Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 28, Issue 6

Issues

Hippocampal BDNF in physiological conditions and social isolation

Ivan ZaletelORCID iD: http://orcid.org/0000-0002-4841-788X / Dragana Filipović
  • Laboratory of Molecular Biology and Endocrinology, Institute of Nuclear Sciences “Vinča”, University of Belgrade, 11000 Belgrade, Serbia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nela Puškaš
  • Corresponding author
  • Institute of Histology and Embryology “Aleksandar Ð. Kostić”, School of Medicine, University of Belgrade, Višegradska 26, 11000 Belgrade, Serbia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-07 | DOI: https://doi.org/10.1515/revneuro-2016-0072

Abstract

Exposure of an organism to chronic psychosocial stress may affect brain-derived neurotrophic factor (BDNF) expression that has been implicated in the etiology of psychiatric disorders, such as depression. Given that depression in humans has been linked with social stress, the chronic social stress paradigms for modeling psychiatric disorders in animals have thus been developed. Chronic social isolation in animal models generally causes changes in hypothalamic-pituitary-adrenal axis functioning, associated with anxiety- and depressive-like behaviors. Also, this chronic stress causes downregulation of BDNF protein and mRNA in the hippocampus, a stress-sensitive brain region closely related to the pathophysiology of depression. In this review, we discuss the current knowledge regarding the structure, function, intracellular signaling, inter-individual differences and epigenetic regulation of BDNF in both physiological conditions and depression and changes in corticosterone levels, as a marker of stress response. Since BDNF levels are age dependent in humans and rodents, this review will also highlight the effects of adolescent and adult chronic social isolation models of both genders on the BDNF expression.

Keywords: BDNF; behavior; corticosterone; depression; social stress

References

  • Abelaira, H.M., Réus, G.Z., and Quevedo, J. (2013). Animal models as tools to study the pathophysiology of depression. Rev. Bras. Psiquiatr. 35, S112–S120.CrossrefGoogle Scholar

  • Arain, M., Haque, M., Johal, L., Mathur, P., Nel, W., Rais, A., Sandhu, R., and Sharma, S. (2013). Maturation of the adolescent brain. Neuropsychiatr. Dis. Treat. 9, 449–461.Google Scholar

  • Arthur-Farraj, P.J., Latouche, M., Wilton, D.K., Quintes, S., Chabrol, E., Banerjee, A., Woodhoo, A., Jenkins, B., Rahman, M., Turmaine, M., et al. (2012). c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75, 633–647.CrossrefGoogle Scholar

  • Asztely, F., Kokaia, M., Olofsdotter, K., Ortegren, U., and Lindvall, O. (2000). Afferent-specific modulation of short-term synaptic plasticity by neurotrophins in dentate gyrus. Eur. J. Neurosci. 12, 662–669.CrossrefGoogle Scholar

  • Autry, A.E. and Monteggia, L.M. (2012). Brain-derived neurotrophic factor and neuropsychiatric disorders. Pharmacol. Rev. 64, 238–258.CrossrefGoogle Scholar

  • Barbacid, M. (1995). Neurotrophic factors and their receptors. Curr. Opin. Cell Biol. 7, 148–155.CrossrefGoogle Scholar

  • Barde, Y.A., Edgar, D., and Thoenen, H. (1982). Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1, 549–553.Google Scholar

  • Barrientos, R.M., Sprunger, D.B., Campeau, S., Higgins, E.A., Watkins, L.R., Rudy, J.W., and Maier, S.F. (2003). Brain-derived neurotrophic factor mRNA downregulation produced by social isolation is blocked by intrahippocampal interleukin-1 receptor antagonist. Neuroscience 121, 847–853.Google Scholar

  • Bath, K.G. and Lee, F.S. (2006). Variant BDNF (Val66Met) impact on brain structure and function. Cogn. Affect. Behav. Neurosci. 6, 79–85.CrossrefGoogle Scholar

  • Becker, C., Zeau, B., Rivat, C., Blugeot, A., Hamon, M., and Benoliel, J.J. (2008). Repeated social defeat-induced depression-like behavioral and biological alterations in rats: involvement of cholecystokinin. Mol. Psychiatry 13, 1079–1092.CrossrefGoogle Scholar

