Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 28, Issue 5


Potential skin involvement in ALS: revisiting Charcot’s observation – a review of skin abnormalities in ALS

Bastien ParéORCID iD: http://orcid.org/0000-0003-1121-5165
  • Department of Surgery, Faculty of medicine, Laval University, Québec, QC, Canada
  • Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center–Enfant-Jésus Hospital, 1401, 18eRue, Québec G1J 1Z4, QC, Canada
  • orcid.org/0000-0003-1121-5165
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ François Gros-Louis
  • Corresponding author
  • Department of Surgery, Faculty of medicine, Laval University, Québec, QC, Canada
  • Division of Regenerative Medicine, Laval University Experimental Organogenesis Research Center/LOEX, CHU de Québec Research Center–Enfant-Jésus Hospital, 1401, 18eRue, Québec G1J 1Z4, QC, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-03-25 | DOI: https://doi.org/10.1515/revneuro-2017-0004


Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting motor neurons of the brain and spinal cord, leading to progressive paralysis and death. Interestingly, many skin changes have been reported in ALS patients, but never as yet fully explained. These observations could be due to the common embryonic origin of the skin and neural tissue known as the ectodermal germ layer. Following the first observation in ALS patients’ skin by Dr Charcot in the 19th century, in the absence of bedsores unlike other bedridden patients, other morphological and molecular changes have been observed. Thus, the skin could be of interest in the study of ALS and other neurodegenerative diseases. This review summarizes skin changes reported in the literature over the years and discusses about a novel in vitro ALS tissue-engineered skin model, derived from patients, for the study of ALS.

Keywords: amyotrophic lateral sclerosis (ALS); biomarkers; early diagnosis; immunohistochemistry; skin


  • Abrahamson, M., Barrett, A.J., Salvesen, G., and Grubb, A. (1986). Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 261, 11282–11289.Google Scholar

  • Akimoto, Y., Ikehara, S., Yamaguchi, T., Kim, J., Kawakami, H., Shimizu, N., Hori, M., Sakakita, H., and Ikehara, Y. (2016). Galectin expression in healing wounded skin treated with low-temperature plasma: comparison with treatment by electronical coagulation. Arch. Biochem. Biophys. 605, 86–94.Google Scholar

  • Almeida, S., Gascon, E., Tran, H., Chou, H.J., Gendron, T.F., Degroot, S., Tapper, A.R, Sellier, C., Charlet-Berguerand, N., Karydas, A., et al. (2013). Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 126, 385–399.CrossrefGoogle Scholar

  • Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J., and Abrahamson, M. (1999). Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274, 19195–19203.Google Scholar

  • Anderegg, U., Simon, J.C., and Averbeck, M. (2014). More than just a filler – the role of hyaluronan for skin homeostasis. Exp. Dermatol. 23, 295–303.CrossrefGoogle Scholar

  • Andersen, P.M. and Al-Chalabi, A. (2011). Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615.CrossrefGoogle Scholar

  • Angelopoulos, P., Agouridaki, H., Vaiopoulos, H., Siskou, E., Doutsou, K., Costa, V., and Baloyiannis, S.I. (2008). Cytokines in Alzheimer’s disease and vascular dementia. Int. J. Neurosci. 118, 1659–1672.CrossrefGoogle Scholar

  • Anzer, M.A.R.V.T. and Herbert, J. (1982). Collagen cross-linking. Coll. Relat. Res. 2, 177–180.CrossrefGoogle Scholar

  • Asahina, M., Yoshiyama, Y., and Hattori, T. (2001). Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin. Neuropathol. 20, 60–63.Google Scholar

  • Ash, P.E.A., Bieniek, K F., Gendron, T.F., Caulfield, T., Lin, W.L., DeJesus-Hernandez, M., van Blitterswijk, M.M., Jansen-West, K., Paul, J.W., Rademakers, R., et al. (2013). Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77, 639–646.CrossrefGoogle Scholar

  • Aulas, A. and Vande Velde, C. (2015). Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front. Cell. Neurosci. 9, 423.Google Scholar

  • Babu, G.N., Kumar, A., Chandra, R., Puri, S.K., Kalita, J., and Misra, U.K. (2008). Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India. Neurochem. Res. 33, 1145–1149.CrossrefGoogle Scholar

  • Back, S.A, Tuohy, T.M.F., Chen, H., Wallingford, N., Craig, A., Struve, J., Luo, N.L., Banine, F., Liu, Y., Chang, A., et al. (2005). Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972.Google Scholar

  • Baker, J., Liu, J.-P., Robertson, E J., and Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82.CrossrefGoogle Scholar

  • Baker, M., Mackenzie, I.R., Pickering-Brown, S.M., Gass, J., Rademakers, R., Lindholm, C., Snowden, J., Adamson, J., Sadovnick, A.D., Rollinson, S., et al. (2006). Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442, 916–919.Google Scholar

  • Barber, S.C., Mead, R.J., and Shaw, P.J. (2006). Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta Mol. Basis Dis. 1762, 1051–1067.Google Scholar

  • Bartolome, F., Wu, H.C., Burchell, V.S., Preza, E., Wray, S., Mahoney, C.J., Fox, N.C., Calvo, A., Canosa, A., Moglia, C., et al. (2013). Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP Levels. Neuron 78, 57–64.CrossrefGoogle Scholar

  • Baune, B.T., Konrad, C., Grotegerd, D., Suslow, T., Birosova, E., Ohrmann, P., Bauer, J., Arolt, V., Heindel, W., Domschke, K., et al. (2012). Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain. J. Neuroinflamm. 9, 125.Google Scholar

  • Beach, R.L., Rao, J.S., Festoff, B.W., Reyes, E.T., Yanagihara, R., and Gajdusek, D.C. (1986). Collagenase activity in skin fibroblasts of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 72, 49–60.CrossrefGoogle Scholar

  • Belzil, V.V., Bauer, P.O., Prudencio, M., Gendron, T.F., Stetler, C.T., Yan, I.K., Pregent, L., Daughrity, L., Baker, M.C., Rademakers, R., et al. (2013). Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 126, 895–905.CrossrefGoogle Scholar

  • Benatar, M., Wuu, J., Fernandez, C., Weihl, C.C., Katzen, H., Steele, J., Oskarsson, B., and Taylor, J.P. (2013). Motor neuron involvement in multisystem proteinopathy: implications for ALS. Neurology 80, 1874–1880.CrossrefGoogle Scholar

  • Bevan, D., Gherardi, E., Fan, T.P., Edwards, D., and Warn, R. (2004). Diverse and potent activities of HGF/SF in skin wound repair. J. Pathol. 203, 831–838.Google Scholar

  • Brettschneider, J., Van Deerlin, V.M., Robinson, J.L., Kwong, L., Lee, E.B., Ali, Y.O., Safren, N., Monteiro, M.J., Toledo, J.B., Elman, L., et al. (2012). Pattern of ubiquilin pathology in ALS and FTLD indicates presence of C9ORF72 hexanucleotide expansion. Acta Neuropathol. 123, 825–839.CrossrefGoogle Scholar

  • Busciglio, J. and Yankner, B. (1995). Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378, 776–779.Google Scholar

  • Cao, K., Nakajima, R., Meyer, H.H., and Zheng, Y. (2003). The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis. Cell 115, 355–367.CrossrefGoogle Scholar

  • Carmeliet, P. and Collen, D. (2000). Molecular basis of angiogenesis. Role of VEGF and VE-cadherin. Ann. N.Y. Acad. Sci. 902, 249–262. Discussion 262–264.Google Scholar

  • Caron, M., Bladier, D., and Joubert, R. (1990). Soluble galactoside-binding vertebrate lectins: a protein family with common properties. Int. J. Biochem. 22, 1379–1385.CrossrefGoogle Scholar

  • Chen, W.Y.J. and Abatangelo, G. (1999). Functions of hyaluronan in wound repair. Wound Repair Regen. 7, 79–89.CrossrefGoogle Scholar

  • Chen, S., Sayana, P., Zhang, X., and Le, W. (2013). Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener. 8, 28.CrossrefGoogle Scholar

  • Ciechanover, A. and Brundin, P. (2003). The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40, 427–446.CrossrefGoogle Scholar

  • Cirulli, E.T., Lasseigne, B.N., Petrovski, S., Sapp, P.C., Dion, P.A., Leblond, C.S., Couthouis, J., Lu, Y.F., Wang, Q., Krueger, B.J., et al. (2015). Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347, 1436–1441.Google Scholar

