating neurodegenerative diseases.

Keywords: Alzheimer’s disease; DPP-IV inhibitors; glucagon-like peptide-1; glucose-dependent insulinotropic polypeptide; incretin; insulin resistance; Parkinson’s disease; type 2 diabetes mellitus

References

  • Abbas, T., Faivre, E., and Holscher, C. (2009). Impairment of synaptic plasticity and memory formation in GLP-1 receptor KO mice: interaction between type 2 diabetes and Alzheimer’s disease. Behav. Brain Res. 205, 265–271.Google Scholar

  • Abbott, C.R., Monteiro, M., Small, C.J., Sajedi, A., Smith, K.L., Parkinson, J.R., Ghatei, M.A., and Bloom, S.R. (2005). The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131.Google Scholar

  • Abdelsalam, R.M. and Safar, M.M. (2015). Neuroprotective effects of vildagliptin in rat rotenone Parkinson’s disease model: role of RAGE-NFκB and Nrf2-antioxidant signaling pathways. J. Neurochem. 133, 700–707.Google Scholar

  • Anderson, R., Hayes, J., and Stephens, J.W. (2016). Pharmacokinetic, pharmacodynamic and clinical evaluation of saxagliptin in type 2 diabetes. Expert Opin. Drug Metab. Toxicol. 12, 467–473.Google Scholar

  • Arakawa, M., Mita, T., Azuma, K., Ebato, C., Goto, H., Nomiyama, T., Fujitani, Y., Hirose, T., Kawamori, R., and Watada, H. (2010). Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes 59, 1030–1037.Google Scholar

  • Ashraf, G.M., Greig, N.H., Khan, T.A., Hassan, I., Tabrez, S., Shakil, S., Sheikh, I.A., Zaidi, S.K., Akram, M., Jabir, N.R., et al. (2014). Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 13, 1280–1293.Google Scholar

  • Athauda, D. and Foltynie, T. (2016). The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discov. Today. DOI: 10.1016/j.drudis.2016.01.013.CrossrefGoogle Scholar

  • Aviles-Olmos, I., Dickson, J., Kefalopoulou, Z., Djamshidian, A., Ell, P., Soderlund, T., Whitton, P., Wyse, R., Isaacs, T., Lees, A., et al. (2013a). Exenatide and the treatment of patients with Parkinson’s disease. J. Clin. Invest. 123, 2730–2736.Google Scholar

  • Aviles-Olmos, I., Limousin, P., Lees, A., and Foltynie, T. (2013b). Parkinson’s disease, insulin resistance and novel agents of neuroprotection. Brain 136, 374–384.Google Scholar

  • Aviles-Olmos, I., Dickson, J., Kefalopoulou, Z., Djamshidian, A., Kahan, J., Ell, P., Whitton, P., Wyse, R., Isaacs, T., Lees, A., et al. (2014). Motor and cognitive advantages persist 12 months after exenatide exposure in Parkinson’s disease. J. Parkinsons Dis. 4, 337–344.Google Scholar

  • Aziz, N.A., Swaab, D.F., Pijl, H., and Roos, R.A. (2007). Hypothalamic dysfunction and neuroendocrine and metabolic alterations in Huntington’s disease: clinical consequences and therapeutic implications. Rev. Neurosci. 18, 223–251.Google Scholar

  • Aziz, N.A., Pijl, H., Frolich, M., Snel, M., Streefland, T.C., Roelfsema, F., and Roos, R.A. (2010). Systemic energy homeostasis in Huntington’s disease patients. J. Neurol. Neurosurg. Psychiatry 81, 1233–1237.Google Scholar

  • Baggio, L.L. and Drucker, D.J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology 132, 2131–2157.Google Scholar

  • Baggio, L.L., Huang, Q., Brown, T.J., and Drucker, D.J. (2004). Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558.Google Scholar

  • Bak, A.M., Egefjord, L., Gejl, M., Steffensen, C., Stecher, C.W., Smidt, K., Brock, B., and Rungby, J. (2011). Targeting amyloid-β by glucagon-like peptide -1 (GLP-1) in Alzheimer’s disease and diabetes. Expert Opin. Ther. Targets 15, 1153–1162.Google Scholar

  • Barnett, A.H. (2015). Linagliptin for the treatment of type 2 diabetes mellitus: a drug safety evaluation. Expert Opin. Drug Safety 14, 149–159.Google Scholar

  • Bataille, D., Tatemoto, K., Gespach, C., Jornvall, H., Rosselin, G., and Mutt, V. (1982). Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno-ileum. Characterization of the peptide. FEBS Lett. 146, 79–86.Google Scholar

  • Bertilsson, G., Patrone, C., Zachrisson, O., Andersson, A., Dannaeus, K., Heidrich, J., Kortesmaa, J., Mercer, A., Nielsen, E., Ronnholm, H., et al. (2008). Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson’s disease. J. Neurosci. Res. 86, 326–338.Google Scholar

  • Bhat, V.K., Kerr, B.D., Flatt, P.R., and Gault, V.A. (2013a). A novel GIP-oxyntomodulin hybrid peptide acting through GIP, glucagon and GLP-1 receptors exhibits weight reducing and anti-diabetic properties. Biochem. Pharmacol. 85, 1655–1662.Google Scholar

  • Bhat, V.K., Kerr, B.D., Vasu, S., Flatt, P.R., and Gault, V.A. (2013b). A DPP-IV-resistant triple-acting agonist of GIP, GLP-1 and glucagon receptors with potent glucose-lowering and insulinotropic actions in high-fat-fed mice. Diabetologia 56, 1417–1424.Google Scholar

  • Bianchi, E., Carrington, P.E., Ingallinella, P., Finotto, M., Santoprete, A., Petrov, A., Eiermann, G., Kosinski, J., Marsh, D.J., Pocai, A., et al. (2013). A PEGylated analog of the gut hormone oxyntomodulin with long-lasting antihyperglycemic, insulinotropic and anorexigenic activity. Bioorg. Med. Chem. 21, 7064–7073.Google Scholar

  • Bollag, R.J., Zhong, Q., Ding, K.H., Phillips, P., Zhong, L., Qin, F., Cranford, J., Mulloy, A.L., Cameron, R., and Isales, C.M. (2001). Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol. Cell. Endocrinol. 177, 35–41.Google Scholar

  • Bousquet, M., St-Amour, I., Vandal, M., Julien, P., Cicchetti, F., and Calon, F. (2012). High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice. Neurobiol. Dis. 45, 529–538.Google Scholar

  • Brunetti, A., Chiefari, E., and Foti, D. (2014). Recent advances in the molecular genetics of type 2 diabetes mellitus. World J. Diabetes 5, 128–140.Google Scholar

  • Buhren, B.A., Gasis, M., Thorens, B., Muller, H.W., and Bosse, F. (2009). Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR): cellular localization, lesion-affected expression, and impaired regenerative axonal growth. J. Neurosci. Res. 87, 1858–1870.Google Scholar

  • Cai, H., Cong, W.N., Ji, S., Rothman, S., Maudsley, S., and Martin, B. (2012). Metabolic dysfunction in Alzheimer’s disease and related neurodegenerative disorders. Curr. Alzheimer Res. 9, 5–17.Google Scholar

  • Campbell, J.E. and Drucker, D.J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 17, 819–837.Google Scholar

  • Cao, L., Li, D., Feng, P., Li, L., Xue, G.F., Li, G., and Holscher, C. (2016). A novel dual GLP-1 and GIP incretin receptor agonist is neuroprotective in a mouse model of Parkinson’s disease by reducing chronic inflammation in the brain. NeuroReport 27, 384–391.Google Scholar

  • Cegla, J., Troke, R.C., Jones, B., Tharakan, G., Kenkre, J., McCullough, K.A., Lim, C.T., Parvizi, N., Hussein, M., Chambers, E.S., et al. (2014). Coinfusion of low-dose GLP-1 and glucagon in man results in a reduction in food intake. Diabetes 63, 3711–3720.Google Scholar

  • Cereda, E., Barichella, M., Pedrolli, C., Klersy, C., Cassani, E., Caccialanza, R., and Pezzoli, G. (2011). Diabetes and risk of Parkinson’s disease: a systematic review and meta-analysis. Diabetes Care 34, 2614–2623.Google Scholar

  • Chaudhri, O.B., Parkinson, J.R., Kuo, Y.T., Druce, M.R., Herlihy, A.H., Bell, J.D., Dhillo, W.S., Stanley, S.A., Ghatei, M.A., and Bloom, S.R. (2006). Differential hypothalamic neuronal activation following peripheral injection of GLP-1 and oxyntomodulin in mice detected by manganese-enhanced magnetic resonance imaging. Biochem. Biophys. Res. Commun. 350, 298–306.Google Scholar

  • Chen, S., Liu, A.R., An, F.M., Yao, W.B., and Gao, X.D. (2012). Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer’s disease by exendin-4. Age (Dordr.) 34, 1211–1224.Google Scholar

  • Chen, X.W., He, Z.X., Zhou, Z.W., Yang, T., Zhang, X., Yang, Y.X., Duan, W., and Zhou, S.F. (2015a). Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for the treatment of type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 42, 999–1024.Google Scholar

  • Chen, Y., Zhang, Y., Li, L., and Holscher, C. (2015b). Neuroprotective effects of geniposide in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol. 768, 21–27.Google Scholar