  • Biggio, F., Pisu, M.G., Garau, A., Boero, G., Locci, V., Mostallino, M.C., Olla, P., Utzeri, C., and Serra, M. (2014). Maternal separation attenuates the effect of adolescent social isolation on HPA axis responsiveness in adult rats. Eur. Neuropsychopharmacol. 24, 1152–1161.CrossrefGoogle Scholar

  • Binder, E.B. and Nemeroff, C.B. (2010). The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol. Psychiatry 15, 574–588.CrossrefGoogle Scholar

  • Binder, D.K. and Scharfman, H.E. (2004). Brain-derived neurotrophic factor. Growth Factors 22, 123–131.CrossrefGoogle Scholar

  • Bjørnebekk, A., Mathé, A.A., Gruber, S.H.M., and Brené, S. (2007). Social isolation increases number of newly proliferated cells in hippocampus in female flinders sensitive line rats. Hippocampus 17, 1193–1200.CrossrefGoogle Scholar

  • Boersma, G.J., Lee, R.S., Cordner, Z.A., Ewald, E.R., Purcell, R.H., Moghadam, A.A., and Tamashiro, K.L. (2014). Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats. Epigenetics 9, 437–447.CrossrefGoogle Scholar

  • Boulle, F., van den Hove, D.L.A., Jakob, S.B., Rutten, B.P., Hamon, M., van Os, J., Lesch, K.P., Lanfumey, L., Steinbusch, H.W., and Kenis, G. (2012). Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol. Psychiatry 17, 584–596.CrossrefGoogle Scholar

  • Bramham, C.R. and Messaoudi, E. (2005). BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog. Neurobiol. 76, 99–125.CrossrefGoogle Scholar

  • Caldeira, M.V., Melo, C.V., Pereira, D.B., Carvalho, R.F., Carvalho, A.L., and Duarte, C.B. (2007). BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol. Cell Neurosci. 35, 208–219.CrossrefGoogle Scholar

  • Carrier, N. and Kabbaj, M. (2012). Testosterone and imipramine have antidepressant effects in socially isolated male but not female rats. Horm. Behav. 61, 678–685.CrossrefGoogle Scholar

  • Castrén, E. and Kojima, M. (2017). Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiol. Dis. 97, 119–126.CrossrefGoogle Scholar

  • Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.CrossrefGoogle Scholar

  • Chen, Z.Y., Jing, D., Bath, K.G., Ieraci, A., Khan, T., Siao, C.J., Herrera, D.G., Toth, M., Yang, C., McEwen, B.S., et al. (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 314, 140–143.CrossrefGoogle Scholar

  • Chida, Y., Sudo, N., and Kubo, C. (2005). Social isolation stress exacerbates autoimmune disease in MRL/lpr mice. J. Neuroimmunol. 158, 138–144.CrossrefGoogle Scholar

  • Christoffel, D.J., Golden, S.A., and Russo, S.J. (2011). Structural and synaptic plasticity in stress-related disorders. Rev. Neurosci. 22, 535–549.CrossrefGoogle Scholar

  • Cirulli, F. and Alleva, E. (2016). Early environmental manipulations and long-term effects on brain neurotrophin levels. Environmental Experience and Plasticity of the Developing Brain. A. Sale, ed. (Hoboken, NJ: John Wiley & Sons), pp. 139–160.Google Scholar

  • Cirulli, F., Berry, A., Chiarotti, F., and Alleva, E. (2004). Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus 14, 802–807.CrossrefGoogle Scholar

  • Cowansage, K.K., LeDoux, J.E., and Monfils, M.H. (2010). Brain-derived neurotrophic factor: a dynamic gatekeeper of neural plasticity. Curr. Mol. Pharmacol. 3, 12–29.CrossrefGoogle Scholar

  • Dellu, F., Piazza, P.V., Mayo, W., Le Moal, M., and Simon, H. (1996). Novelty-seeking in rats – biobehavioral characteristics and possible relationship with the sensation-seeking trait in man. Neuropsychobiology 34, 136–145.CrossrefGoogle Scholar

  • De Foubert, G., Carney, S.L., Robinson, C.S., Destexhe, E.J., Tomlinson, R., Hicks, C.A., Murray, T.K., Gaillard, J.P., Deville, C., Xhenseval, V., et al. (2004). Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience 128, 597–604.CrossrefGoogle Scholar

  • Djordjevic, A., Adzic, M., Djordjevic, J., and Radojcic, M.B. (2010). Chronic social isolation suppresses proplastic response and promotes proapoptotic signalling in prefrontal cortex of Wistar rats. J. Neurosci. Res. 88, 2524–2533.Google Scholar