  • Corbo, M., Lunetta, C., Magni, P., Dozio, E., Ruscica, M., Adobbati, L., and Silani, V. (2010). Free insulin-like growth factor (IGF)-1 and IGF-binding proteins-2 and -3 in serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients. Eur. J. Neurol. 17, 398–404.CrossrefGoogle Scholar

  • Cruts, M., Gijselinck, I., van der Zee, J., Engelborghs, S., Wils, H., Pirici, D., Rademakers, R., Vandenberghe, R., Dermaut, B., Martin, J.J., et al. (2006). Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442, 920–924.Google Scholar

  • Custer, S., Neumann, M., Lu, H., Wright, A., and Taylor, J. (2010). Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum. Mol. Genet. 19, 1741–1755.CrossrefGoogle Scholar

  • Daniel, R., He, Z., Carmichael, K.P., Halper, J., and Bateman, A. (2000). Cellular localization of gene expression for progranulin. J. Histochem. Cytochem. 48, 999–1009.CrossrefGoogle Scholar

  • Daoud, H., Valdmanis, P.N., Kabashi, E., Dion, P., Dupré, N., Camu, W., Meininger, V., and Rouleau, G.A. (2009). Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis. J. Med. Genet. 46, 112–114.CrossrefGoogle Scholar

  • DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.CrossrefGoogle Scholar

  • Deng, H.-X., Chen, W., Hong, S.-T., and Boycott, K.M. (2012). Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia. Nature 477, 211–215.Google Scholar

  • Di Lullo, G.A., Sweeney, S.M., Körkkö, J., Ala-Kokko, L., and San Antonio, J.D. (2002). Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J. Biol. Chem. 277, 4223–4231.Google Scholar

  • Dipasquale, B., Marini, A.M., and Youle, R.J. (1991). Apoptosis and DNA degradation induced by 1-methyl-4-phenylpyridinium in neurons. Biochem. Biophys. Res. Commun. 181, 1442–1448.CrossrefGoogle Scholar

  • Donnelly, C.J., Zhang, P., Pham, J.T., Heusler, A.R., Mistry, N.A., Vidensky, S., Daley, E.L., Poth, E.M., Hoover, B., Fines, D.M., et al. (2013). RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron 80, 415–428.CrossrefGoogle Scholar

  • Dowlati, Y., Herrmann, N., Swardfager, W., Liu, H., Sham, L., Reim, E.K., and Lanctôt, K.L. (2010). A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457.CrossrefGoogle Scholar

  • Dreyfuss, G., Matunis, M.J., Piñol-Roma, S., and Burd, C.G. (1993). hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321.CrossrefGoogle Scholar

  • Ebens, A., Brose, K., Leonardo, E.D., Jr, Hanson, M.G., Bladt, F., Birchmeier, C., Barres, B.A., and Tessier-Lavigne, M. (1996). Hepatocyte growth factor/scatter factor is an axonal chemoattractant and a neurotrophic factor for spinal motor neurons. Neuron 17, 1157–1172.CrossrefGoogle Scholar

  • Edgar, D. (1991). The expression and distribution of laminin in the developing nervous system. J. Cell Sci. 1991, 9–12.Google Scholar

  • Ekblom, P., Lonai, P., and Talts, J.F. (2003). Expression and biological role of laminin-1. Matrix Biol. 22, 35–47.CrossrefGoogle Scholar

  • Elliott, J.L. (2001). Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Brain Res. Mol. Brain Res. 95, 172–178.CrossrefGoogle Scholar

  • Eyre, D.R., Paz, M.A, and Gallop, P.M. (1984). Cross-linking in collagen and elastin. Annu. Rev. Biochem. 53, 717–748.CrossrefGoogle Scholar

  • Fang, L., Huber-Abel, F., Teuchert, M., Hendrich, C., Dorst, J., Schattauer, D., Zettlmeissel, H., Wlaschek, M., Scharffetter-Kochanek, K., Tumani, H., et al. (2009). Linking neuron and skin: matrix metalloproteinases in amyotrophic lateral sclerosis (ALS). J. Neurol. Sci. 285, 62–66.Google Scholar

  • Fang, L., Teuchert, M., Huber-Abel, F., Schattauer, D., Hendrich, C., Dorst, J., Zettlmeissel, H., Wlaschek, M., Scharffetter-Kochanek, K., Kapfer, T., et al. (2010). MMP-2 and MMP-9 are elevated in spinal cord and skin in a mouse model of ALS. J. Neurol. Sci. 294, 51–56.Google Scholar

  • Fernandez, A.M. and Torres-Alemán, I. (2012). The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 13, 225–239.CrossrefGoogle Scholar

  • Ferrara, N. and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr. Rev. 18, 4–25.CrossrefGoogle Scholar

  • Flint, M.H., Craig, A.S., Reilly, H.C., Gillard, G.C., and Parry, D.A. (1984). Collagen fibril diameters and glycosaminoglycan content of skins – indices of tissue maturity and function. Connect. Tissue Res. 13, 69–81.CrossrefGoogle Scholar

  • Fraser, J.R., Laurent, T.C., and Laurent, U.B. (1997). Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33.CrossrefGoogle Scholar

  • Fratta, P., Poulter, M., Lashley, T., Rohrer, J.D., Polke, J.M., Beck, J., Ryan, N., Hensman, D., Mizielinska, S., Waite, A.J., et al. (2013). Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol. 126, 401–409.CrossrefGoogle Scholar

  • Frei, K., P. Leist, T., Meager, A., Gallo, P., Leppert, D., M. Zinkernagel, R., and Fontana, A. (1988). Production of B cell stimulatory factor-2 and interferon γ in the central nervous system during viral meningitis and encephalitis – evaluation in a murine model infection and in patients. J. Exp. Med. 168, 449–453.CrossrefGoogle Scholar

  • Fujii, R. and Takumi, T. (2005). TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J. Cell Sci. 118, 5755–5765.CrossrefGoogle Scholar

  • Fujii, R., Okabe, S., Urushido, T., Inoue, K., Yoshimura, A., Tachibana, T., Nishikawa, T., Hicks, G.G., and Takumi, T. (2005). The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593.CrossrefGoogle Scholar

  • Fukazawa, H., Tsukie, T., Higashida, K., Fujikura, M., and Ono, S. (2013). An immunohistochemical study of increased tumor necrosis factor-α in the skin of patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. 20, 1371–1376.CrossrefGoogle Scholar

  • Fullmer, H., Siedler, H., Krooth, R., and Kurland, L. (1960). A cutaneous disorder of connective tissue in amyotrophic lateral sclerosis. Neurology 10, 717–724.CrossrefGoogle Scholar

  • Funakoshi, H. and Nakamura, T. (2003). Hepatocyte growth factor: from diagnosis to clinical applications. Clin. Chim. Acta. 327, 1–23.Google Scholar

  • Furukawa, T. and Toyokura, Y. (1976). Amyotrophic lateral sclerosis and bedsores. Lancet 307, 862.Google Scholar

  • Gadient, R.A. and Otten, U. (1994). Expression of interleukin-6 (IL-6) and interleukin-6 receptor (IL-6R) mRNAs in rat brain during postnatal development. Brain Res. 637, 10–14.Google Scholar

  • Gao, X. and Xu, Z. (2008). Mechanisms of action of angiogenin. Acta Biochim. Biophys. Sin. 40, 619–624.CrossrefGoogle Scholar

  • Gasche, Y., Soccal, P.M., Kanemitsu, M., and Copin, J.C. (2006). Matrix metalloproteinases and diseases of the central nervous system with a special emphasis on ischemic brain. Front Biosci 11, 1289–1301.CrossrefGoogle Scholar

  • Gaudet, A.D., Popovich, P.G., and Ramer, M.S. (2011). Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 8, 110.CrossrefGoogle Scholar

  • Genis, L., Dávila, D., Fernandez, S., Pozo-Rodrigálvarez, A., Martínez-Murillo, R., and Torres-Aleman, I. (2014). Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res. 3, 28.Google Scholar

  • Ghezzi, P. and Mennini, T. (2001). Tumor necrosis factor and motoneuronal degeneration: an open problem. Neuroimmunomodulation 9, 178–182.CrossrefGoogle Scholar