  • Chen, Y., Zhang, J., Zhang, B., and Gong, C.X. (2016). Targeting insulin signaling for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem. 16, 485–492.Google Scholar

  • Chia, C.W., Carlson, O.D., Kim, W., Shin, Y.K., Charles, C.P., Kim, H.S., Melvin, D.L., and Egan, J.M. (2009). Exogenous glucose-dependent insulinotropic polypeptide worsens post prandial hyperglycemia in type 2 diabetes. Diabetes 58, 1342–1349.Google Scholar

  • Cho, Y.M., Merchant, C.E., and Kieffer, T.J. (2012). Targeting the glucagon receptor family for diabetes and obesity therapy. Pharmacol. Ther. 135, 247–278.Google Scholar

  • Cicek, F.A., Tokcaer-Keskin, Z., Ozcinar, E., Bozkus, Y., Akcali, K.C., and Turan, B. (2014). Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation. Mol. Biol. Rep. 41, 4853–4863.Google Scholar

  • Cohen, A.D. and Klunk, W.E. (2014). Early detection of Alzheimer’s disease using PiB and FDG PET. Neurobiol. Dis. 72 Pt A, 117–122.Google Scholar

  • Cork, S.C., Richards, J.E., Holt, M.K., Gribble, F.M., Reimann, F., and Trapp, S. (2015). Distribution and characterisation of glucagon-like peptide-1 receptor expressing cells in the mouse brain. Mol. Metab. 4, 718–731.Google Scholar

  • D’Amico, M., Di Filippo, C., Marfella, R., Abbatecola, A.M., Ferraraccio, F., Rossi, F., and Paolisso, G. (2010). Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp. Gerontol. 45, 202–207.Google Scholar

  • Dakin, C.L., Small, C.J., Batterham, R.L., Neary, N.M., Cohen, M.A., Patterson, M., Ghatei, M.A., and Bloom, S.R. (2004). Peripheral oxyntomodulin reduces food intake and body weight gain in rats. Endocrinology 145, 2687–2695.Google Scholar

  • Darsalia, V., Mansouri, S., Ortsater, H., Olverling, A., Nozadze, N., Kappe, C., Iverfeldt, K., Tracy, L.M., Grankvist, N., Sjoholm, A., et al. (2012). Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats. Clin. Sci. (Lond.) 122, 473–483.Google Scholar

  • Darsalia, V., Hua, S., Larsson, M., Mallard, C., Nathanson, D., Nystrom, T., Sjoholm, A., Johansson, M.E., and Patrone, C. (2014). Exendin-4 reduces ischemic brain injury in normal and aged type 2 diabetic mice and promotes microglial M2 polarization. PLoS One 9, e103114.Google Scholar

  • Darsalia, V., Larsson, M., Lietzau, G., Nathanson, D., Nystrom, T., Klein, T., and Patrone, C. (2016). Gliptin-mediated neuroprotection against stroke requires chronic pretreatment and is independent of glucagon-like peptide-1 receptor. Diabetes Obes. Metab. 18, 537–541.Google Scholar

  • Deacon, C.F., Nauck, M.A., Meier, J., Hucking, K., and Holst, J.J. (2000). Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J. Clin. Endocrinol. Metab. 85, 3575–3581.Google Scholar

  • Deacon, C.F., Danielsen, P., Klarskov, L., Olesen, M., and Holst, J.J. (2001). Dipeptidyl peptidase IV inhibition reduces the degradation and clearance of GIP and potentiates its insulinotropic and antihyperglycemic effects in anesthetized pigs. Diabetes 50, 1588–1597.Google Scholar

  • De Felice, F.G., Vieira, M.N., Bomfim, T.R., Decker, H., Velasco, P.T., Lambert, M.P., Viola, K.L., Zhao, W.Q., Ferreira, S.T., Kleina, WL. (2009). Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc. Natl. Acad. Sci. USA. 106, 1971–1976.Google Scholar

  • Dong, J.Z., Shen, Y., Zhang, J., Tsomaia, N., Mierke, D.F., and Taylor, J.E. (2011). Discovery and characterization of taspoglutide, a novel analogue of human glucagon-like peptide-1, engineered for sustained therapeutic activity in type 2 diabetes. Diabetes Obes. Metab. 13, 19–25.Google Scholar

  • Doyle, M.E. and Egan, J.M. (2007). Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol. Ther. 113, 546–593.Google Scholar

  • Dozier, K.C., Cureton, E.L., Kwan, R.O., Curran, B., Sadjadi, J., and Victorino, G.P. (2009). Glucagon-like peptide-1 protects mesenteric endothelium from injury during inflammation. Peptides 30, 1735–1741.Google Scholar

  • Duffy, A.M. and Holscher, C. (2013). The incretin analogue D-Ala2GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer’s disease. Neuroscience 228, 294–300.Google Scholar

  • Dupre, J., Ross, S.A., Watson, D., and Brown, J.C. (1973). Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J. Clin. Endocrinol. Metab. 37, 826–828.Google Scholar

  • Dupuis, L., Dengler, R., Heneka, M.T., Meyer, T., Zierz, S., Kassubek, J., Fischer, W., Steiner, F., Lindauer, E., Otto, M., et al. (2012). A randomized, double blind, placebo-controlled trial of pioglitazone in combination with riluzole in amyotrophic lateral sclerosis. PLoS One 7, e37885.Google Scholar

  • During, M.J., Cao, L., Zuzga, D.S., Francis, J.S., Fitzsimons, H.L., Jiao, X., Bland, R.J., Klugmann, M., Banks, W.A., Drucker, D.J., et al. (2003). Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat. Med. 9, 1173–1179.Google Scholar

  • Escribano, L., Simon, A.M., Gimeno, E., Cuadrado-Tejedor, M., Lopez de Maturana, R., Garcia-Osta, A., Ricobaraza, A., Perez-Mediavilla, A., Del Rio, J., and Frechilla, D. (2010). Rosiglitazone rescues memory impairment in Alzheimer’s transgenic mice: mechanisms involving a reduced amyloid and τ pathology. Neuropsychopharmacology 35, 1593–1604.Google Scholar

  • Faivre, E. and Holscher, C. (2013a). D-Ala2GIP facilitated synaptic plasticity and reduces plaque load in aged wild type mice and in an Alzheimer’s disease mouse model. J. Alzheimers Dis. 35, 267–283.Google Scholar

  • Faivre, E. and Holscher, C. (2013b). Neuroprotective effects of D-Ala2GIP on Alzheimer’s disease biomarkers in an APP/PS1 mouse model. Alzheimers Res. Ther. 5, 20–28.Google Scholar

  • Faivre, E., Hamilton, A., and Holscher, C. (2012). Effects of acute and chronic administration of GIP analogues on cognition, synaptic plasticity and neurogenesis in mice. Eur. J. Pharmacol. 674, 294–306.Google Scholar

  • Faludi, P., Brodows, R., Burger, J., Ivanyi, T., and Braun, D.K. (2009). The effect of exenatide re-exposure on safety and efficacy. Peptides 30, 1771–1774.Google Scholar

  • Farrer, L.A. (1985). Diabetes mellitus in Huntington disease. Clin. Genet. 27, 62–67.Google Scholar

  • Fatima, S., Haque, R., Jadiya, P., Shamsuzzama, Kumar, L., and Nazir, A. (2014). Ida-1, the Caenorhabditis elegans orthologue of mammalian diabetes autoantigen IA-2, potentially acts as a common modulator between Parkinson’s disease and diabetes: role of Daf-2/Daf-16 insulin like signalling pathway. PLoS One 9, e113986.Google Scholar

  • Figueiredo, C.P., Antunes, V.L., Moreira, E.L., de Mello, N., Medeiros, R., Di Giunta, G., Lobao-Soares, B., Linhares, M., Lin, K., Mazzuco, T.L., et al. (2011). Glucose-dependent insulinotropic peptide receptor expression in the hippocampus and neocortex of mesial temporal lobe epilepsy patients and rats undergoing pilocarpine induced status epilepticus. Peptides 32, 781–789.Google Scholar

  • Finan, B., Ma, T., Ottaway, N., Muller, T.D., Habegger, K.M., Heppner, K.M., Kirchner, H., Holland, J., Hembree, J., Raver, C., et al. (2013). Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med. 5, 209ra151.Google Scholar

  • Finan, B., Yang, B., Ottaway, N., Smiley, D.L., Ma, T., Clemmensen, C., Chabenne, J., Zhang, L., Habegger, K.M., Fischer, K., et al. (2015). A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med. 21, 27–36.Google Scholar

  • Finan, B., Muller, T.D., Clemmensen, C., Perez-Tilve, D., DiMarchi, R.D., and Tschop, M.H. (2016). Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol. Med. 22, 359–376.Google Scholar

  • Forst, T. and Pfutzner, A. (2012). Linagliptin, a dipeptidyl peptidase-4 inhibitor with a unique pharmacological profile, and efficacy in a broad range of patients with type 2 diabetes. Expert Opin. Pharmacother. 13, 101–110.Google Scholar

  • Freiherr, J., Hallschmid, M., Frey, W.H. 2nd, Brunner, Y.F., Chapman, C.D., Holscher, C., Craft, S., De Felice, F.G., and Benedict, C. (2013). Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs 27, 505–514.Google Scholar