  • Djordjevic, J., Djordjevic, A., Adzic, M., and Radojcic, M.B. (2012). Effects of chronic social isolation on Wistar rat behavior and brain plasticity markers. Neuropsychobiology 66, 112–119.CrossrefGoogle Scholar

  • Djordjevic, J., Djordjevic, A., Adzic, M., Mitic, M., Lukic, I., and Radojcic, M.B. (2015). Alterations in the Nrf2-Keap1 signaling pathway and its downstream target genes in rat brain under stress. Brain Res. 1602, 20–31.Google Scholar

  • Djouma, E., Card, K., Lodge, D.J., and Lawrence, A.J. (2006). The CRF1 receptor antagonist, antalarmin, reverses isolation-induced up-regulation of dopamine D2 receptors in the amygdala and nucleus accumbens of fawn-hooded rats. Eur. J. Neurosci. 23, 3319–3327.CrossrefGoogle Scholar

  • Dong, E., Dzitoyeva, S.G., Matrisciano, F., Tueting, P., Grayson, D.R., and Guidotti, A. (2015). Brain-derived neurotrophic factor epigenetic modifications associated with schizophrenia-like phenotype induced by prenatal stress in mice. Biol. Psychiatry 77, 589–596.CrossrefGoogle Scholar

  • Duclot, F. and Kabbaj, M. (2013). Individual differences in novelty seeking predict subsequent vulnerability to social defeat through a differential epigenetic regulation of brain-derived neurotrophic factor expression. J. Neurosci. 33, 11048–11060.CrossrefGoogle Scholar

  • Duclot, F. and Kabbaj, M. (2015). Epigenetic mechanisms underlying the role of brain-derived neurotrophic factor in depression and response to antidepressants. J. Exp. Biol. 218, 21–31.CrossrefGoogle Scholar

  • Duclot, F., Hollis, F., Darcy, M.J., and Kabbaj, M. (2011). Individual differences in novelty-seeking behavior in rats as a model for psychosocial stress-related mood disorders. Physiol. Behav. 104, 296–305.CrossrefGoogle Scholar

  • Duman, R.S. (2014). Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin. Neurosci. 16, 11–27.Google Scholar

  • Duman, R.S. and Monteggia, L.M. (2006). A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 59, 1116–1127.CrossrefGoogle Scholar

  • Eker, C., Kitis, O., Taneli, F., Eker, O.D., Ozan, E., Yucel, K., Coburn, K., and Gonul, A.S. (2010). Correlation of serum BDNF levels with hippocampal volumes in first episode, medication-free depressed patients. Eur. Arch. Psychiatry Clin. Neurosci. 260, 527–533.CrossrefGoogle Scholar

  • Ernfors, P., Wetmore, C., Olson, L., and Persson, H. (1990). Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5, 511–526.CrossrefGoogle Scholar

  • Ernst, C., Deleva, V., Deng, X., Sequeira, A., Pomarenski, A., Klempan, T, Ernst, N., Quirion, R., Gratton, A., Szyf, M., et al. (2009). Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch. Gen. Psychiatry 66, 22–32.CrossrefGoogle Scholar

  • Ferland, C.L. and Schrader, L.A. (2011). Cage mate separation in pair-housed male rats evokes an acute stress corticosterone response. Neurosci. Lett. 489, 154–158.CrossrefGoogle Scholar

  • Filipović, D. and Pajović, S.B. (2009). Differential regulation of CuZnSOD expression in rat brain by acute and/or chronic stress. Cell Mol. Neurobiol. 29, 673–681.CrossrefGoogle Scholar

  • Filipović, D., Gavrilović, L., Dronjak, S., and Radojcić, M.B. (2005). Brain glucocorticoid receptor and heat shock protein 70 levels in rats exposed to acute, chronic or combined stress. Neuropsychobiology 51, 107–114.CrossrefGoogle Scholar

  • First, M., Gil-Ad, I., Taler, M., Tarasenko, I., Novak, N., and Weizman, A. (2011). The effects of fluoxetine treatment in a chronic mild stress rat model on depression-related behavior, brain neurotrophins and ERK expression. J. Mol. Neurosci. 45, 246–255.CrossrefGoogle Scholar