  • Gijbels, K., Van Damme, J., Proost, P., Put, W., Carton, H., and Billiau, A. (1990). Interleukin 6 production in the central nervous system during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 20, 233–235.CrossrefGoogle Scholar

  • Gitcho, M.A., Bigio, E.H., Mishra, M., Johnson, N., Weintraub, S., Mesulam, M., Rademakers, R., Chakraverty, S., Cruchaga, C., Morris, J.C., et al. (2009). TARDBP 3’-UTR variant in autopsy-confirmed frontotemporal lobar degeneration with TDP-43 proteinopathy. Acta Neuropathol. 118, 633–645.Google Scholar

  • Greenberg, D.A. and Jin, K. (2004). VEGF and AL: the luckiest growth factor? Trends Mol. Med. 10, 1–3.CrossrefGoogle Scholar

  • Greenway, M.J., Alexander, M.D., Ennis, S., Traynor, B.J., Corr, B., Frost, E., Green, A., and Hardiman, O. (2004). A novel candidate region for ALS on chromosome 14q11.2. Neurology 63, 1936–1938.Google Scholar

  • Greenway, M.J., Andersen, P.M., Russ, C., Ennis, S., Cashman, S., Donaghy, C., Patterson, V., Swingler, R., Kieran, D., Prehn, J., et al. (2006). ANG mutations segregate with familial and ‘sporadic’ amyotrophic lateral sclerosis. Nat. Genet. 38, 411–413.CrossrefGoogle Scholar

  • Gros-Louis, F., Gaspar, C., and Rouleau, G.A. (2006). Genetics of familial and sporadic amyotrophic lateral sclerosis. Biochim. Biophys. Acta 1762, 956–72.Google Scholar

  • Gros-Louis, F., Soucy, G., Larivière, R., and Julien, J.P. (2010). Intracerebroventricular infusion of monoclonal antibody or its derived Fab fragment against misfolded forms of SOD1 mutant delays mortality in a mouse model of ALS. J. Neurochem. 113, 1188–1199.Google Scholar

  • Hama, T., Miyamoto, M., Tsukui, H., Nishio, C., and Hatanaka, H. (1989). Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci. Lett. 104, 340–344.CrossrefGoogle Scholar

  • Hamanoue, M., Takemoto, N., Matsumoto, K., Nakamura, T., Nakajima, K., and Kohsaka, S. (1996). Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J. Neurosci. Res. 43, 554–564.CrossrefGoogle Scholar

  • Han, H., Xia, Y., Wang, S., Zhao, B., Sun, Z., and Yuan, L. (2011). Synergistic effects of galectin-1 and reactive astrocytes on functional recovery after contusive spinal cord injury. Arch. Orthop. Trauma Surg. 131, 829–839.Google Scholar

  • Hartley, A., Stone, J.M., Heron, C., Cooper, J.M., and Schapira, A.H. (1994). Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J. Neurochem. 63, 1987–1990.CrossrefGoogle Scholar

  • Hayashi, T., Ishida, Y., Kimura, A., Takayasu, T., Eisenmenger, W., and Kondo, T. (2004). Forensic application of VEGF expression to skin wound age determination. Int. J. Legal Med. 118, 320–325.CrossrefGoogle Scholar

  • He, Z. and Bateman, A. (1999). Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res. 59, 3222–3229.Google Scholar

  • He, Z. and Bateman, A. (2003). Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med. 81, 600–612.CrossrefGoogle Scholar

  • He, Z., Ong, C.H.P., Halper, J., and Bateman, A. (2003). Progranulin is a mediator of the wound response. Nat. Med. 9, 225–229.CrossrefGoogle Scholar

  • He, X., Zhang, L., Yao, X., Hu, J., Yu, L., Jia, H., An, R., Liu, Z., and Xu, Y. (2013). Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One 8, 1–5.Google Scholar

  • Hegde, A.N. and Upadhya, S.C. (2007). The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci. 30, 587–595.CrossrefGoogle Scholar

  • Hensley, K., Fedynyshyn, J., Ferrell, S., Floyd, R.A., Gordon, B., Grammas, P., Hamdheydari, L., Mhatre, M., Mou, S., Pye, Q.N., et al. (2003). Message and protein-level elevation of tumor necrosis factor alpha (TNFalpha) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis. Neurobiol. Dis. 14, 74–80.Google Scholar

  • Higashida, K., Tsukie, T., Fukazawa, H., Fujikura, M., and Ono, S. (2013). Immunohistochemical studies of angiogenin in the skin of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 326, 18–23.CrossrefGoogle Scholar

  • Hirohata, S. and Miyamoto, T. (1990). Elevated levels of interleukin-6 in cerebrospinal fluid from patients with systemic lupus erythematosus and central nervous system involvement. Arthritis Rheum. 33, 644–649.CrossrefGoogle Scholar

  • Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., Asawa, R., Hiroi, T., Sato, M., Yoshioka, T., et al. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci. 24, 1873–1880.Google Scholar

  • Houssiau, F.A., Coulie, P.G., and Van Snick, J. (1989). Distinct roles of IL-1 and IL-6 in human T cell activation. J. Immunol. 143, 2520–2524.Google Scholar

  • Huang, J.T.J., Chaudhuri, R., Albarbarawi, O., Barton, A., Grierson, C., Rauchhaus, P., Weir, C.J., Messow, M., Stevens, N., McSharry, C., et al. (2012). Clinical validity of plasma and urinary desmosine as biomarkers for chronic obstructive pulmonary disease. Thorax 67, 502–508.CrossrefGoogle Scholar

  • Huat, T., Khan, A., Pati, S., Mustafa, Z., Abdullah, J., and Jaafar, H. (2014). IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci. 15, 91.Google Scholar

  • Hunter, I. and Engel, J. (1990). Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J. 4, 148–160.Google Scholar

  • Ichikawa, N., Iwabuchi, K., Kurihara, H., Ishii, K., Kobayashi, T., Sasaki, T., Hattori, N., Mizuno, Y., Hozumi, K., Yamada, Y., et al. (2009). Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J. Cell Sci. 122, 289–299.Google Scholar

  • Ilieva, H., Polymenidou, M., and Cleveland, D.W. (2009). Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772.Google Scholar

  • Iłzecka, J. (2004). Cerebrospinal fluid vascular endothelial growth factor in patients with amyotrophic lateral sclerosis. Clin. Neurol. Neurosurg. 106, 289–293.CrossrefGoogle Scholar

  • Irwin, D., Lippa, C.F., and Rosso, A. (2009). Progranulin (PGRN) expression in ALS: an immunohistochemical study. J. Neurol. Sci. 276, 9–13.CrossrefGoogle Scholar

  • Ishikawa, H., Yasui, K., Oketa, Y., Suzuki, M., and Ono, S. (2012). Increased expression of valosin-containing protein in the skin of patients with amyotrophic lateral sclerosis. J. Clin. Neurosci. 19, 522–526.CrossrefGoogle Scholar

  • Jian, J., Konopka, J., and Liu, C. (2013). Insights into the role of progranulin in immunity, infection, and inflammation. J. Leukoc. Biol. 93, 199–208.Google Scholar

  • Jiang, L., Dai, Y., Cui, F., Pan, Y., Zhang, H., Xiao, J., and Xiaobing, F.U. (2013). Expression of cytokines, growth factors and apoptosis-related signal molecules in chronic pressure ulcer wounds healing. Spinal Cord 52, 1–7.Google Scholar

  • Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950.CrossrefGoogle Scholar

  • Johnson, J.O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V.M., Trojanowski, J.Q., Gibbs, J.R., Brunetti, M., Gronka, S., Wuu, J., et al. (2010). Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68, 857–864.CrossrefGoogle Scholar

  • Ju, J.S., Fuentealba, R.A., Miller, S.E., Jackson, E., Piwnica-Worms, D., Baloh, R.H., and Weihl, C.C. (2009). Valosin-containing protein (VCP) is required for autophagy and is disrupted in VCP disease. J. Cell Biol. 187, 875–888.Google Scholar

  • Kadoyama, K., Funakoshi, H., Ohya, W., and Nakamura, T. (2007). Hepatocyte growth factor (HGF) attenuates gliosis and motoneuronal degeneration in the brainstem motor nuclei of a transgenic mouse model of ALS. Neurosci. Res. 59, 446–456.CrossrefGoogle Scholar