  • Gallwitz, B. (2013). Emerging DPP-4 inhibitors: focus on linagliptin for type 2 diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 6, 1–9.Google Scholar

  • Gao, C., Holscher, C., Liu, Y., and Li, L. (2012). GSK3: a key target for the development of novel treatments for type 2 diabetes mellitus and Alzheimer disease. Rev. Neurosci. 23, 1–11.Google Scholar

  • Gao, C., Liu, Y., Jiang, Y., Ding, J., and Li, L. (2014). Geniposide ameliorates learning memory deficits, reduces τ phosphorylation and decreases apoptosis via GSK3β pathway in streptozotocin-induced Alzheimer rat model. Brain Pathol. 24, 261–269.Google Scholar

  • Garg, K., Tripathi, C.D., and Kumar, S. (2013). Clinical review of sitagliptin: a DPP-4 inhibitor. J. Assoc. Physicians India 61, 645–649.Google Scholar

  • Gault, V.A. and Holscher, C. (2008a). GLP-1 agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by β-amyloid. Eur. J. Pharmacol. 587, 112–117.Google Scholar

  • Gault, V.A. and Holscher, C. (2008b). Protease-resistant glucose-dependent insulinotropic polypeptide agonists facilitate hippocampal LTP and reverse the impairment of LTP induced by β-amyloid. J. Neurophysiol. 99, 1590–1595.Google Scholar

  • Gault, V.A., Flatt, P.R., Bailey, C.J., Harriott, P., Greer, B., Mooney, M.H., and O’Harte, F.P. (2002). Enhanced cAMP generation and insulin-releasing potency of two novel Tyr1-modified enzyme-resistant forms of glucose-dependent insulinotropic polypeptide is associated with significant antihyperglycaemic activity in spontaneous obesity-diabetes. Biochem. J. 367, 913–920.Google Scholar

  • Gault, V.A., Flatt, P.R., Harriott, P., Mooney, M.H., Bailey, C.J., and O’Harte, F.P. (2003a). Improved biological activity of Gly2- and Ser2-substituted analogues of glucose-dependent insulinotrophic polypeptide. J. Endocrinol. 176, 133–141.Google Scholar

  • Gault, V.A., O’Harte, F.P., Harriott, P., and Flatt, P.R. (2003b). Degradation, cyclic adenosine monophosphate production, insulin secretion, and glycemic effects of two novel N-terminal Ala2-substituted analogs of glucose-dependent insulinotropic polypeptide with preserved biological activity in vivo. Metab. Clin. Exp. 52, 679–687.Google Scholar

  • Gault, V.A., Irwin, N., Green, B.D., McCluskey, J.T., Greer, B., Bailey, C.J., Harriott, P., O’Harte, F.P., and Flatt, P.R. (2005). Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3)GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes 54, 2436–2446.Google Scholar

  • Gault, V.A., Kerr, B.D., Irwin, N., and Flatt, P.R. (2008). C-terminal mini-PEGylation of glucose-dependent insulinotropic polypeptide exhibits metabolic stability and improved glucose homeostasis in dietary-induced diabetes. Biochem. Pharmacol. 75, 2325–2333.Google Scholar

  • Gault, V.A., Kerr, B.D., Harriott, P., and Flatt, P.R. (2011). Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with type 2 diabetes and obesity. Clin. Sci. (Lond.) 121, 107–117.Google Scholar

  • Gault, V.A., Bhat, V.K., Irwin, N., and Flatt, P.R. (2013). A novel glucagon-like peptide-1 (GLP-1)/glucagon hybrid peptide with triple-acting agonist activity at glucose-dependent insulinotropic polypeptide, GLP-1, and glucagon receptors and therapeutic potential in high fat-fed mice. J. Biol. Chem. 288, 35581–35591.Google Scholar

  • Gault, V.A., Lennox, R., and Flatt, P.R. (2015). Sitagliptin, a DPP-4 inhibitor, improves recognition memory, oxidative stress, hippocampal neurogenesis and up-regulates key genes involved in cognitive decline. Diabetes Obes. Metab. 7, 403–414.Google Scholar

  • Gejl, M., Gjedde, A., Egefjord, L., Møller, A., Hansen, S.B., Vang, K., Rodell, A.B., Braendgaard, H., Gottrup, H., Schacht, A., et al. (2016). Alzheimer’s disease, six-month treatment with GLP-1 analogue prevents decline of brain glucose metabolism: randomized, placebo-controlled, double-blind clinical trial. Front. Aging Neurosci. DOI: 10.3389/fnagi.2016.00108.CrossrefGoogle Scholar

  • Gelling, R.W., Vuguin, P.M., Du, X.Q., Cui, L., Romer, J., Pederson, R.A., Leiser, M., Sorensen, H., Holst, J.J., Fledelius, C., et al. (2009). Pancreatic β-cell overexpression of the glucagon receptor gene results in enhanced β-cell function and mass. Am. J. Physiol. Endocrinol. Metab. 297, E695–E707.Google Scholar

  • Gengler, S., McClean, P.L., McCurtin, R., Gault, V.A., and Holscher, C. (2012). Val(8)GLP-1 rescues synaptic plasticity and reduces dense core plaques in APP/PS1 mice. Neurobiol. Aging 33, 265–276.Google Scholar

  • Green, B.D., Gault, V.A., O’Harte, F.P., and Flatt, P.R. (2005). A comparison of the cellular and biological properties of DPP-IV-resistant N-glucitol analogues of glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. Diabetes Obes. Metab. 7, 595–604.Google Scholar

  • Gupta, D., Peshavaria, M., Monga, N., Jetton, T.L., and Leahy, J.L. (2010). Physiologic and pharmacologic modulation of glucose-dependent insulinotropic polypeptide (GIP) receptor expression in β-cells by peroxisome proliferator-activated receptor (PPAR)-g signaling: possible mechanism for the GIP resistance in type 2 diabetes. Diabetes 59, 1445–1450.Google Scholar

  • Hamilton, A. and Holscher, C. (2009). Receptors for the insulin-like peptide GLP-1 are expressed on neurons in the CNS. NeuroReport 20, 1161–1166.Google Scholar

  • Hamilton, A., Patterson, S., Porter, D., Gault, V.A., and Holscher, C. (2011). Novel GLP-1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J. Neurosci. Res. 89, 481–489.Google Scholar

  • Han, W.N., Holscher, C., Yuan, L., Yang, W., Wang, X.H., Wu, M.N., and Qi, J.S. (2013). Liraglutide protects against amyloid-β protein-induced impairment of spatial learning and memory in rats. Neurobiol. Aging 34, 576–588.Google Scholar

  • Han, L., Holscher, C., Xue, G.F., Li, G., and Li, D. (2016). A novel dual-glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide receptor agonist is neuroprotective in transient focal cerebral ischemia in the rat. NeuroReport 27, 23–32.Google Scholar

  • Hansen, H.H., Barkholt, P., Fabricius, K., Jelsing, J., Terwel, D., Pyke, C., Knudsen, L.B., and Vrang, N. (2015). The GLP-1 receptor agonist liraglutide reduces pathology-specific τ phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res. 1634, 157–170.Google Scholar

  • Harkavyi, A. and Whitton, P.S. (2010). Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection. Br. J. Pharmacol. 159, 495–501.Google Scholar

  • Harris, M.D., Davidson, M.B., and Rosenberg, C.S. (1986). Insulin antagonism is not a primary abnormality of amyotrophic lateral sclerosis but is related to disease severity. J. Clin. Endocrinol. Metab. 63, 41–46.Google Scholar

  • Hinke, S.A., Gelling, R.W., Pederson, R.A., Manhart, S., Nian, C., Demuth, H.U., and McIntosh, C.H. (2002). Dipeptidyl peptidase IV-resistant [D-Ala(2)]glucose-dependent insulinotropic polypeptide (GIP) improves glucose tolerance in normal and obese diabetic rats. Diabetes 51, 652–661.Google Scholar

  • Hojberg, P.V., Vilsboll, T., Rabol, R., Knop, F.K., Bache, M., Krarup, T., Holst, J.J., and Madsbad, S. (2009). Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes. Diabetologia 52, 199–207.Google Scholar

  • Holscher, C. (2011). Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem. Soc. Trans. 39, 891–897.Google Scholar

  • Holscher, C. (2014a). Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J. Endocrinol. 221, T31–T41.Google Scholar

  • Holscher, C. (2014b). First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimers Dementia 10, S33–S37.CrossrefGoogle Scholar

  • Holscher, C. (2014c). The incretin hormones glucagonlike peptide 1 and glucose-dependent insulinotropic polypeptide are neuroprotective in mouse models of Alzheimer’s disease. Alzheimers Dementia 10, S47–S54.Google Scholar

  • Holscher, C. (2014d). Insulin, incretins and other growth factors as potential novel treatments for Alzheimer’s and Parkinson’s diseases. Biochem. Soc. Trans. 42, 593–599.Google Scholar

  • Holscher, C. and Li, L. (2010). New roles for insulin-like hormones in neuronal signalling and protection: new hopes for novel treatments of Alzheimer’s disease? Neurobiol. Aging 31, 1495–1502.Google Scholar

  • Holst, J.J., Burcelin, R., and Nathanson, E. (2011). Neuroprotective properties of GLP-1: theoretical and practical applications. Curr. Med. Res. Opin. 27, 547–558.Google Scholar