  • Frank, E., Salchner, P., Aldag, J.M., Salomé, N., Singewald, N., Landgraf, R., and Wigger, A. (2006). Genetic predisposition to anxiety-related behavior determines coping style, neuroendocrine responses, and neuronal activation during social defeat. Behav. Neurosci. 120, 60–71.CrossrefGoogle Scholar

  • Fuchs, E. (2005). Social stress in tree shrews as an animal model of depression: an example of a behavioral model of a CNS disorder. CNS Spectr. 10, 182–190.CrossrefGoogle Scholar

  • Fuchs, E., Czéh, B., Kole, M.H.P., Michaelis, T., and Lucassen, P.J. (2004). Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur. Neuropsychopharmacol. 14, S481–S490.CrossrefGoogle Scholar

  • Gamallo, A., Villanua, A., Trancho, G., and Fraile, A. (1986). Stress adaptation and adrenal activity in isolated and crowded rats. Physiol. Behav. 36, 217–221.CrossrefGoogle Scholar

  • Gambardella, P., Greco, A.M., Sticchi, R., Bellotti, R., and Di Renzo, G. (1994). Individual housing modulates daily rhythms of hypothalamic catecholaminergic system and circulating hormones in adult male rats. Chronobiol. Int. 11, 213–221.CrossrefGoogle Scholar

  • Gentry, J.J., Barker, P.A., and Carter, B.D. (2004). The p75 neurotrophin receptor: multiple interactors and numerous functions. Prog. Brain Res. 146, 25–39.CrossrefGoogle Scholar

  • Giachino, C., Canalia, N., Capone, F., Fasolo, A., Alleva, E., Riva, M.A., Cirulli, F., and Peretto, P. (2007). Maternal deprivation and early handling affect density of calcium binding protein-containing neurons in selected brain regions and emotional behavior in periadolescent rats. Neuroscience 145, 568–578.CrossrefGoogle Scholar

  • Godavarthi, S.K., Sharma, A., and Jana, N.R. (2014). Reversal of reduced parvalbumin neurons in hippocampus and amygdala of Angelman syndrome model mice by chronic treatment of fluoxetine. J. Neurochem. 130, 444–454.CrossrefGoogle Scholar

  • Goodman, L.J., Valverde, J., Lim, F., Geschwind, M.D., Federoff, H.J., Geller, A.I., and Hefti, F. (1996). Regulated release and polarized localization of brain-derived neurotrophic factor in hippocampal neurons. Mol. Cell Neurosci. 7, 222–238.CrossrefGoogle Scholar

  • Götz, R., Köster, R., Winkler, C., Raulf, F., Lottspeich, F., Schartl, M., and Thoenen, H. (1994). Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372, 266–269.CrossrefGoogle Scholar

  • Greenberg, P.E., Fournier, A.A., Sisitsky, T., Pike, C.T., and Kessler, R.C. (2015). The economic burden of adults with major depressive disorder in the United States (2005 and 2010). J. Clin. Psychiatry 76, 155–162.CrossrefGoogle Scholar

  • Hall, J., Thomas, K.L., and Everitt, B.J. (2000). Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat. Neurosci. 3, 533–535.CrossrefGoogle Scholar

  • Han, X., Wang, W., Xue, X., Shao, F., and Li, N. (2011). Brief social isolation in early adolescence affects reversal learning and forebrain BDNF expression in adult rats. Brain Res. Bull. 86, 173–178.CrossrefGoogle Scholar

  • Harris, N.G., Nogueira, M.S.M., Verley, D.R., and Sutton, R.L. (2013). Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J. Neurotrauma 30, 1257–1269.CrossrefGoogle Scholar

  • Hasler, G., Drevets, W.C., Manji, H.K., and Charney, D.S. (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology 29, 1765–1781.CrossrefGoogle Scholar

  • Hawkley, L.C., Cole, S.W., Capitanio, J.P., Norman, G.J., and Cacioppo, J.T. (2012). Effects of social isolation on glucocorticoid regulation in social mammals. Horm. Behav. 62, 314–323.CrossrefGoogle Scholar

  • Heim, C. and Nemeroff, C.B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039.CrossrefGoogle Scholar

  • Heinrich, L.M. and Gullone, E. (2006). The clinical significance of loneliness: a literature review. Clin. Psychol. Rev. 26, 695–718.CrossrefGoogle Scholar