  • Kahn, M.A. and De Vellis, J. (1994). Regulation of an oligodendrocyte progenitor cell line by the interleukin-6 family of cytokines. Glia 12, 87–98.CrossrefGoogle Scholar

  • Kariya, S., Sampson, J.B., Northrop, L.E., Luccarelli, C.M., Naini, A.B., Re, D.B., Hirano, M., and Mitsumoto, H. (2014). Nuclear localization of SMN and FUS is not altered in fibroblasts from patients with sporadic ALS. Amyotroph. Lateral Scler. Frontotemporal Degener. 15, 581–587.CrossrefGoogle Scholar

  • Kenna, K.P., van Doormaal, P.T.C., Dekker, A.M., Ticozzi, N., Kenna, B.J., Diekstra, F.P., van Rheenen, W., van Eijk, K.R., Jones, A.R., Keagle, P., et al. (2016). NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nat. Genet. 48, 1037–1042.CrossrefGoogle Scholar

  • Kerkhoff, H., Hassan, S.M., Troost, D., Vanetten, R.W., Veldman, H., and Jennekens, F.G.I. (1994). Insulin-like and fibroblast growth factors in spinal cords, nerve roots and skeletal muscle of human controls and patients with amyotrophic lateral sclerosis. Acta Neuropathol. 87, 411–421.CrossrefGoogle Scholar

  • Khoshnoodi, J., Pedchenko, V., and Hudson, B.G. (2008). Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370.CrossrefGoogle Scholar

  • Kielty, C.M., Sherratt, M.J., and Shuttleworth, C.A. (2002). Elastic fibres. J. Cell Sci. 115, 2817–2828.Google Scholar

  • Kim, S.Y., Woo, M.S., Park, J.S., and Kim, H.S. (2010). Regulation of matrix metalloproteinase-9 gene expression in MPP+- or 6-OHDA-treated human neuroblastoma SK-N-BE(2)C cells. Neurochem. Int. 56, 437–442.CrossrefGoogle Scholar

  • Kim, N.C., Tresse, E., Kolaitis, R.M., Molliex, A., Thomas, R.E., Alami, N.H., Wang, B., Joshi, A., Smith, R.B., Ritson, G.P., et al. (2013). VCP is essential for mitochondrial quality control by PINK1/Parkin and this function is impaired by VCP mutations. Neuron 78, 65–80.Google Scholar

  • Kolodziejczyk, R., Michalska, K., Hernandez-Santoyo, A., Wahlbom, M., Grubb, A., and Jaskolski, M. (2010). Crystal structure of human cystatin C stabilized against amyloid formation. FEBS J. 277, 1726–1737.CrossrefGoogle Scholar

  • Kushima, Y. and Hatanaka, H. (1992). Interleukin-6 and leukemia inhibitory factor promote the survival of acetylcholinesterase-positive neurons in culture from embryonic rat spinal cord. Neurosci. Lett. 143, 110–114.CrossrefGoogle Scholar

  • Kwiatkowski, T.J., Bosco, D.A, Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208.Google Scholar

  • Lagier-Tourenne, C., Polymenidou, M., and Cleveland, D.W. (2010). TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, 46–64.CrossrefGoogle Scholar

  • Lagier-Tourenne, C., Baughn, M., Rigo, F., Sun, S., Liu, P., Li, H.-R., Jiang, J., Watt, A.T., Chun, S., Katz, M., et al. (2013). Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc. Natl. Acad. Sci. USA 110, E4530–E4539.CrossrefGoogle Scholar

  • Lambrechts, D., Storkebaum, E., Morimoto, M., Del-Favero, J., Desmet, F., Marklund, S.L., Wyns, S., Thijs, V., Andersson, J., van Marion, I., et al. (2003). VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 34, 383–394.CrossrefGoogle Scholar

  • Lambrechts, D., Storkebaum, E., and Carmeliet, P. (2004). VEGF: necessary to prevent motoneuron degeneration, sufficient to treat ALS? Trends Mol. Med. 10, 275–282.CrossrefGoogle Scholar

  • Lange, D.J., Felice, K.J., Festoff, B.W., Gawel, M.J., Gelinas, D.F., Kratz, R., Lai, E.C., Murphy, M.F., Natter, H.M., Norris, F.H., et al. (1996). Recombinant human insulin-like growth factor-I in ALS: description of a double-blind, placebo-controlled study. Neurology 47, S93–S94.CrossrefGoogle Scholar

  • Latterich, M., Fröhlich, K.U., and Schekman, R. (1995). Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82, 885–893.CrossrefGoogle Scholar

  • Laurent, U.B.G. and Reed, R.K. (1991). Turnover of hyaluronan in the tissues. Adv. Drug Deliv. Rev. 7, 237–256.CrossrefGoogle Scholar

  • Law, W.J., Cann, K.L., and Hicks, G.G. (2006). TLS, EWS and TAF15: a model for transcriptional integration of gene expression. Briefings Funct. Genomics Proteomics 5, 8–14.CrossrefGoogle Scholar

  • Leblond, C.S., Kaneb, H.M., Dion, P.A., and Rouleau, G.A. (2014). Dissection of genetic factors associated with amyotrophic lateral sclerosis. Exp. Neurol. 262, 91–101.CrossrefGoogle Scholar

  • Lee, D.H., Oh, J.-H., and Chung, J.H. (2016). Glycosaminoglycan and proteoglycan in skin aging. J. Dermatol. Sci. 83, 174–181.CrossrefGoogle Scholar

  • Lever, E. and Sheer, D. (2010). The role of nuclear organization in cancer. J. Pathol. 220, 114–125.Google Scholar

  • Li, J.F., Duan, H.F., Wu, C.T., Zhang, D.J., Deng, Y., Yin, H.L., Han, B., Gong, H.C., Wang, H.W., and Wang, Y.L. (2013). HGF accelerates wound healing by promoting the dedifferentiation of epidermal cells through β1-integrin/ILK pathway. Biomed Res. Int. 2013, 470418.Google Scholar

  • Lim, G.P., Backstrom, J.R., Cullen, M.J., Miller, C.A., Atkinson, R.D., and Tökés, Z.A. (1996). Matrix metalloproteinases in the neocortex and spinal cord of amyotrophic lateral sclerosis patients. J. Neurochem. 67, 251–259.CrossrefGoogle Scholar

  • Lin, Y.-T., Chen, J.-S., Wu, M.-H., Hsieh, I.-S., Liang, C.-H., Hsu, C.-L., Hong, T.M., and Chen, Y.-L. (2015). Galectin-1 accelerates wound healing by regulating the neuropilin-1/Smad3/NOX4 pathway and ROS production in myofibroblasts. J. Invest. Dermatol. 135, 258–268.Google Scholar

  • Ling, S., Polymenidou, M., and Cleveland, D.W. (2013). Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438.CrossrefGoogle Scholar

  • Löfberg, H. and Grubb, A.O. (1979). Quantitation of gamma-trace in human biological fluids: indications for production in the central nervous system. Scand. J. Clin. Lab. Invest. 39, 619–626.CrossrefGoogle Scholar

  • Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J., and Cotman, C.W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90, 7951–7955.CrossrefGoogle Scholar

  • Lorenzl, S., Albers, D.S., Relkin, N., Ngyuen, T., Hilgenberg, S.L., Chirichigno, J., Cudkowicz, M.E., and Beal, M.F. (2003). Increased plasma levels of matrix metalloproteinase-9 in patients with Alzheimer’s disease. Neurochem. Int. 43, 191–196.CrossrefGoogle Scholar

  • Lorenzl, S., Calingasan, N., Yang, L., Albers, D.S., Shugama, S., Gregorio, J., Krell, H.W., Chirichigno, J., Joh, T., and Beal, M.F. (2004). Matrix metalloproteinase-9 Is elevated parkinsonism in mice. Neuromolecular Med. 5, 119–131.CrossrefGoogle Scholar

  • Lunetta, C., Serafini, M., Prelle, A., Magni, P., Dozio, E., Ruscica, M., Sassone, J., Colciago, C., Moggio, M., Corbo, M., et al. (2012). Impaired expression of insulin-like growth factor-1 system in skeletal muscle of amyotrophic lateral sclerosis patients. Muscle Nerve 45, 200–208.CrossrefGoogle Scholar