  • Hu, G., Jousilahti, P., Bidel, S., Antikainen, R., and Tuomilehto, J. (2007). Type 2 diabetes and the risk of Parkinson’s disease. Diabetes Care 30, 842–847.Google Scholar

  • Hunt, M.J. and Morton, A.J. (2005). Atypical diabetes associated with inclusion formation in the R6/2 mouse model of Huntington’s disease is not improved by treatment with hypoglycaemic agents. Exp. Brain Res. 166, 220–229.Google Scholar

  • Hunter, K. and Holscher, C. (2012). Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci. 13, 33–38.Google Scholar

  • Hurlbert, M.S., Zhou, W., Wasmeier, C., Kaddis, F.G., Hutton, J.C., and Freed, C.R. (1999). Mice transgenic for an expanded CAG repeat in the Huntington’s disease gene develop diabetes. Diabetes 48, 649–651.Google Scholar

  • Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A.L., Tsapas, A., Wender, R., and Matthews, D.R. (2015). Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 38, 140–149.Google Scholar

  • Irwin, N. and Flatt, P.R. (2009). Therapeutic potential for GIP receptor agonists and antagonists. Best Pract. Res. Clin. Endocrinol. Metab. 23, 499–512.Google Scholar

  • Irwin, N. and Flatt, P.R. (2015). New perspectives on exploitation of incretin peptides for the treatment of diabetes and related disorders. World J. Diabetes 6, 1285–1295.Google Scholar

  • Irwin, N., Gault, V.A., Green, B.D., Greer, B., Harriott, P., Bailey, C.J., Flatt, P.R., and O’Harte, F.P. (2005a). Antidiabetic potential of two novel fatty acid derivatised, N-terminally modified analogues of glucose-dependent insulinotropic polypeptide (GIP): N-AcGIP(LysPAL16) and N-AcGIP(LysPAL37). Biol. Chem. 386, 679–687.Google Scholar

  • Irwin, N., Green, B.D., Gault, V.A., Greer, B., Harriott, P., Bailey, C.J., Flatt, P.R., and O’Harte, F.P. (2005b). Degradation, insulin secretion, and antihyperglycemic actions of two palmitate-derivatized N-terminal pyroglutamyl analogues of glucose-dependent insulinotropic polypeptide. J. Med. Chem. 48, 1244–1250.Google Scholar

  • Irwin, N., O’Harte, F.P., Gault, V.A., Green, B.D., Greer, B., Harriott, P., Bailey, C.J., and Flatt, P.R. (2006). GIP(Lys16PAL) and GIP(Lys37PAL): novel long-acting acylated analogues of glucose-dependent insulinotropic polypeptide with improved antidiabetic potential. J. Med. Chem. 49, 1047–1054.Google Scholar

  • Iwai, T., Ito, S., Tanimitsu, K., Udagawa, S., and Oka, J. (2006). Glucagon-like peptide-1 inhibits LPS-induced IL-1β production in cultured rat astrocytes. Neurosci. Res. 55, 352–360.Google Scholar

  • Jain, S. and Sharma, B. (2015). Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. Physiol. Behav. 152, 182–193.Google Scholar

  • Jawaid, A., Paganoni, S., Hauser, C., and Schulz, P.E. (2014). Trials of antidiabetic drugs in amyotrophic lateral sclerosis: proceed with caution? Neuro-degener. Dis. 13, 205–208.Google Scholar

  • Jendle, J., Martin, S.A., and Milicevic, Z. (2012). Insulin and GLP-1 analog combinations in type 2 diabetes mellitus: a critical review. Expert Opin. Investig. Drugs 21, 1463–1474.Google Scholar

  • Ji, C., Xue, G.F., Li, G., Li, D., and Holscher, C. (2016a). Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer’s disease. Rev. Neurosci. 27, 61–70.Google Scholar

  • Ji, C., Xue, G.F., Lijun, C., Feng, P., Li, D., Li, L., Li, G., and Holscher, C. (2016b). A novel dual GLP-1 and GIP receptor agonist is neuroprotective in the MPTP mouse model of Parkinson’s disease by increasing expression of BNDF. Brain Res. 1634, 1–11.Google Scholar

  • Josefsen, K., Nielsen, M.D., Jorgensen, K.H., Bock, T., Norremolle, A., Sorensen, S.A., Naver, B., and Hasholt, L. (2008). Impaired glucose tolerance in the R6/1 transgenic mouse model of Huntington’s disease. J. Neuroendocrinol. 20, 165–172.Google Scholar

  • Jung, E., Kim, J., Kim, S.H., Kim, S., and Cho, M.H. (2014). Gemigliptin, a novel dipeptidyl peptidase-4 inhibitor, exhibits potent anti-glycation properties in vitro and in vivo. Eur. J. Pharmacol. 744, 98–102.Google Scholar

  • Kaneb, H.M., Sharp, P.S., Rahmani-Kondori, N., and Wells, D.J. (2011). Metformin treatment has no beneficial effect in a dose-response survival study in the SOD1(G93A) mouse model of ALS and is harmful in female mice. PLoS One 6, e24189.Google Scholar

  • Kappe, C., Tracy, L.M., Patrone, C., Iverfeldt, K., and Sjoholm, A. (2012). GLP-1 secretion by microglial cells and decreased CNS expression in obesity. J. Neuroinflamm. 9, 276.Google Scholar

  • Kastin, A.J., Akerstrom, V., and Pan, W, (2002). Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 18, 7–14.Google Scholar

  • Keating, G.M. (2015). Alogliptin: a review of its use in patients with type 2 diabetes mellitus. Drugs 75, 777–796.Google Scholar

  • Kerr, B.D., Flatt, P.R., and Gault, V.A. (2010). (D-Ser2)Oxm[mPEG-PAL]: a novel chemically modified analogue of oxyntomodulin with antihyperglycaemic, insulinotropic and anorexigenic actions. Biochem. Pharmacol. 80, 1727–1735.Google Scholar

  • Kervran, A., Dubrasquet, M., Blache, P., Martinez, J., and Bataille, D. (1990). Metabolic clearance rates of oxyntomodulin and glucagon in the rat: contribution of the kidney. Regul. Pept. 31, 41–52.Google Scholar

  • Kieffer, T.J., McIntosh, C.H., and Pederson, R.A. (1995). Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136, 3585–3596.Google Scholar

  • Kielgast, U., Holst, J.J., and Madsbad, S. (2011). Antidiabetic actions of endogenous and exogenous GLP-1 in type 1 diabetic patients with and without residual β-cell function. Diabetes 60, 1599–1607.Google Scholar

  • Kim, S.J., Winter, K., Nian, C., Tsuneoka, M., Koda, Y., and McIntosh, C.H. (2005). Glucose-dependent insulinotropic polypeptide (GIP) stimulation of pancreatic β-cell survival is dependent upon phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, inactivation of the forkhead transcription factor Foxo1, and down-regulation of bax expression. J. Biol. Chem. 280, 22297–22307.Google Scholar

  • Kim, S., Moon, M., and Park, S. (2009). Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson’s disease. J. Endocrinol. 202, 431–439.Google Scholar

  • Kim, S.J., Nian, C., Karunakaran, S., Clee, S.M., Isales, C.M., and McIntosh, C.H. (2012). GIP-overexpressing mice demonstrate reduced diet-induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7, e40156.Google Scholar

  • Kim, S.H., Lee, S.H., and Yim, H.J. (2013). Gemigliptin, a novel dipeptidyl peptidase 4 inhibitor: first new anti-diabetic drug in the history of Korean pharmaceutical industry. Arch. Pharm. Res. 36, 1185–1188.Google Scholar

  • Kimura, R., Okouchi, M., Fujioka, H., Ichiyanagi, A., Ryuge, F., Mizuno, T., Imaeda, K., Okayama, N., Kamiya, Y., Asai, K., et al. (2009). Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162, 1212–1219.Google Scholar

  • Kopf, D. and Frolich, L. (2009). Risk of incident Alzheimer’s disease in diabetic patients: a systematic review of prospective trials. J. Alzheimers Dis. 16, 677–685.Google Scholar

  • Kosaraju, J., Gali, C.C., Khatwal, R.B., Dubala, A., Chinni, S., Holsinger, R.M., Madhunapantula, V.S., Muthureddy Nataraj, S.K., and Basavan, D. (2013a). Saxagliptin: a dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology 72, 291–300.Google Scholar

  • Kosaraju, J., Murthy, V., Khatwal, R.B., Dubala, A., Chinni, S., Muthureddy Nataraj, S.K., and Basavan, D. (2013b). Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J. Pharm. Pharmacol. 65, 1773–1784.Google Scholar

  • Kosaraju, J., Dubala, A., Chinni, S., Khatwal, R.B., Satish Kumar, M.N., and Basavan, D. (2014a). A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm. Biol. 52, 268–271.Google Scholar

  • Kosaraju, J., Madhunapantula, S.V., Chinni, S., Khatwal, R.B., Dubala, A., Muthureddy Nataraj, S.K., and Basavan, D. (2014b). Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease. Behav. Brain Res. 267, 55–65.Google Scholar