  • Hermes, G.L., Rosenthal, L., Montag, A., and McClintock, M.K. (2006). Social isolation and the inflammatory response: sex differences in the enduring effects of a prior stressor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R273–R282.CrossrefGoogle Scholar

  • Hodes, G.E., Walker, D.M., Labonté, B., Nestler, E.J., and Russo, S.J. (2017). Understanding the epigenetic basis of sex differences in depression. J. Neurosci. Res. 95, 692–702.CrossrefGoogle Scholar

  • Hofer, M., Pagliusi, S.R., Hohn, A., Leibrock, J., and Barde, Y.A. (1990). Regional distribution of brain-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464.Google Scholar

  • Hollis, F., Duclot, F., Gunjan, A., and Kabbaj, M. (2011). Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus. Horm. Behav. 59, 331–337.CrossrefGoogle Scholar

  • Hollis, F., Isgor, C., and Kabbaj, M. (2013). The consequences of adolescent chronic unpredictable stress exposure on brain and behavior. Neuroscience 249, 232–241.CrossrefGoogle Scholar

  • Hong, Y.P., Lee, H.C., and Kim, H.T. (2015). Treadmill exercise after social isolation increases the levels of NGF, BDNF, and synapsin I to induce survival of neurons in the hippocampus, and improves depression-like behavior. J. Exerc. Nutrition Biochem. 19, 11–18.CrossrefGoogle Scholar

  • House, J.S. (2001). Social isolation kills, but how and why? Psychosom. Med. 63, 273–274.CrossrefGoogle Scholar

  • Hu, X., Ballo, L., Pietila, L., Viesselmann, C., Ballweg, J., Lumbard, D., Stevenson, M., Merriam, E., and Dent, E.W. (2011). BDNF-induced increase of PSD-95 in dendritic spines requires dynamic microtubule invasions. J. Neurosci. 31, 15597–15603.CrossrefGoogle Scholar

  • Huang, E.J. and Reichardt, L.F. (2003). Trk receptors: roles in neuronal signal transduction. Annu. Rev. Biochem. 72, 609–642.CrossrefGoogle Scholar

  • Huang, T.L., Lee, C.T., and Liu, Y.L. (2008). Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J. Psychiatr. Res. 42, 521–525.CrossrefGoogle Scholar

  • Ibi, D., Takuma, K., Koike, H., Mizoguchi, H., Tsuritani, K., Kuwahara, Y., Kamei, H., Nagai, T., Yoneda, Y., Nabeshima, T., et al. (2008). Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J. Neurochem. 105, 921–932.CrossrefGoogle Scholar

  • Ieraci, A., Mallei, A., and Popoli, M. (2016). Social isolation stress induces anxious-depressive-like behavior and alterations of neuroplasticity-related genes in adult male mice. Neural Plast. 2016, 6212983.CrossrefGoogle Scholar

  • Ikegaya, Y., Ishizaka, Y., and Matsuki, N. (2002). BDNF attenuates hippocampal LTD via activation of phospholipase C: implications for a vertical shift in the frequency-response curve of synaptic plasticity. Eur. J. Neurosci. 16, 145–148.CrossrefGoogle Scholar

  • Isgor, C., Kabbaj, M., Akil, H., and Watson, S.J. (2004). Delayed effects of chronic variable stress during peripubertal-juvenile period on hippocampal morphology and on cognitive and stress axis functions in rats. Hippocampus 14, 636–648.CrossrefGoogle Scholar

  • Jabeen Haleem, D. (2011). Raphe-hippocampal serotonin neurotransmission in the sex related differences of adaptation to stress: focus on serotonin-1A receptor. Curr. Neuropharmacol. 9, 512–521.CrossrefGoogle Scholar

  • Jaworska, N., Dwyer, S.M., and Rusak, B. (2008). Repeated neonatal separation results in different neurochemical and behavioral changes in adult male and female Mongolian gerbils. Pharmacol. Biochem. Behav. 88, 533–541.CrossrefGoogle Scholar

  • Johnston, M.V. (2009). Plasticity in the developing brain: implications for rehabilitation. Dev. Disabil. Res. Rev. 15, 94–101.CrossrefGoogle Scholar

  • Kabbaj, M., Devine, D.P., Savage, V.R., and Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J. Neurosci. 20, 6983–6988.Google Scholar

  • Kaplan, D.R. and Miller, F.D. (2000). Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol. 10, 381–391.CrossrefGoogle Scholar