  • Ma, S., Turino, G.M., and Lin, Y.Y. (2011). Quantitation of desmosine and isodesmosine in urine, plasma, and sputum by LC-MS/MS as biomarkers for elastin degradation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 879, 1893–1898.Google Scholar

  • Mackenzie, I.R.A., Bigio, E.H., Ince, P.G., Geser, F., Neumann, M., Cairns, N.J., Kwong, L.K., Forman, M.S., Ravits, J., Stewart, H., et al. (2007). Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434.CrossrefGoogle Scholar

  • Maeshima, N., Poon, G.F.T., Dosanjh, M., Felberg, J., Lee, S.S.M., Cross, J.L., Birkenhead, D., and Johnson, P. (2011). Hyaluronan binding identifies the most proliferative activated and memory T cells. Eur. J. Immunol. 41, 1108–1119.CrossrefGoogle Scholar

  • Mahaffey, C.L. and Mummert, M.E. (2007). Hyaluronan synthesis is required for IL-2-mediated T cell proliferation. J. Immunol. 179, 8191–8199.CrossrefGoogle Scholar

  • Maina, F. and Klein, R. (1999). Hepatocyte growth factor, a versatile signal for developing neurons. Nat. Neurosci. 2, 213–217.CrossrefGoogle Scholar

  • Maina, F., Hilton, M.C., Ponzetto, C., Davies, A.M., and Klein, R. (1997). Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 11, 3341–3350.CrossrefGoogle Scholar

  • Malaspina, A., Kaushik, N., and De Belleroche, J. (2001). Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J. Neurochem. 77, 132–145.CrossrefGoogle Scholar

  • Matsumoto, K., Hashimoto, K., Yoshikawa, K., and Nakamura, T. (1991). Marked stimulation of growth and motility of human keratinocytes by hepatocyte growth factor. Exp. Cell Res. 196, 114–120.Google Scholar

  • McGraw, J., Gaudet, A.D., Oschipok, L.W., Kadoya, T., Horie, H., Steeves, J.D., Tetzlaff, W., and Ramer, M.S. (2005). Regulation of neuronal and glial galectin-1 expression by peripheral and central axotomy of rat primary afferent neurons. Exp. Neurol. 195, 103–114.Google Scholar

  • Meyer, H., Bug, M., and Bremer, S. (2012). Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14, 117–123.CrossrefGoogle Scholar

  • Mi, W., Jung, S.S., Yu, H., Schmidt, S.D., Nixon, R.A., Mathews, P.M., Tagliavini, F., and Levy, E. (2009). Complexes of amyloid-beta and cystatin C in the human central nervous system. J. Alzheimers. Dis. 18, 273–280.CrossrefGoogle Scholar

  • Mitchell, J.C., Constable, R., So, E., Vance, C., Scotter, E., Glover, L., Hortobagyi, T., Arnold, E.S., Ling, S.C., McAlonis, M., et al. (2015). Wild type human TDP-43 potentiates ALS-linked mutant TDP-43 driven progressive motor and cortical neuron degeneration with pathological features of ALS. Acta Neuropathol. Commun. 3, 36.CrossrefGoogle Scholar

  • Miyagaki, T., Sugaya, M., Suga, H., Akamata, K., Ohmatsu, H., Fujita, H., Asano, Y., Tada, Y., Kadono, T., and Sato, S. (2012). Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma. Arch. Dermatol. Res. 304, 401–406.CrossrefGoogle Scholar

  • Mizielinska, S., Lashley, T., Norona, F.E., Clayton, E.L., Ridler, C.E., Fratta, P., and Isaacs, A.M. (2013). C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol. 126, 845–857.CrossrefGoogle Scholar

  • Moreau, C., Devos, D., Brunaud-Danel, V., Defebvre, L., Perez, T., Destée, A., Tonnel, A.B., Lassalle, P., and Just, N. (2005). Elevated IL-6 and TNF-alpha levels in patients with ALS: inflammation or hypoxia? Neurology 65, 1958–1960.CrossrefGoogle Scholar

  • Mori, K., Arzberger, T., Grässer, F.A., Gijselinck, I., May, S., Rentzsch, K., Weng, S.M., Schludi, M.H., van der Zee, J., Cruts, M., et al. (2013). Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 126, 881–893.CrossrefGoogle Scholar

  • Mulder, D.W., Kurland, L.T., Offord, K.P., and Beard, C.M. (1986). Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36, 511–517.CrossrefGoogle Scholar

  • Mummert, M.E., Mummert, D., Edelbaum, D., Hui, F., Matsue, H., and Takashima, A. (2002). Synthesis and surface expression of hyaluronan by dendritic cells and its potential role in antigen presentation. J. Immunol. 169, 4322–4331.Google Scholar

  • Murphy, G. and J. Reynolds, J. (1985). Current views of collagen degeradation. Progress towards understanding the resorption of connective tissues. BioEssays 2, 55–60.CrossrefGoogle Scholar

  • Murphy, M., Dutton, R., Koblar, S., Cheema, S., and Bartlett, P. (1997). Cytokines which signal through the LIF receptor and their actions in the nervous system. Prog. Neurobiol. 52, 355–378.CrossrefGoogle Scholar

  • Nakamura, T., Nawa, K., and Ichihara, A. (1984). Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem. Biophys. Res. Commun. 122, 1450–1459.CrossrefGoogle Scholar

  • Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., et al. (2006). Ubiquitinated TDP-43 in Frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133.Google Scholar

  • Nguyen, M.D., Julien, J.P., and Rivest, S. (2001). Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: no requirement for proapoptotic interleukin-1B in neurodegeneration. Ann. Neurol. 50, 630–639.CrossrefGoogle Scholar

  • Nishio, C., Yoshida, K., Nishiyama, K., Hatanaka, H., and Yamada, M. (2000). Involvement of cystatin C in oxidative stress-induced apoptosis of cultured rat CNS neurons. Brain Res. 873, 252–262.Google Scholar

  • Nobre, P.W., Liang, J., and Jiang, D. (2011). Hyaluronan as an immune regulator in human diseases. Physiol. Rev. 91, 221–264.CrossrefGoogle Scholar

  • Nomura, M., Oketa, Y., Yasui, K., Ishikawa, H., and Ono, S. (2012). Expression of hepatocyte growth factor in the skin of amyotrophic lateral sclerosis. Acta Neurol. Scand. 125, 389–397.CrossrefGoogle Scholar

  • Okamoto, K., Mizuno, Y., and Fujita, Y. (2008). Bunina bodies in amyotrophic lateral sclerosis. Neuropathology 28, 109–115.CrossrefGoogle Scholar

  • Oketa, Y., Higashida, K., Fukasawa, H., Tsukie, T., and Ono, S. (2013). Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurol. Scand. 128, 257–264.CrossrefGoogle Scholar

  • Ono, S. (1992). Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis. Ann. Neurol. 31, 305–310.CrossrefGoogle Scholar

  • Ono, S. (2000). The skin in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 1, 191–199.Google Scholar

  • Ono, S. and Toyokura, Y. (1988). ‘Delayed return phenomenon’ in amyotrophic lateral sclerosis. Acta Neurol. Scand. 77, 102–107.CrossrefGoogle Scholar

  • Ono, S. and Yamauchi, M. (1994). Elastin cross-linking in the skin from patients with amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 57, 94–96.CrossrefGoogle Scholar

  • Ono, S., Toyokura, Y., Mannen, T., and Ishibashi, Y. (1988). Increased dermal collagen density in amyotrophic lateral sclerosis. J. Neurol. Sci. 83, 81–92.CrossrefGoogle Scholar

  • Ono, S., Mechanic, G., and Yamauchi, M. (1990). Amyotrophic lateral sclerosis: unusually low content of collagen in skin. J. Neurol. Sci. 100, 234–237.CrossrefGoogle Scholar

  • Ono, S., Nagao, K., and Yamauchi, M. (1994). Amorphous material of the skin in amyotrophic lateral sclerosis: a morphologic and biochemical study. Neurology 44, 537–540.CrossrefGoogle Scholar

  • Ono, S., Imai, T., Yamauchi, M., and Nagao, K. (1996). Hyaluronic acid is increased in the skin and urine in patients with amyotrophic lateral sclerosis. J. Neurol. 243, 693–699.CrossrefGoogle Scholar

