Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 28, Issue 5

Issues

Semicircular canal modeling in human perception

Houshyar Asadi
  • Corresponding author
  • Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shady Mohamed
  • Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Chee Peng Lim
  • Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saeid Nahavandi
  • Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, VIC 3216, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eugene Nalivaiko
  • School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-16 | DOI: https://doi.org/10.1515/revneuro-2016-0058

Abstract

The human vestibular system is a sensory and equilibrium system that manages and controls the human sense of balance and movement. It is the main sensor humans use to perceive rotational and linear motions. Determining an accurate mathematical model of the human vestibular system is significant for research pertaining to motion perception, as the quality and effectiveness of the motion cueing algorithm (MCA) directly depends on the mathematical model used in its design. This paper describes the history and analyses the development process of mathematical semicircular canal models. The aim of this review is to determine the most consistent and reliable mathematical semicircular canal models that agree with experimental results and theoretical analyses, and offer reliable approximations for the semicircular canal functions based on the existing studies. Selecting and formulating accurate mathematical models of semicircular canals are essential for implementation into the MCA and for ensuring effective human motion perception modeling.

Keywords: angular velocity; rotational motion; semicircular canals; sensation; vestibular system

References

  • Angelaki, D.E. and Cullen, K.E. (2008). Vestibular system: the many facets of a multimodal sense. Annu. Rev. Neurosci. 31, 125–150.CrossrefGoogle Scholar

  • Asadi, H. (2015). Human perception-based washout filtering. PhD Thesis, Deakin University.Google Scholar

  • Asadi, H., Mohamed, S., Nelson, K., and Nahavandi, S. (2014a). A linear quadratic optimal motion cueing algorithm based on human perception. Paper presented at the ACRA 2014: Proceedings of Australasian Conference on Robotics and Automation (Australian Robotics and Automation Association), pp. 1–9.Google Scholar

  • Asadi, H., Mohammadi, A., Mohamed, S., and Nahavandi, S. (2014b). Adaptive translational cueing motion algorithm using fuzzy based tilt coordination. Paper presented at the International Conference on Neural Information Processing (Springer International Publishing), pp. 474–482.Google Scholar

  • Asadi, H., Mohammadi, A., Mohamed, S., Zadeh, D.R., and Nahavandi, S. (2014c). Adaptive washout algorithm based fuzzy tuning for improving human perception. Paper presented at the International Conference on Neural Information Processing (Springer International Publishing), pp. 483–492.Google Scholar

  • Asadi, H., Mohamed, S., and Nahavandi, S. (2015a). Incorporating human perception with the motion washout filter using fuzzy logic control. IEEE/ASME Trans. Mechatron. 20, 3276–3284.CrossrefGoogle Scholar

  • Asadi, H., Mohamed, S., Nelson, K., Nahavandi, S., and Zadeh, D.R. (2015b). Human perception-based washout filtering using genetic algorithm. Paper presented at the International Conference on Neural Information Processing (Springer International Publishing), pp. 401–411.Google Scholar

  • Asadi, H., Mohamed, S., Rahim Zadeh, D., and Nahavandi, S. (2015c). Optimisation of nonlinear motion cueing algorithm based on genetic algorithm. Veh. Syst. Dyn. 53, 526–545.CrossrefGoogle Scholar

  • Asadi, H., Mohamed, S., Lim, C.P., and Nahavandi, S. (2016a). A review on otolith models in human perception. Behav. Brain Res. 309, 67–76.Google Scholar

  • Asadi, H., Mohamed, S., Lim, C.P., and Nahavandi, S. (2016b). Robust optimal motion cueing algorithm based on the linear quadratic regulator method and a genetic algorithm. IEEE Trans. Syst. Man Cybernet. Syst. 47, 238–254.Google Scholar

  • Augusto, B. and Loureiro, R. (2009a). Motion cueing in the Chalmers driving simulator – a model predictive control approach. Master of Science Thesis.Google Scholar

  • Augusto, B. and Loureiro, R. (2009b). Motion cueing in the Chalmers driving simulator: an optimization-based control approach. Master of Science Thesis.Google Scholar

  • Arora, R. D. (2012). Vestibular rehabilitation: An overview. AIJOC 4, 54–69.Google Scholar