  • Kosinski, J.R., Hubert, J., Carrington, P.E., Chicchi, G.G., Mu, J., Miller, C., Cao, J., Bianchi, E., Pessi, A., Sinharoy, R., et al. (2012). The glucagon receptor is involved in mediating the body weight-lowering effects of oxyntomodulin. Obesity (Silver Spring) 20, 1566–1571.Google Scholar

  • Lalic, N.M., Maric, J., Svetel, M., Jotic, A., Stefanova, E., Lalic, K., Dragasevic, N., Milicic, T., Lukic, L., and Kostic, V.S. (2008). Glucose homeostasis in Huntington disease: abnormalities in insulin sensitivity and early-phase insulin secretion. Arch. Neurol. 65, 476–480.Google Scholar

  • Lambeir, A.M., Durinx, C., Scharpe, S., and De Meester, I. (2003). Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci. 40, 209–294.Google Scholar

  • Lau, J., Bloch, P., Schaffer, L., Pettersson, I., Spetzler, J., Kofoed, J., Madsen, K., Knudsen, L.B., McGuire, J., Steensgaard, D.B., et al. (2015). Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. J. Med. Chem. 58, 7370–7380.Google Scholar

  • Lekoubou, A., Matsha, T.E., Sobngwi, E., and Kengne, A.P. (2014). Effects of diabetes mellitus on amyotrophic lateral sclerosis: a systematic review. BMC Res. Notes 7, 171.Google Scholar

  • Lester-Coll, N., Rivera, E.J., Soscia, S.J., Doiron, K., Wands, J.R., and de la Monte, S.M. (2006). Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J. Alzheimers Dis. 9, 13–33.Google Scholar

  • Li, L. and Holscher, C. (2007). Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res. Rev. 56, 384–402.Google Scholar

  • Li, Y., Perry, T., Kindy, M.S., Harvey, B.K., Tweedie, D., Holloway, H.W., Powers, K., Shen, H., Egan, J.M., Sambamurti, K., et al. (2009). GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc. Natl. Acad. Sci. USA. 106, 1285–1290.Google Scholar

  • Li, Y., Duffy, K.B., Ottinger, M.A., Ray, B., Bailey, J.A., Holloway, H.W., Tweedie, D., Perry, T., Mattson, M.P., Kapogiannis, D., et al. (2010a). GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J. Alzheimers Dis. 19, 1205–1219.Google Scholar

  • Li, Y., Tweedie, D., Mattson, M.P., Holloway, H.W., and Greig, N.H. (2010b). Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J. Neurochem. 113, 1621–1631.Google Scholar

  • Li, L., Zhang, Z.F., Holscher, C., Gao, C., Jiang, Y.H., and Liu, Y.Z. (2012a). (Val(8)) glucagon-like peptide-1 prevents τ hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur. J. Pharmacol. 674, 280–286.Google Scholar

  • Li, Y., Chigurupati, S., Holloway, H.W., Mughal, M., Tweedie, D., Bruestle, D.A., Mattson, M.P., Wang, Y., Harvey, B.K., Ray, B., et al. (2012b). Exendin-4 ameliorates motor neuron degeneration in cellular and animal models of amyotrophic lateral sclerosis. PLoS One 7, e32008.Google Scholar

  • Li, Y., Liu, W., Li, L., and Holscher, C. (2016). Neuroprotective effects of a GIP analogue in the MPTP Parkinson’s disease mouse model. Neuropharmacology 101, 255–263.Google Scholar

  • Lim, J.G., Lee, J.J., Park, S.H., Park, J.H., Kim, S.J., Cho, H.C., Baek, W.K., Kim, D.K., and Song, D.K. (2010). Glucagon-like peptide-1 protects NSC-34 motor neurons against glucosamine through Epac-mediated glucose uptake enhancement. Neurosci. Lett. 479, 13–17.Google Scholar

  • Lima, M.M., Targa, A.D., Noseda, A.C., Rodrigues, L.S., Delattre, A.M., dos Santos, F.V., Fortes, M.H., Maturana, M.J., and Ferraz, A.C. (2014). Does Parkinson’s disease and type-2 diabetes mellitus present common pathophysiological mechanisms and treatments? CNS Neurol. Disord. Drug Targets 13, 418–428.Google Scholar

  • Liu, Y.L., Ford, H.E., Druce, M.R., Minnion, J.S., Field, B.C., Shillito, J.C., Baxter, J., Murphy, K.G., Ghatei, M.A., and Bloom, S.R. (2010). Subcutaneous oxyntomodulin analogue administration reduces body weight in lean and obese rodents. Int. J. Obes. (Lond.) 34, 1715–1725.Google Scholar

  • Liu, W., Jalewa, J., Sharma, M., Li, G., Li, L., and Holscher, C. (2015a). Neuroprotective effects of lixisenatide and liraglutide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neuroscience 303, 42–50.Google Scholar

  • Liu, W., Li, Y., Jalewa, J., Saunders-Wood, T., Li, L., and Holscher, C. (2015b). Neuroprotective effects of an oxyntomodulin analogue in the MPTP mouse model of Parkinson’s disease. Eur. J. Pharmacol. 765, 284–290.Google Scholar

  • Long-Smith, C.M., Manning, S., McClean, P.L., Coakley, M.F., O’Halloran, D.J., Holscher, C., and O’Neill, C. (2013). The diabetes drug liraglutide ameliorates aberrant insulin receptor localisation and signalling in parallel with decreasing both amyloid-β plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromol. Med. 15, 102–114.Google Scholar

  • Luchsinger, J.A. (2012). Type 2 diabetes and cognitive impairment: linking mechanisms. J. Alzheimers Dis. 30 (Suppl 2), S185–S198.Google Scholar

  • Lund, A., Knop, F.K., and Vilsboll, T. (2014). Glucagon-like peptide-1 receptor agonists for the treatment of type 2 diabetes: differences and similarities. Eur. J. Internal Med. 25, 407–414.Google Scholar

  • Lynch, A.M., Pathak, N., Flatt, Y.E., Gault, V.A., O’Harte, F.P., Irwin, N., and Flatt, P.R. (2014). Comparison of stability, cellular, glucose-lowering and appetite suppressing effects of oxyntomodulin analogues modified at the N-terminus. Eur. J. Pharmacol. 743, 69–78.Google Scholar

  • Ma, T.C., Buescher, J.L., Oatis, B., Funk, J.A., Nash, A.J., Carrier, R.L., and Hoyt, K.R. (2007). Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci. Lett. 411, 98–103.Google Scholar

  • Ma, Q.L., Yang, F., Rosario, E.R., Ubeda, O.J., Beech, W., Gant, D.J., Chen, P.P., Hudspeth, B., Chen, C., Zhao, Y., et al. (2009). β-Amyloid oligomers induce phosphorylation of τ and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by ω-3 fatty acids and curcumin. J. Neurosci. 29, 9078–9089.Google Scholar

  • Maida, A., Lovshin, J.A., Baggio, L.L., and Drucker, D.J. (2008). The glucagon-like peptide-1 receptor agonist oxyntomodulin enhances β-cell function but does not inhibit gastric emptying in mice. Endocrinology 149, 5670–5678.Google Scholar

  • Marenah, L., McCluskey, J.T., Abdel-Wahab, Y.H., O’Harte, F.P., McClenaghan, N.H., and Flatt, P.R. (2006). A stable analogue of glucose-dependent insulinotropic polypeptide, GIP(LysPAL16), enhances functional differentiation of mouse embryonic stem cells into cells expressing islet-specific genes and hormones. Biol. Chem. 387, 941–947.Google Scholar

  • Marguet, D., Baggio, L., Kobayashi, T., Bernard, A.M., Pierres, M., Nielsen, P.F., Ribel, U., Watanabe, T., Drucker, D.J., and Wagtmann, N. (2000). Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proc. Natl. Acad. Sci. USA. 97, 6874–6879.Google Scholar

  • Martin, B., Golden, E., Carlson, O.D., Pistell, P., Zhou, J., Kim, W., Frank, B.P., Thomas, S., Chadwick, W.A., Greig, N.H., et al. (2009). Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington’s disease. Diabetes 58, 318–328.Google Scholar

  • Martin, B., Chadwick, W., Cong, W.N., Pantaleo, N., Daimon, C.M., Golden, E.J., Becker, K.G., Wood, W.H. 3rd, Carlson, O.D., Egan, J.M., et al. (2012). Euglycemic agent-mediated hypothalamic transcriptomic manipulation in the N171-82Q model of Huntington disease is related to their physiological efficacy. J. Biol. Chem. 287, 31766–31782.Google Scholar

  • Matteucci, E. and Giampietro, O. (2015). Mechanisms of neurodegeration in type 2 diabetes and the neuroprotective potential of dipeptidyl peptidase 4 inhibitors. Curr. Med. Chem. 22, 1573–1581.Google Scholar

  • Mazzocchi, G., Rebuffat, P., Meneghelli, V., Malendowicz, L.K., Tortorella, C., Gottardo, G., and Nussdorfer, G.G. (1999). Gastric inhibitory polypeptide stimulates glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase-dependent signaling pathway. Peptides 20, 589–594.Google Scholar

  • McClean, P.L. and Holscher, C. (2014a). Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology 76, 57–67.Google Scholar

  • McClean, P.L. and Holscher, C. (2014b). Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology 86C, 241–258.Google Scholar

  • McClean, P.L., Gault, V.A., Harriott, P., and Holscher, C. (2010). Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s disease. Eur. J. Pharmacol. 630, 158–162.Google Scholar