  • Ono, S., Waring, S.C., Kurland, L.L., Katrina-Craig, U., and Petersen, R.C. (1997). Guamanian neurodegenerative disease: ultrastructural studies of skin. J. Neurol. Sci. 146, 35–40.CrossrefGoogle Scholar

  • Ono, S., Imai, T., Takahashi, K., Jinnai, K., Yamano, T., Nagao, K., Shimizu, N., and Yamauchi, M. (1998). Decreased type IV collagen of skin and serum in patients with amyotrophic lateral sclerosis. Neurology 51, 114–120.CrossrefGoogle Scholar

  • Ono, S., Imai, T., Matsubara, S., Takahashi, K., Jinnai, K., Yamano, T., and Shimizu, N. (1999a). Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis. Acta Neurol. Scand. 100, 111–116.CrossrefGoogle Scholar

  • Ono, S., Imai, T., and Takahashi, K. (1999b). Increased type III procollagen in serum and skin of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 100, 377–384.CrossrefGoogle Scholar

  • Ono, S., Shimizu, N., Imai, T., Mihori, A., and Nagao, K. (2000a). Increased cystatin C immunoreactivity in the skin in amyotrophic lateral sclerosis. Acta Neurol. Scand. 102, 47–52.CrossrefGoogle Scholar

  • Ono, S., Imai, T., Shimizu, N., and Nagao, K. (2000b). Increased expression of laminin 1 in the skin of amyotrophic lateral sclerosis. Eur. Neurol. 43, 215–220.Google Scholar

  • Ono, S., Hu, J., Imai, T., Shimizu, N., Tsumura, M., and Nakagawa, H. (2000c). Increased expression of insulin-like growth factor I in skin in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 69, 199–203.CrossrefGoogle Scholar

  • Ono, S., Hu, J., Shimizu, N., Imai, T., and Nakagawa, H. (2001). Increased interleukin-6 of skin and serum in amyotrophic lateral sclerosis. J. Neurol. Sci. 187, 27–34.Google Scholar

  • Paré, B., Touzel-Deschênes, L., Lamontagne, R., Lamarre, M.-S., Scott, F.-D., Khuong, H.T., Dion, P.A., Bouchard, J.P., Gould, P., Rouleau, G.A., et al. (2015). Early detection of structural abnormalities and cytoplasmic accumulation of TDP-43 in tissue-engineered skins derived from ALS patients. Acta Neuropathol. Commun. 3, 5.CrossrefGoogle Scholar

  • Pasinelli, P. and Brown, R.H. (2006). Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat. Rev. Neurosci. 7, 710–723.CrossrefGoogle Scholar

  • Petkau, T.L. and Leavitt, B.R. (2014). Progranulin in neurodegenerative disease. Trends Neurosci. 37, 388–398.CrossrefGoogle Scholar

  • Philips, T., De Muynck, L., Thu, H.N.T., Weynants, B., Vanacker, P., Dhondt, J., Sleegers, K., Schelhaas, H.J., Verbeek, M., Vandenberghe, R., et al. (2010). Microglial upregulation of progranulin as a marker of motor neuron degeneration. J. Neuropathol. Exp. Neurol. 69, 1191–1200.CrossrefGoogle Scholar

  • Pickart, C.M. and Eddins, M.J. (2004). Ubiquitin: structures, functions, mechanisms. Biochim. Biophys. Acta Mol. Cell Res. 1695, 55–72.Google Scholar

  • Pittenger, L.G., Ray, M., Burcus, N.I., McNulty, P., Basta, B., and Vinik, A.I. (2004). Indicators of small-fiber neuropathy in both diabetic and nondiabetic patients. Diab. Care 27, 1974–1979.CrossrefGoogle Scholar

  • Poloni, M., Facchetti, D., Mai, R., Micheli, A., Agnoletti, L., Francolini, G., Mora, G., Camana, C., Mazzini, L., and Bachetti, T. (2000). Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci. Lett. 287, 211–214.Google Scholar

  • Powers, C.A., Mathur, M., Raaka, B.M., Ron, D., and Samuels, H.H. (1998). TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors. Mol. Endocrinol. 12, 4–18.CrossrefGoogle Scholar

  • Pronto-laborinho, A.C., Pinto, S., and De Carvalho, M. (2014). Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. Biomed Res. Int. 2014, 24.Google Scholar

  • Provinciali, L., Cangiotti, A., Tulli, D., Carboni, V., and Cinti, S. (1994). Skin abnormalities and autonomic involvement in the early stage of amyotrophic lateral sclerosis. J. Neurol. Sci. 126, 54–61.CrossrefGoogle Scholar

  • Quintá, H.R., Pasquini, J.M., Rabinovich, G.A., and Pasquini, L.A. (2014). Glycan-dependent binding of galectin-1 to neuropilin-1 promotes axonal regeneration after spinal cord injury. Cell Death Differ. 21, 941–955.Google Scholar

  • Rabinovich, G.A., Sotomayor, C.E., Riera, C.M., Bianco, I., and Correa, S.G. (2000). Evidence of a role for galectin-1 in acute inflammation. Eur. J. Immunol. 30, 1331–1339.CrossrefGoogle Scholar

  • Rabinovich, G.A., Baum, L.G., Tinari, N., Paganelli, R., Natoli, C., Liu, F.T., and Iacobelli, S. (2002). Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313–320.CrossrefGoogle Scholar

  • Rabouille, C., Levine, T.P., Peters, J.M., and Warren, G. (1995). An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 82, 905–914.CrossrefGoogle Scholar

  • Ramadan, K., Bruderer, R., Spiga, F.M., Popp, O., Baur, T., Gotta, M., and Meyer, H.H. (2007). Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258–1262.Google Scholar

  • Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.Google Scholar

  • Ritson, G.P., Custer, S.K., Freibaum, B.D., Guinto, J.B., Geffel, D., Moore, J., Tang, W., Winton, M.J., Neumann, M., Trojanowski, J.Q., et al. (2010). TDP-43 mediates degeneration in a novel Drosophila model of disease caused by mutations in VCP/p97. J. Neurosci. 30, 7729–7739.CrossrefGoogle Scholar

  • Robberecht, W. and Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264.CrossrefGoogle Scholar

  • Rosen, E.M., Goldberg, I.D., Kacinski, B.M., Buckholz, T., and Vinter, D.W. (1989). Smooth muscle releases an epithelial cell scatter factor which binds to heparin. In Vitro Cell. Dev. Biol. 25, 163–173.Google Scholar

  • Rosenstein, J.M., Krum, J.M., and Ruhrberg, C. (2010). VEGF in the nervous system. Organogenesis 6, 107–114.CrossrefGoogle Scholar

  • Rubinsztein, D.C. (2006). The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780–786.Google Scholar

  • Russo, V.C., Gluckman, P.D., Feldman, E.L., and Werther, G.A. (2005). The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 26, 916–943.CrossrefGoogle Scholar

  • Sadowski, T., Dietrich, S., Koschinsky, F., and Sedlacek, R. (2003). Matrix metalloproteinase 19 regulates insulin-like growth factor-mediated proliferation, migration, and adhesion in human keratinocytes through proteolysis of insulin-like growth factor binding protein-3. Mol. Biol. Cell 14, 4569–4580.CrossrefGoogle Scholar

  • Sako, W. and Ishimoto, S. (2014). Can cystatin C in cerebrospinal fluid be a biomarker for amyotrophic lateral sclerosis? A lesson from previous studies. Neurol. Clin. Neurosci. 2, 72–75.CrossrefGoogle Scholar

  • Sasaki, M., Kleinman, H.K., Huber, H., Deutzmann, R., and Yamada, Y. (1988). Laminin, a multidomain protein. The A chain has a unique globular domain and homology with the basement membrane proteoglycan and the laminin B chains. J. Biol. Chem. 263, 16536–16544.Google Scholar

  • Satoh, J., Yamamoto, Y., and Kitano, S. (2014). Molecular Network Analysis Suggests a Logical Hypothesis for the Pathological Role of C9orf72 in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia. J. Cent. Nerv. Syst. Dis. 6, 69–78.CrossrefGoogle Scholar

  • Seidal, T., Balaton, A.J., and Battifora, H. (2001). Interpretation and quantification of immunostains. Am. J. Surg. Pathol. 25, 1204–1207.CrossrefGoogle Scholar