  • Barnett-Cowan, M. and Harris, L.R. (2009). Perceived timing of vestibular stimulation relative to touch, light and sound. Exp. Brain Res. 198, 221–231.Google Scholar

  • Benson, A. (1970). Interactions between semicircular canals and gravireceptors. Recent Advances in Aerospace Medicine (Berlin: Springer), pp. 249–261.Google Scholar

  • Berthoz, A. (2000). The Brain’s Sense of Movement (Cambridge, MA: Harvard University Press).Google Scholar

  • Berthoz, A., Israel, I., Georges-Francois, P., Grasso, R., and Tsuzuku, T. (1995). Spatial memory of body linear displacement: what is being stored? Science 269, 95.Google Scholar

  • Blanks, R., Estes, M.S., and Markham, C.H. (1975). Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J. Neurophysiol. 38, 1250–1268.Google Scholar

  • Day, B.L. and Fitzpatrick, R.C. (2005). The vestibular system. Curr. Biol. 15, R583.CrossrefGoogle Scholar

  • Estes, M.S., Blanks, R., and Markham, C.H. (1975). Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J. Neurophysiol. 38, 1232–1249.Google Scholar

  • Fernandez, C. and Goldberg, J.M. (1971). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J. Neurophysiol. 34, 661–675.Google Scholar

  • Goldberg, J.M. and Fernandez, C. (1971a). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J. Neurophysiol. 34, 635–660.Google Scholar

  • Goldberg, J.M. and Fernandez, C. (1971b). Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. III. Variations among units in their discharge properties. J. Neurophysiol. 34, 676–684.Google Scholar

  • Groen, E.L., Howard, I.P., and Cheung, B.S. (1999). Influence of body roll on visually induced sensations of self-tilt and rotation. Perception 28, 287–297.CrossrefGoogle Scholar

  • Guedry, F. and Lauver, L. (1961). Vestibular reactions during prolonged constant angular acceleration. J. Appl. Physiol. 16, 215–220.Google Scholar

  • Guedry Jr., F.E. (1974). Psychophysics of vestibular sensation. Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations (Berlin: Springer), pp. 3–154.Google Scholar

  • Haslwanter, T., Jaeger, R., Mayr, S., and Fetter, M. (2000). Three-dimensional eye-movement responses to off-vertical axis rotations in humans. Exp. Brain Res. 134, 96–106.CrossrefGoogle Scholar

  • Hosman, R. (1996). Pilot’s perception in the control of aircraft motions. PhD Thesis, Delft University of Technology, Delft, the Netherlands.Google Scholar

  • Hosman, R. and Van der Vaart, J. (1978). Vestibular models and thresholds of motion perception: results of tests in a flight simulator. Delft University of Technology, Department of Aerospace Engineering.Google Scholar

  • Igarashi, M. (1967). Dimensional study of the vestibular apparatus. Laryngoscope 77, 1806–1817.CrossrefGoogle Scholar

  • Jones, G.M. (1974). The Functional Significance of Semicircular Canal Size (Berlin: Springer).Google Scholar

  • Jones, G.M., Barry, W., and Kowalsky, N. (1964). Dynamics of the semicircular canals compared in yaw, pitch and roll. Aerospace Med. 35, 984.Google Scholar

  • Kornhuber, H.H. (2012). Vestibular System Part 1: Basic Mechanisms (Berlin: Springer Science & Business Media).Google Scholar

  • Krantz, J. (2012). Experiencing Sensation and Perception (Pearson Education USA).Google Scholar

  • Malcolm, R. and Jones, G.M. (1970). A quantitative study of vestibular adaptation in humans. Acta Oto-laryngol. 70, 126–135.CrossrefGoogle Scholar

  • Mayne, R. (1974). A systems concept of the vestibular organs. Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations (Berlin: Springer), pp. 493–580.Google Scholar

  • Meiry, J.L. (1965). The vestibular system and human dynamic space orientation (Doctoral dissertation, Massachusetts Institute of Technology).Google Scholar

  • Nashner, L.M. (1970). Sensory Feedback in Human Posture Control (Cambridge, MA: Massachusetts Institute of Technology).Google Scholar