  • McClean, P.L., Parthsarathy, V., Faivre, E., and Holscher, C. (2011). The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 6587–6594.Google Scholar

  • McIntosh, C.H., Widenmaier, S., and Kim, S.J. (2009). Glucose-dependent insulinotropic polypeptide (gastric inhibitory polypeptide; GIP). Vitam Horm 80, 409–471.Google Scholar

  • Meier, J.J., Nauck, M.A., Kranz, D., Holst, J.J., Deacon, C.F., Gaeckler, D., Schmidt, W.E., and Gallwitz, B. (2004). Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes 53, 654–662.Google Scholar

  • Mentlein, R. (1999). Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul. Pept. 85, 9–24.Google Scholar

  • Merchenthaler, I., Lane, M., and Shughrue, P. (1999). Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J. Comp. Neurol. 403, 261–280.Google Scholar

  • Mikhail, N. (2008). Incretin mimetics and dipeptidyl peptidase 4 inhibitors in clinical trials for the treatment of type 2 diabetes. Expert Opin. Investig. Drugs 17, 845–853.Google Scholar

  • Miyake, Y., Tanaka, K., Fukushima, W., Sasaki, S., Kiyohara, C., Tsuboi, Y., Yamada, T., Oeda, T., Miki, T., Kawamura, N., et al.; Fukuoka Kinki Parkinson’s Disease Study G (2010). Case-control study of risk of Parkinson’s disease in relation to hypertension, hypercholesterolemia, and diabetes in Japan. J. Neurol. Sci. 293, 82–86.Google Scholar

  • Moloney, A.M., Griffin, R.J., Timmons, S., O’Connor, R., Ravid, R., and O’Neill, C. (2010). Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging 31, 224–243.Google Scholar

  • Moran, L.B. and Graeber, M.B. (2008). Towards a pathway definition of Parkinson’s disease: a complex disorder with links to cancer, diabetes and inflammation. Neurogenetics 9, 1–13.Google Scholar

  • Moroo, I., Yamada, T., Makino, H., Tooyama, I., McGeer, P.L., McGeer, E.G., and Hirayama, K. (1994). Loss of insulin receptor immunoreactivity from the substantia nigra pars compacta neurons in Parkinson’s disease. Acta Neuropathol. 87, 343–348.Google Scholar

  • Morris, J.K., Zhang, H., Gupte, A.A., Bomhoff, G.L., Stanford, J.A., and Geiger, P.C. (2008). Measures of striatal insulin resistance in a 6-hydroxydopamine model of Parkinson’s disease. Brain Res. 1240, 185–195.Google Scholar

  • Morris, J.K., Bomhoff, G.L., Gorres, B.K., Davis, V.A., Kim, J., Lee, P.P., Brooks, W.M., Gerhardt, G.A., Geiger, P.C., and Stanford, J.A. (2011). Insulin resistance impairs nigrostriatal dopamine function. Exp. Neurol. 231, 171–180.Google Scholar

  • Mossello, E., Ballini, E., Boncinelli, M., Monami, M., Lonetto, G., Mello, A.M., Tarantini, F., Baldasseroni, S., Mannucci, E., and Marchionni, N. (2011). Glucagon-like peptide-1, diabetes, and cognitive decline: possible pathophysiological links and therapeutic opportunities. Exp. Diabetes Res. 2011, 281674.Google Scholar

  • Muppidi, A., Zou, H., Yang, P.Y., Chao, E., Sherwood, L., Nunez, V., Woods, A.K., Schultz, P.G., Lin, Q., and Shen, W. (2016). Design of potent and proteolytically stable oxyntomodulin analogs. ACS Chem. Biol. 11, 324–328.Google Scholar

  • Nakamaru, Y., Hayashi, Y., Davies, M., Jurgen Heuer, H., Hisanaga, N., and Akimoto, K. (2015). Investigation of potential pharmacokinetic interactions between teneligliptin and metformin in steady-state conditions in healthy adults. Clin. Ther. 37, 2007–2018.Google Scholar

  • Nassar, N.N., Al-Shorbagy, M.Y., Arab, H.H., and Abdallah, D.M. (2015). Saxagliptin: a novel antiparkinsonian approach. Neuropharmacology 89C, 308–317.CrossrefGoogle Scholar

  • Nauck, M.A. (2011). Incretin-based therapies for type 2 diabetes mellitus: properties, functions, and clinical implications. Am. J. Med. 124, S3–S18.Google Scholar

  • Nissen, A., Christensen, M., Knop, F.K., Vilsboll, T., Holst, J.J., and Hartmann, B. (2014). Glucose-dependent insulinotropic polypeptide inhibits bone resorption in humans. J. Clin. Endocrinol. Metab. 99, E2325–E2329.CrossrefGoogle Scholar

  • Nyberg, J., Anderson, M.F., Meister, B., Alborn, A.M., Strom, A.K., Brederlau, A., Illerskog, A.C., Nilsson, O., Kieffer, T.J., Hietala, M.A., et al. (2005). Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation. J. Neurosci. 25, 1816–1825.Google Scholar

  • Nyberg, J., Jacobsson, C., Anderson, M.F., and Eriksson, P.S. (2007). Immunohistochemical distribution of glucose-dependent insulinotropic polypeptide in the adult rat brain. J. Neurosci. Res. 85, 2099–2119.Google Scholar

  • O’Harte, F.P., Mooney, M.H., and Flatt, P.R. (1999). NH2-terminally modified gastric inhibitory polypeptide exhibits amino-peptidase resistance and enhanced antihyperglycemic activity. Diabetes 48, 758–765.Google Scholar

  • O’Harte, F.P., Mooney, M.H., Kelly, C.M., and Flatt, P.R. (2000). Improved glycaemic control in obese diabetic ob/ob mice using N-terminally modified gastric inhibitory polypeptide. J. Endocrinol. 165, 639–648.Google Scholar

  • O’Harte, F.P., Gault, V.A., Parker, J.C., Harriott, P., Mooney, M.H., Bailey, C.J., and Flatt, P.R. (2002). Improved stability, insulin-releasing activity and antidiabetic potential of two novel N-terminal analogues of gastric inhibitory polypeptide: N-acetyl-GIP and pGlu-GIP. Diabetologia 45, 1281–1291.Google Scholar

  • Ohshima, R., Hotsumi, K., Holscher, C., and Seki, K. (2015). Age-related decrease in glucagon-like peptide-1 in mouse prefrontal cortex but not in hippocampus despite the preservation of its receptor. Am. J. Biosci. 1, 11–27.Google Scholar

  • Orskov, C., Wettergren, A., and Holst, J.J. (1996). Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand. J. Gastroenterol. 31, 665–670.Google Scholar

  • Ott, A., Stolk, R.P., van Harskamp, F., Pols, H.A., Hofman, A., and Breteler, M.M. (1999). Diabetes mellitus and the risk of dementia: the Rotterdam Study. Neurology 53, 1937–1942.Google Scholar

  • Parkinson, J.R., Chaudhri, O.B., Kuo, Y.T., Field, B.C., Herlihy, A.H., Dhillo, W.S., Ghatei, M.A., Bloom, S.R., and Bell, J.D. (2009). Differential patterns of neuronal activation in the brainstem and hypothalamus following peripheral injection of GLP-1, oxyntomodulin and lithium chloride in mice detected by manganese-enhanced magnetic resonance imaging (MEMRI). NeuroImage 44, 1022–1031.Google Scholar

  • Parthsarathy, V. and Holscher, C. (2013). The type 2 diabetes drug liraglutide reduces chronic inflammation induced by irradiation in the mouse brain. Eur. J. Pharmacol. 700, 42–50.Google Scholar

  • Pathak, N.M., Pathak, V., Lynch, A.M., Irwin, N., Gault, V.A., and Flatt, P.R. (2015). Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice. Mol. Cell. Endocrinol. 412, 95–103.Google Scholar

  • Patil, S.P., Jain, P.D., Ghumatkar, P.J., Tambe, R., and Sathaye, S. (2014). Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277, 747–754.Google Scholar

  • Patterson, M., Murphy, K.G., Patel, S.R., Patel, N.A., Greenwood, H.C., Cooke, J.H., Campbell, D., Bewick, G.A., Ghatei, M.A., and Bloom, S.R. (2009). Hypothalamic injection of oxyntomodulin suppresses circulating ghrelin-like immunoreactivity. Endocrinology 150, 3513–3520.Google Scholar

  • Perry, T.A. and Greig, N.H. (2004). A new Alzheimer’s disease interventive strategy: GLP-1. Curr. Drug Targets 5, 565–571.Google Scholar

  • Perry, T., Haughey, N.J., Mattson, M.P., Egan, J.M., and Greig, N.H. (2002a). Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther. 302, 881–888.Google Scholar

  • Perry, T., Lahiri, D.K., Chen, D., Zhou, J., Shaw, K.T., Egan, J.M., and Greig, N.H. (2002b). A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther. 300, 958–966.Google Scholar

  • Perry, T., Lahiri, D.K., Sambamurti, K., Chen, D., Mattson, M.P., Egan, J.M., and Greig, N.H. (2003). Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J. Neurosci. Res. 72, 603–612.Google Scholar