  • Sekizawa, T., Openshaw, H., Ohbo, K., Sugamura, K., Itoyama, Y., and Niland, J.C. (1998). Cerebrospinal fluid interleukin 6 in amyotrophic lateral sclerosis: immunological parameter and comparison with inflammatory and non-inflammatory central nervous system diseases. J. Neurol. Sci. 154, 194–199.Google Scholar

  • Semenova, E., Koegel, H., Hasse, S., Klatte, J.E., Slonimsky, E., Bilbao, D., Paus, R., Werner, S., and Rosenthal, N. (2008). Overexpression of mIGF-1 in keratinocytes improves wound healing and accelerates hair follicle formation and cycling in mice. Am. J. Pathol. 173, 1295–1310.Google Scholar

  • Shen, S., Alt, A., Wertheimer, E., Gartsbein, M., Kuroki, T., Ohba, M., Braiman, L., Sampson, S.R., and Tennenbaum, T. (2001). PKCdelta activation: a divergence point in the signaling of insulin and IGF-1-induced proliferation of skin keratinocytes. Diabetes 50, 255–264.CrossrefGoogle Scholar

  • Sherratt, M.J. (2009). Tissue elasticity and the ageing elastic fibre. Age (Omaha) 31, 305–325.CrossrefGoogle Scholar

  • Skorupa, A., King, M.A., Aparicio, I.M., Dussmann, H., Coughlan, K., Breen, B., Kieran, D., Concannon, C.G., Marin, P., and Prehn, J.H.M. (2012). Motoneurons secrete angiogenin to induce RNA cleavage in astroglia. J. Neurosci. 32, 5024–5038.CrossrefGoogle Scholar

  • Sleegers, K., Brouwers, N., Maurer-Stroh, S., Van Es, M.A., Van Damme, P., Van Vught, P.W.J., van der Zee, J., Serneels, S., De Pooter, T, Van den Broeck, M., et al. (2008). Progranulin genetic variability contributes to amyotrophic lateral sclerosis. Neurology 71, 253–259.CrossrefGoogle Scholar

  • Sloane, J.A., Batt, C., Ma, Y., Harris, Z.M., Trapp, B., and Vartanian, T. (2010). Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl. Acad. Sci. USA 107, 11555–11560.CrossrefGoogle Scholar

  • Sondell, M., Lundborg, G., and Kanje, M. (1999). Vascular endothelial growth factor has neurotrophic activity and stimulates axonal outgrowth, enhancing cell survival and Schwann cell proliferation in the peripheral nervous system. J. Neurosci. 19, 5731–5740.Google Scholar

  • Starcher, B. and Percival, S. (1985). Elastin turnover in the rat uterus. Connect. Tissue Res. 13, 207–215.CrossrefGoogle Scholar

  • Stoker, M., Gherardi, E., Perryman, M., and Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 327, 239–242.Google Scholar

  • Stolz, A., Hilt, W., Buchberger, A., and Wolf, D.H. (2011). Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523.CrossrefGoogle Scholar

  • Storkebaum, E., Lambrechts, D., Dewerchin, M., Moreno-Murciano, M.-P., Appelmans, S., Oh, H., Van Damme, P., Rutten, B., Man, W.Y., De Mol, M., et al. (2005). Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat. Neurosci. 8, 85–92.CrossrefGoogle Scholar

  • Stratton, M.S., Yang, X., Sreejayan, N., and Ren, J. (2007). Impact of insulin-like growth factor-I on migration, proliferation and Akt-ERK signaling in early and late-passages of vascular smooth muscle cells. Cardiovasc. Toxicol. 7, 273–281.CrossrefGoogle Scholar

  • Subramanian, V., Crabtree, B., and Acharya, K.R. (2008). Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum. Mol. Genet. 17, 130–149.CrossrefGoogle Scholar

  • Suh, H.-S., Zhao, M.-L., Derico, L., Choi, N., and Lee, S.C. (2013). Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J. Neuroinflamm. 10, 37.CrossrefGoogle Scholar

  • Sun, W., Funakoshi, H., and Nakamura, T. (2002). Overexpression of HGF retards disease progression and prolongs life span in a transgenic mouse model of ALS. J. Neurosci. 22, 6537–6548.Google Scholar

  • Suzuki, M., Watanabe, T., Mikami, H., Nomura, M., Yamazaki, T., Irie, T., Ishikawa, H., Yasui, K., and Ono, S. (2009). Immunohistochemical studies of vascular endothelial growth factor in skin of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 285, 125–129.Google Scholar

  • Suzuki, M., Mikami, H., Watanabe, T., Yamano, T., Yamazaki, T., Nomura, M., Yasui, K., Ishikawa, H., and Ono, S. (2010). Increased expression of TDP-43 in the skin of amyotrophic lateral sclerosis. Acta Neurol. Scand. 122, 367–372.Google Scholar

  • Swardfager, W., Lanctt, K., Rothenburg, L., Wong, A., Cappell, J., and Herrmann, N. (2010). A meta-analysis of cytokines in Alzheimer’s disease. Biol. Psychiatry 68, 930–941.CrossrefGoogle Scholar

  • Swarup, V., Phaneuf, D., Dupré, N., Petri, S., Strong, M., Kriz, J., and Julien, J.-P. (2011). Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways. J. Exp. Med. 208, 2429–2447.CrossrefGoogle Scholar

  • Tan, A.Y., and Manley, J.L. (2009). The TET family of proteins: functions and roles in disease. J. Mol. Cell Biol. 1, 82–92.Google Scholar

  • Tan, C.F., Eguchi, H., Tagawa, A., Onodera, O., Iwasaki, T., Tsujino, A., Nishizawa, M., Kakita, A., and Takahashi, H. (2007). TDP-43 immunoreactivity in neuronal inclusions in familial amyotrophic lateral sclerosis with or without SOD1 gene mutation. Acta Neuropathol. 113, 535–542.CrossrefGoogle Scholar

  • Tandan, R. and Bradley, W.G. (1985). Amyotrophic lateral sclerosis: part 1. Clinical features, pathology, and ethical issues in management. Ann. Neurol. 18, 271–280.CrossrefGoogle Scholar

  • Terrado, J., Monnier, D., Perrelet, D., Vesin, D., Jemelin, S., Buurman, W.A., Mattenberger, L., King, B., Kato, A.C., and Garcia, I. (2000). Soluble TNF receptors partially protect injured motoneurons in the postnatal CNS. Eur. J. Neurosci. 12, 3443–3447.CrossrefGoogle Scholar

  • Tewari, M., and Dixit, V.M. (1996). Recent advances in tumor necrosis factor and CD40 signaling. Curr. Opin. Genet. Dev. 6, 39–44.CrossrefGoogle Scholar

  • Tresse, E., Salomons, F.A., Vesa, J., Bott, L.C., Kimonis, V., Yao, T.P., Dantuma, N.P., and Taylor, J.P. (2010). VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 9, 217–227.CrossrefGoogle Scholar

  • Truini, A., Biasiotta, A., Onesti, E., Di Stefano, G., Ceccanti, M., La Cesa, S., Pepe, A., Giordano, C., Cruccu, G., Inghilleri, M., et al. (2015). Small-fibre neuropathy related to bulbar and spinal-onset in patients with ALS. J. Neurol. 262, 1014–1018.Google Scholar

  • Tsuji-Akimoto, S., Yabe, I., Niino, M., Kikuchi, S., and Sasaki, H. (2009). Cystatin C in cerebrospinal fluid as a biomarker of ALS. Neurosci. Lett. 452, 52–55.Google Scholar

  • Tsukie, T., Masaki, H., Yoshida, S., Fujikura, M., and Ono, S. (2014). Decreased amount of collagen in the skin of amyotrophic lateral sclerosis in the Kii Peninsula of Japan. Acta Neurol. Taiwan 23, 82–89.Google Scholar

  • Van Damme, P., Van Hoecke, A., Lambrechts, D., Vanacker, P., Bogaert, E., Van Swieten, J., Carmeliet, P., Van Den Bosch, L., and Robberecht, W. (2008). Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J. Cell Biol. 181, 37–41.Google Scholar

  • van der Zee, J., Gijselinck, I., Dillen, L., Van Langenhove, T., Theuns, J., Engelborghs, S., Philtjens, S., Vandenbulcke, M., Sleegers, K., Sieben, A., et al. (2013). A Pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum. Mutat. 34, 363–373.Google Scholar

  • Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211.Google Scholar

  • Vande Velde, C. and Cleveland, D.W. (2005). VEGF: multitasking in ALS. Nat. Neurosci. 8, 5–7.CrossrefGoogle Scholar

  • Vaz, B., Halder, S., and Ramadan, K. (2013). Role of p97/VCP (Cdc48) in genome stability. Front. Genet. 4, 60.CrossrefGoogle Scholar

  • Visse, R. and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827–839.CrossrefGoogle Scholar

  • Viviani, B., Bartesaghi, S., Corsini, E., Galli, C.L., and Marinovich, M. (2004). Cytokines role in neurodegenerative events. Toxicol. Lett. 149, 85–89.Google Scholar

  • Wada, M., Ono, S., Kadoya, T., Kawanami, T., Kurita, K., and Kato, T. (2003). Decreased galectin-1 immunoreactivity of the skin in amyotrophic lateral sclerosis. J. Neurol. Sci. 208, 67–70.Google Scholar

  • Wagner, J.A. (1996). Is IL-6 both a cytokine and a neurotrophic factor? J. Exp. Med. 183, 2417–2419.Google Scholar

  • Waite, A.J., Bäumer, D., East, S., Neal, J., Morris, H.R., Ansorge, O., and Blake, D.J. (2014). Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol. Aging 35, 1779.e5–1779.e13.Google Scholar

  • Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65.CrossrefGoogle Scholar

  • Wang, X., Arai, S., Song, X., Reichart, D., Du, K., Pascual, G., Tempst, P., Rosenfeld, M.G., Glass, C.K., and Kurokawa, R. (2008). Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130.Google Scholar

  • Watanabe, S., Yamada, K., Ono, S., and Ishibashi, Y. (1987). Skin changes in patients with amyotrophic lateral sclerosis: light and electron microscopic observations. J. Am. Acad. Dermatol. 17, 1006–1012.CrossrefGoogle Scholar

  • Watanabe, T., Okeda, Y., Yamano, T., and Ono, S. (2010). An immunohistochemical study of ubiquitin in the skin of sporadic amyotrophic lateral sclerosis. J. Neurol. Sci. 298, 52–56.Google Scholar

  • Watanabe, S., Hayakawa, T., Wakasugi, K., and Yamanaka, K. (2014). Cystatin C protects neuronal cells against mutant copper-zinc superoxide dismutase-mediated toxicity. Cell Death Dis 5, e1497.Google Scholar

  • Wegorzewska, I., Bell, S., Cairns, N.J., Miller, T.M., and Baloh, R.H. (2009). TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc. Natl. Acad. Sci. USA 106, 18809–18814.CrossrefGoogle Scholar

  • Weis, J., Katona, I., Müller-Newen, G., Sommer, C., Necula, G., Hendrich, C., Ludolph, A.C., and Sperfeld, A.D. (2011). Small-fiber neuropathy in patients with ALS. Neurology 76, 2024–2029.CrossrefGoogle Scholar

  • Wiksten, M., Vaananen, A., and Liesi, P. (2007). Selective overexpression of c1 laminin in astrocytes in amyotrophic lateral sclerosis indicates an involvement in ALS pathology Markus. J. Neurosci. Res. 85, 2045–2058.Google Scholar

  • Wilson, M.E., Boumaza, I., Lacomis, D., and Bowser, R. (2010). Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PLoS One 5, e15133. doi:10.1371/journal.pone.0015133.CrossrefGoogle Scholar

  • Wilson, M.E., Boumaza, I., and Bowser, R. (2013). Measurement of cystatin C functional activity in the cerebrospinal fluid of amyotrophic lateral sclerosis and control subjects. Fluids Barriers CNS 10, 15.Google Scholar

  • Woodroofe, M.N., Sarna, G.S., Wadhwa, M., Hayes, G.M., Loughlin, A.J., Tinker, A., and Cuzner, M.L. (1991). Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–236.CrossrefGoogle Scholar

  • Wu, D., Yu, W., Kishikawa, H., Folkerth, R.D., Iafrate, A.J., Shen, Y., Xin, W., Sims, K., and Hu, G. (2007a). Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol. 62, 609–617.CrossrefGoogle Scholar

  • Wu, D., Yu, W., Kishikawa, H., Folkerth, R.D., Iafrate, A.J., Shen, Y., Xin, W., Sims, K., and Hu, G.F. (2007b). Angiogenin loss-of-function mutations in amyotrophic lateral sclerosis. Ann. Neurol. 62, 609–617.CrossrefGoogle Scholar

  • Yamanaka, K., Sasagawa, Y., and Ogura, T. (2012). Recent advances in p97/VCP/Cdc48 cellular functions. Biochim. Biophys. Acta Mol. Cell Res. 1823, 130–137.Google Scholar

  • Yamaoka, K., Ohno, S., Kawasaki, H., and Suzuki, K. (1991). Overexpression of a beta-galactoside binding protein causes transformation of BALB3T3 fibroblast cells. Biochem. Biophys. Res. Commun. 179, 272–279.Google Scholar

  • Yamashita, S., Kimura, E., Tawara, N., Sakaguchi, H., Nakama, T., Maeda, Y., Hirano, T., Uchino, M., and Ando, Y. (2013). Optineurin is potentially associated with TDP-43 and involved in the pathogenesis of inclusion body myositis. Neuropathol. Appl. Neurobiol. 39, 406–416.CrossrefGoogle Scholar

  • Yamauchi, M., London, R.E., Guenat, C., Hashimoto, F., and Mechanic, G.L. (1987). Structure and formation of a stable histidine-based trifunctional cross-link in skin collagen. J. Biol. Chem. 262, 11428–11434.Google Scholar

  • Yasui, K., Oketa, Y., Higashida, K., Fukazawa, H., and Ono, S. (2011). Increased progranulin in the skin of amyotrophic lateral sclerosis: an immunohistochemical study. J. Neurol. Sci. 309, 110–114.Google Scholar

  • Yokoseki, A., Shiga, A., Tan, C.-F., Tagawa, A., Kaneko, H., Koyama, A., Eguchi, H., Tsujino, A., Ikeuchi, T., Kakita, A., et al. (2008). TDP-43 mutation in familial amyotrophic lateral sclerosis. Ann. Neurol. 63, 538–542.CrossrefGoogle Scholar

  • Zeeuwen, P.L., van Vlijmen-Willems, I.M., Egami, H., and Schalkwijk, J. (2002). Cystatin M/E expression in inflammatory and neoplastic skin disorders. Br. J. Dermatol. 147, 87–94.CrossrefGoogle Scholar

  • Zhang, D., Iyer, L.M., He, F., and Aravind, L. (2012). Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front. Genet. 3, 1–10.CrossrefGoogle Scholar

  • Zu, T., Liu, Y., Banez-Coronel, M., Reid, T., Pletnikova, O., Lewis, J., Miller, T.M., Harms, M.B., Falchook, A.E., and Subramony, S.H. (2013). RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl. Acad. Sci. USA 110, E4968–E4977.CrossrefGoogle Scholar

About the article

Received: 2017-01-10

Accepted: 2017-02-02

Published Online: 2017-03-25

Published in Print: 2017-07-26

Funding: Our work was supported by the Canadian Institutes for Health Research and the W. Garfield Weston Foundation through the Weston Brain Institute. F.G.L. is the recipient of a tier 2 Canada research Chair. B.P. is the recipient of an ALS Canada Doctoral Research award.

Conflict of interest statement: The authors declare to have no competing interests.

Citation Information: Reviews in the Neurosciences, Volume 28, Issue 5, Pages 551–572, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0004.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

William R. Swindell, Krzysztof Bojanowski, Mark S. Kindy, Raymond M. W. Chau, and Dorothy Ko
Translational Neurodegeneration, 2018, Volume 7, Number 1
Mark B. Bromberg
Journal of Clinical Neuromuscular Disease, 2017, Volume 19, Number 2, Page 89
Csaba Konrad, Hibiki Kawamata, Kirsten G. Bredvik, Andrea J. Arreguin, Steven A. Cajamarca, Jonathan C. Hupf, John M. Ravits, Timothy M. Miller, Nicholas J. Maragakis, Chadwick M. Hales, Jonathan D. Glass, Steven Gross, Hiroshi Mitsumoto, and Giovanni Manfredi
Molecular Neurodegeneration, 2017, Volume 12, Number 1

Comments (0)

Please log in or register to comment.
Log in