  • Ormsby, C.C. (1974). Model of Human Dynamic Orientation (Cambridge, MA: Massachusetts Institute of Technology).Google Scholar

  • Peters, R.A. (1969). Dynamics of the vestibular system and their relation to motion perception, spatial disorientation, and illusions. NASA CR-1309. NASA Contract Rep NASA CR. 1–223.Google Scholar

  • Reid, L. and Nahon, M. (1985). Flight Simulation Motion-Base Drive Algorithms: Part 1 – Developing and Testing the Equations (Toronto: Institute for Aerospace Studies, Toronto University).Google Scholar

  • Ringland, R.F. and Stapleford, R.L. (1972). Motion cue effects on pilot tracking. Paper presented at the Seventh Annual Conference on Manual Control.Google Scholar

  • Romand, R. and Varela-Nieto, I. (2014). Development of Auditory and Vestibular Systems (New York: Academic Press).Google Scholar

  • Schmid, R., Stefanelli, M., and Mira, E. (1971). Mathematical modelling: a contribution to clinical vestibular analysis. Acta Oto-laryngol. 72, 292–302.CrossrefGoogle Scholar

  • Schneider, L. and Anderson, D. (1976). Transfer characteristics of first and second order lateral canal vestibular neurons in gerbil. Brain Res. 112, 61–76.CrossrefGoogle Scholar

  • Sivan, R., Ish-Shalom, J., and Huang, J.-K. (1982). An optimal control approach to the design of moving flight simulators. IEEE Trans. Syst. Man Cybern. 12, 818–827.CrossrefGoogle Scholar

  • Spoendlin, H.H. (1965). Ultrastructural studies of the labyrinth in squirrel monkeys. The Role of the Vestibular Organs in the Exploration of Space, NASA SP-77 (Washington, DC: NASA), pp. 7–21.Google Scholar

  • Steer Jr., R.W. (1967). The Influence of Angular and Linear Acceleration and Thermal Stimulation on the Human Semicircular Canal (Cambridge, MA: Massachusetts Institute of Technology).Google Scholar

  • Steinhausen, W. (1933). Über die Beobachtung der Cupula in den Bogengangsampullen des Labyrinths des lebenden Hechts. Pflüger’s Arch. 232, 500–512.Google Scholar

  • Telban, R.J. and Cardullo, F.M. (2005). Motion cueing algorithm development: human-centered linear and nonlinear approaches. NASA TechReport CR-2005-213747.Google Scholar

  • Van Egmond, A., Groen, J., and Jongkees, L. (1949). The mechanics of the semicircular canal. J. Physiol. 110, 1.CrossrefGoogle Scholar

  • Wu, W. (1997). Development of cueing algorithm for the control of simulator motion systems, MS Thesis, State University of New York at Binghamton, Binghamton, NY.Google Scholar

  • Young, L. and Oman, C. (1969). Model for vestibular adaptation to horizontal rotation. Aerospace. Med. 40, 1076–1080.Google Scholar

  • Zacharias, G.L. (1978). Motion cue models for pilot-vehicle analysis, DTIC Document.

About the article

Received: 2016-09-13

Accepted: 2016-12-21

Published Online: 2017-03-16

Published in Print: 2017-07-26


Citation Information: Reviews in the Neurosciences, Volume 28, Issue 5, Pages 537–549, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0058.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
[2]
Afsaneh Koohestani, Darius Nahavandi, Houshyar Asadi, Parham M. Kebria, Abbas Khosravi, Roohallah Alizadehsani, and Saeid Nahavandi
IEEE Access, 2019, Volume 7, Page 85755
[3]
Houshyar Asadi, Chee Peng Lim, Shady Mohamed, Darius Nahavandi, and Saeid Nahavandi
IEEE Transactions on Intelligent Vehicles, 2019, Volume 4, Number 2, Page 298
[4]
Houshyar Asadi, Chee Peng Lim, Arash Mohammadi, Shady Mohamed, Saeid Nahavandi, and Lakshmanan Shanmugam
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2018, Page 095965181877294
[5]
Arash Mohammadi, Houshyar Asadi, Shady Mohamed, Kyle Nelson, and Saeid Nahavandi
Expert Systems with Applications, 2017

Comments (0)

Please log in or register to comment.
Log in