  • Perurena, O.H. and Festoff, B.W. (1987). Reduction in insulin receptors in amyotrophic lateral sclerosis correlates with reduced insulin sensitivity. Neurology 37, 1375–1379.Google Scholar

  • Petersen, A. and Bjorkqvist, M. (2006). Hypothalamic-endocrine aspects in Huntington’s disease. Eur. J. Neurosci. 24, 961–967.Google Scholar

  • Petersen, A.B. and Christensen, M. (2013). Clinical potential of lixisenatide once daily treatment for type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. Targets Ther. 6, 217–231.Google Scholar

  • Pintana, H., Apaijai, N., Chattipakorn, N., and Chattipakorn, S.C. (2013). DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J. Endocrinol. 218, 1–11.Google Scholar

  • Pipatpiboon, N., Pintana, H., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S.C. (2013). DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur. J. Neurosci. 37, 839–849.Google Scholar

  • Plosker, G.L. (2014). Sitagliptin: a review of its use in patients with type 2 diabetes mellitus. Drugs 74, 223–242.Google Scholar

  • Pocai, A. (2014). Action and therapeutic potential of oxyntomodulin. Mol. Metab. 3, 241–251.Google Scholar

  • Pocai, A., Carrington, P.E., Adams, J.R., Wright, M., Eiermann, G., Zhu, L., Du, X., Petrov, A., Lassman, M.E., Jiang, G., et al. (2009). Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266.Google Scholar

  • Podolsky, S. and Leopold, N.A. (1977). Abnormal glucose tolerance and arginine tolerance tests in Huntington’s disease. Gerontology 23, 55–63.Google Scholar

  • Porter, D.W., Irwin, N., Flatt, P.R., Holscher, C., and Gault, V.A. (2011). Prolonged GIP receptor activation improves cognitive function, hippocampal synaptic plasticity and glucose homeostasis in high-fat fed mice. Eur. J. Pharmacol. 650, 688–693.Google Scholar

  • Powers, W.J., Videen, T.O., Markham, J., McGee-Minnich, L., Antenor-Dorsey, J.V., Hershey, T., and Perlmutter, J.S. (2007). Selective defect of in vivo glycolysis in early Huntington’s disease striatum. Proc. Natl. Acad. Sci. USA. 104, 2945–2949.Google Scholar

  • Pradat, P.F., Bruneteau, G., Gordon, P.H., Dupuis, L., Bonnefont-Rousselot, D., Simon, D., Salachas, F., Corcia, P., Frochot, V., Lacorte, J.M., et al. (2010). Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis 11, 166–171.Google Scholar

  • Rampersaud, N., Harkavyi, A., Giordano, G., Lever, R., Whitton, J., and Whitton, P.S. (2012). Exendin-4 reverses biochemical and behavioral deficits in a pre-motor rodent model of Parkinson’s disease with combined noradrenergic and serotonergic lesions. Neuropeptides 46, 183–193.Google Scholar

  • Reimann, F. and Gribble, F.M. (2016). G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia 59, 229–233.Google Scholar

  • Reyes, E.T., Perurena, O.H., Festoff, B.W., Jorgensen, R., and Moore, W.V. (1984). Insulin resistance in amyotrophic lateral sclerosis. J. Neurol. Sci. 63, 317–324.Google Scholar

  • Richter, B., Bandeira-Echtler, E., Bergerhoff, K., and Lerch, C. (2008). Emerging role of dipeptidyl peptidase-4 inhibitors in the management of type 2 diabetes. Vasc. Health Risk Manage. 4, 753–768.Google Scholar

  • Ross, S.A., Brown, J.C., and Dupre, J. (1977). Hypersecretion of gastric inhibitory polypeptide following oral glucose in diabetes mellitus. Diabetes 26, 525–529.Google Scholar

  • Sakurai, T. (2011). Incretin analogues as a novel treatment strategy for Alzheimer’s disease. Nihon Rinsho Jpn. J. Clin. Med. 69, 848–852.Google Scholar

  • Salcedo, I., Tweedie, D., Li, Y., and Greig, N.H. (2012). Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br. J. Pharmacol. 166, 1586–1599.Google Scholar

  • Salhanick, A.I., Clairmont, K.B., Buckholz, T.M., Pellegrino, C.M., Ha, S., and Lumb, KJ. (2005). Contribution of site-specific PEGylation to the dipeptidyl peptidase IV stability of glucose-dependent insulinotropic polypeptide. Bioorg. Med. Chem. Lett. 15, 4114–4117.Google Scholar

  • Santiago, J.A. and Potashkin, J.A. (2013). Shared dysregulated pathways lead to Parkinson’s disease and diabetes. Trends Mol. Med. 19, 176–186.Google Scholar

  • Scheen, A.J. (2016). Dulaglutide (LY-2189265) for the treatment of type 2 diabetes. Expert Rev. Clin. Pharmacol. 9, 385–399.Google Scholar

  • Schernhammer, E., Hansen, J., Rugbjerg, K., Wermuth, L., and Ritz, B. (2011). Diabetes and the risk of developing Parkinson’s disease in Denmark. Diabetes Care 34, 1102–1108.Google Scholar

  • Schintu, N., Frau, L., Ibba, M., Caboni, P., Garau, A., Carboni, E., and Carta, A.R. (2009). PPAR-γ-mediated neuroprotection in a chronic mouse model of Parkinson’s disease. Eur. J. Neurosci. 29, 954–963.Google Scholar

  • Schonberger, S.J., Jezdic, D., Faull, R.L., and Cooper, G.J. (2013). Proteomic analysis of the human brain in Huntington’s disease indicates pathogenesis by molecular processes linked to other neurodegenerative diseases and to type-2 diabetes. J. Huntingtons Dis. 2, 89–99.Google Scholar

  • Seino, Y. and Yabe, D. (2013). Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: incretin actions beyond the pancreas. J. Diabetes Invest. 4, 108–130.Google Scholar

  • Seufert, J. and Gallwitz, B. (2014). The extra-pancreatic effects of GLP-1 receptor agonists: a focus on the cardiovascular, gastrointestinal and central nervous systems. Diabetes Obes. Metab. 16, 673–688.Google Scholar

  • Sharma, M., Jalewa, J., and Holscher, C. (2013). Neuroprotective and anti-apoptotic effects of Liraglutide on SH-SY5Y cells exposed to methylglyoxal stress. J. Neurochem. 128, 459–471.Google Scholar

  • Solmaz, V., Cinar, B.P., Yigitturk, G., Cavusoglu, T., Taskiran, D., and Erbas, O. (2015). Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur. J. Pharmacol. 765, 482–487.Google Scholar

  • Sparre-Ulrich, A.H., Hansen, L.S., Svendsen, B., Christensen, M., Knop, F.K., Hartmann, B., Holst, J.J., and Rosenkilde, M.M. (2016). Species-specific action of (Pro3)GIP—a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br. J. Pharmacol. 173, 27–38.Google Scholar

  • Sripetchwandee, J., Pipatpiboon, N., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S.C. (2014). DPP-4 inhibitor and PPARγ agonist restore the loss of CA1 dendritic spines in obese insulin-resistant rats. Arch. Med. Res. 45, 547–552.Google Scholar

  • Sun, H., Knippenberg, S., Thau, N., Ragancokova, D., Korner, S., Huang, D., Dengler, R., Dohler, K., and Petri, S. (2013). Therapeutic potential of N-acetyl-glucagon-like peptide-1 in primary motor neuron cultures derived from non-transgenic and SOD1-G93A ALS mice. Cell. Mol. Neurobiol. 33, 347–357.Google Scholar

  • Sun, Y., Lu, C.J., Chen, R.C., Hou, W.H., and Li, C.Y. (2015). Risk of amyotrophic lateral sclerosis in patients with diabetes: a nationwide population-based cohort study. J. Epidemiol. Jpn. Epidemiol. Assoc. 25, 445–451.Google Scholar

  • Takalo, M., Haapasalo, A., Martiskainen, H., Kurkinen, K.M., Koivisto, H., Miettinen, P., Khandelwal, V.K., Kemppainen, S., Kaminska, D., Makinen, P., et al. (2014). High-fat diet increases τ expression in the brain of T2DM and AD mice independently of peripheral metabolic status. J. Nutr. Biochem. 25, 634–641.Google Scholar

  • Takeda, H., Sasai, N., Ito, S., Obana, M., Takuma, T., Takai, M., Kaneshige, H., Machimura, H., Kanamori, A., Nakajima, K., et al. (2016). Efficacy and safety of alogliptin in patients with type 2 diabetes: analysis of the ATTAK-J Study. J. Clin. Med. Res. 8, 130–140.Google Scholar

  • Talbot, K., Wang, H.Y., Kazi, H., Han, L.Y., Bakshi, K.P., Stucky, A., Fuino, R.L., Kawaguchi, K.R., Samoyedny, A.J., Wilson, R.S., et al. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338.Google Scholar

  • To, A.W., Ribe, E.M., Chuang, T.T., Schroeder, J.E., and Lovestone, S. (2011). The ε3 and ε4 alleles of human APOE differentially affect τ phosphorylation in hyperinsulinemic and pioglitazone treated mice. PLoS One 6, e16991.Google Scholar

  • Tomkin, G.H. (2009). Albiglutide, an albumin-based fusion of glucagon-like peptide 1 for the potential treatment of type 2 diabetes. Curr. Opin. Mol. Ther. 11, 579–588.Google Scholar

  • Townsend, M., Mehta, T., and Selkoe, D.J. (2007). Soluble Aβ inhibits specific signal transduction cascades common to the insulin receptor pathway. J. Biol. Chem. 282, 33305–33312.Google Scholar

  • Trujillo, J.M. and Nuffer, W. (2014). Albiglutide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Ann. Pharmacother. 48, 1494–1501.Google Scholar

  • Trümper, A., Trümper, K., and Horsch, D. (2002). Mechanisms of mitogenic and anti-apoptotic signaling by glucose-dependent insulinotropic polypeptide in β (INS-1)-cells. J. Endocrinol. 174, 233–246.Google Scholar

  • Trumper, A., Trumper, K., Trusheim, H., Arnold, R., Goke, B., and Horsch, D. (2001). Glucose-dependent insulinotropic polypeptide is a growth factor for β (INS-1) cells by pleiotropic signaling. Mol. Endocrinol. 15, 1559–1570.Google Scholar

  • Tsukiyama, K., Yamada, Y., Yamada, C., Harada, N., Kawasaki, Y., Ogura, M., Bessho, K., Li, M., Amizuka, N., Sato, M., et al. (2006). Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol. Endocrinol. 20, 1644–1651.Google Scholar

  • Vilsboll, T. (2009). Liraglutide: a new treatment for type 2 diabetes. Drugs Today 45, 101–113.Google Scholar

  • Vrang, N. and Larsen, P.J. (2010). Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog. Neurobiol. 92, 442–462.Google Scholar

  • Wang, X.H., Li, L., Holscher, C., Pan, Y.F., Chen, X.R., and Qi, J..S (2010). Val8-glucagon-like peptide-1 protects against Aβ1-40-induced impairment of hippocampal late-phase long-term potentiation and spatial learning in rats. Neuroscience 170, 1239–1248.Google Scholar

  • Wang, X.H., Yang, W., Holscher, C., Wang, Z.J., Cai, H.Y., Li, Q.S., and Qi, J.S. (2013). Val(8)-GLP-1 remodels synaptic activity and intracellular calcium homeostasis impaired by amyloid β peptide in rats. J. Neurosci. Res. 91, 568–577.Google Scholar

  • Wynne, K., Park, A.J., Small, C.J., Patterson, M., Ellis, S.M., Murphy, K.G., Wren, A.M., Frost, G.S., Meeran, K., Ghatei, M.A., et al. (2005). Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54, 2390–2395.Google Scholar

  • Wynne, K., Park, A.J., Small, C.J., Meeran, K., Ghatei, M.A., Frost, G.S., and Bloom, S.R. (2006). Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) 30, 1729–1736.Google Scholar

  • Xiong, H., Zheng, C., Wang, J., Song, J., Zhao, G., Shen, H., and Deng, Y. (2013). The neuroprotection of liraglutide on Alzheimer-like learning and memory impairment by modulating the hyperphosphorylation of τ and neurofilament proteins and insulin signaling pathways in mice. J. Alzheimers Dis. 37, 623–635.Google Scholar

  • Xiromerisiou, G., Hadjigeorgiou, G.M., Papadimitriou, A., Katsarogiannis, E., Gourbali, V., and Singleton, A.B. (2008). Association between AKT1 gene and Parkinson’s disease: a protective haplotype. Neurosci. Lett. 436, 232–234.Google Scholar

  • Xu, Q., Park, Y., Huang, X., Hollenbeck, A., Blair, A., Schatzkin, A., and Chen, H. (2011). Diabetes and risk of Parkinson’s disease. Diabetes Care 34, 910–915.Google Scholar

  • Yang, H.K., Min, K.W., Park, S.W., Chung, C.H., Park, K.S., Choi, S.H., Song, K.H., Kim, D.M., Lee, M.K., Sung, Y.A., et al. (2015). A randomized, placebo-controlled, double-blind, phase 3 trial to evaluate the efficacy and safety of anagliptin in drug-naive patients with type 2 diabetes. Endocr. J. 62, 449–462.Google Scholar

  • Yarchoan, M., Toledo, J.B., Lee, E.B., Arvanitakis, Z., Kazi, H., Han, L.Y., Louneva, N., Lee, V.M., Kim, S.F., Trojanowski, J.Q., et al. (2014). Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with τ pathology in Alzheimer’s disease and tauopathies. Acta Neuropathol. 128, 679–689.Google Scholar

  • Zhang, Y., Chen, Y., Li, L., and Holscher, C. (2015a). Neuroprotective effects of (Val8)GLP-1-Glu-PAL in the MPTP Parkinson’s disease mouse model. Behav. Brain Res. 293, 107–113.Google Scholar

  • Zhang, Y., Yin, F., Liu, J., Liu, Z., Guo, L., Xia, Z., and Zidichouski, J. (2015b). Geniposide attenuates insulin-deficiency-induced acceleration of β-amyloidosis in an APP/PS1 transgenic model of Alzheimer’s disease. Neurochem. Int. 89, 7–16.Google Scholar

  • Zhao, W.Q., De Felice, F.G., Fernandez, S., Chen, H., Lambert, M.P., Quon, M.J., Krafft, G.A., and Klein, W.L. (2008). Amyloid β oligomers induce impairment of neuronal insulin receptors. FASEB J. 22, 246–260.Google Scholar

  • Zhong, Q., Itokawa, T., Sridhar, S., Ding, K.H., Xie, D., Kang, B., Bollag, W.B., Bollag, R.J., Hamrick, M., Insogna, K., et al. (2007). Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am. J. Physiol. Endocrinol. Metab. 292, E543–E548.Google Scholar

About the article

Received: 2016-04-11

Accepted: 2016-05-02

Published Online: 2016-06-08

Published in Print: 2016-10-01


Citation Information: Reviews in the Neurosciences, Volume 27, Issue 7, Pages 689–711, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0018.

Export Citation

©2016 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
R. Loera‐Valencia, A. Cedazo‐Minguez, P.A. Kenigsberg, G. Page, A.I. Duarte, P. Giusti, M. Zusso, P. Robert, G. B. Frisoni, A. Cattaneo, M. Zille, J. Boltze, N. Cartier, L. Buee, G. Johansson, and B. Winblad
Journal of Internal Medicine, 2019, Volume 286, Number 4, Page 398
[2]
Olusola F. Onoviran, Dongming Li, Sarah Toombs Smith, and Mukaila A. Raji
Therapeutic Advances in Chronic Disease, 2019, Volume 10, Page 204062231986269
[3]
Steven E. Arnold, Zoe Arvanitakis, Shannon L. Macauley-Rambach, Aaron M. Koenig, Hoau-Yan Wang, Rexford S. Ahima, Suzanne Craft, Sam Gandy, Christoph Buettner, Luke E. Stoeckel, David M. Holtzman, and David M. Nathan
Nature Reviews Neurology, 2018, Volume 14, Number 3, Page 168
[4]
Christian Hölscher
Frontiers in Aging Neuroscience, 2019, Volume 11
[5]
Li Wang, Rui Zhang, Xiaohong Hou, Changtu Wang, Shuai Guo, Na Ning, Cong Sun, Yuan Yuan, Lin Li, Christian Hölscher, and Xiaohui Wang
Molecular Brain, 2019, Volume 12, Number 1
[6]
Antoni Camins, Miren Ettcheto, Oriol Busquets, Patricia R. Manzine, Rubén Dario Castro-Torres, Carlos Beas-Zarate, Ester Verdaguer, Francesc X. Sureda, Monica Bulló, Jordi Olloquequi, Carme Auladell, and Jaume Folch
Expert Opinion on Investigational Drugs, 2019, Volume 28, Number 1, Page 93
[7]
Anton M. Lakstygal, Murilo S. de Abreu, Dmitry Lifanov, Edina A. Wappler-Guzetta, Nazar Serikuly, Erik T. Alpsychov, DongMei Wang, MengYao Wang, ZhiChong Tang, NiDong Yan, Konstantin A. Demin, Andrey D. Volgin, Tamara G. Amstislavskaya, JiaJia Wang, Cai Song, Polina Alekseeva, and Allan V. Kalueff
Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018
[8]
Miaad Bader, Yazhou Li, Daniela Lecca, Vardit Rubovitch, David Tweedie, Elliot Glotfelty, Lital Rachmany, Hee Kyung Kim, Ho-Il Choi, Barry J. Hoffer, Chaim G. Pick, Nigel H. Greig, and Dong Seok Kim
Neurobiology of Disease, 2018
[9]
Ivan N. Tyurenkov, Denis V. Kurkin, Dmitry A. Bakulin, Elena V. Volotova, Evgeny I. Morkovin, Mikhail A. Chafeev, and Ruben N. Karapetian
Frontiers in Endocrinology, 2018, Volume 9
[10]
Yu-Wen Yu, Shih-Chang Hsueh, Jing-Huei Lai, Yen-Hua Chen, Shuo-Jhen Kang, Kai-Yun Chen, Tsung-Hsun Hsieh, Barry Hoffer, Yazhou Li, Nigel Greig, and Yung-Hsiao Chiang
International Journal of Molecular Sciences, 2018, Volume 19, Number 4, Page 1153
[11]
Ken Shaw
Practical Diabetes, 2017, Volume 34, Number 6, Page 187

Comments (0)

Please log in or register to comment.
Log in