  • Kim, H.K., Nunes, P.V., Oliveira, K.C., Young, L.T., and Lafer, B. (2016). Neuropathological relationship between major depression and dementia: a hypothetical model and review. Prog. Neuropsychopharmacol. Biol. Psychiatry 67, 51–57.CrossrefGoogle Scholar

  • Kolb, B. and Gibb, R. (2011). Brain plasticity and behaviour in the developing brain. J. Can. Acad. Child. Adolesc. Psychiatry 20, 265–276.Google Scholar

  • Korsching, S. (1993). The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739–2748.Google Scholar

  • Krishnan, V. and Nestler, E.J. (2008). The molecular neurobiology of depression. Nature 455, 894–902.CrossrefGoogle Scholar

  • Lapiz, M.D.S., Fulford, A., Muchimapura, S., Mason, R., Parker, T., and Marsden, C.A. (2003). Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission. Neurosci. Behav. Physiol. 33, 13–29.CrossrefGoogle Scholar

  • Larsen, M.H., Mikkelsen, J.D., Hay-Schmidt, A., and Sandi, C. (2010). Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J. Psychiatr. Res. 44, 808–816.CrossrefGoogle Scholar

  • Lee, T., Saruta, J., Sasaguri, K., Sato, S., and Tsukinoki, K. (2008). Allowing animals to bite reverses the effects of immobilization stress on hippocampal neurotrophin expression. Brain Res. 1195, 43–49.Google Scholar

  • Lépine, J.P. and Briley, M. (2011). The increasing burden of depression. Neuropsychiatr. Dis. Treat. 7, 3–7.Google Scholar

  • Levi-Montalcini, R. and Hamburger, V. (1951). Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116, 321–361.CrossrefGoogle Scholar

  • Li, W., He, Q., Wu, C., Pan, X., Wang, J., Tan, Y., Shan, X.Y., and Zeng, H.C. (2015). PFOS disturbs BDNF-ERK-CREB signalling in association with increased microRNA-22 in SH-SY5Y cells. Biomed. Res. Int. 2015, e302653.Google Scholar

  • Li, M., Du, W., Shao, F., and Wang, W. (2016). Cognitive dysfunction and epigenetic alterations of the BDNF gene are induced by social isolation during early adolescence. Behav. Brain Res. 313, 177–183.CrossrefGoogle Scholar

  • Lu, B. (2003). BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98.CrossrefGoogle Scholar

  • Lu, B., Pang, P.T., and Woo, N.H. (2005). The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6, 603–614.CrossrefGoogle Scholar

  • Lucassen, P.J., Meerlo, P., Naylor, A.S., van Dam, A.M., Dayer, A.G., Fuchs, E., Oomen, C.A., and Czéh, B. (2010). Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur. Neuropsychopharmacol. 20, 1–17.CrossrefGoogle Scholar

  • Lukkes, J.L., Mokin, M.V., Scholl, J.L., and Forster, G.L. (2009). Adult rats exposed to early-life social isolation exhibit increased anxiety and conditioned fear behavior, and altered hormonal stress responses. Horm. Behav. 55, 248–256.CrossrefGoogle Scholar

  • Maier, E.H. and Lachman, M.E. (2000). Consequences of early parental loss and separation for health and well-being in midlife. Int. J. Behav. Dev. 24, 183–189.CrossrefGoogle Scholar

  • Martinowich, K. and Lu, B. (2007). Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33, 73–83.CrossrefGoogle Scholar

  • Martinowich, K., Manji, H., and Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nat. Neurosci. 10, 1089–1093.CrossrefGoogle Scholar

  • Massey, K.A., Zago, W.M., and Berg, D.K. (2006). BDNF up-regulates α7 nicotinic acetylcholine receptor levels on subpopulations of hippocampal interneurons. Mol. Cell Neurosci. 33, 381–388.CrossrefGoogle Scholar

  • Mattson, M.P., Maudsley, S., and Martin, B. (2004). BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci. 27, 589–594.CrossrefGoogle Scholar

  • Matsumoto, K., Pinna, G., Puia, G., Guidotti, A., and Costa, E. (2005). Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 8, 85–93.CrossrefGoogle Scholar

  • McCormick, C.M. and Mathews, I.Z. (2007). HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacol. Biochem. Behav. 86, 220–233.CrossrefGoogle Scholar

  • McCormick, C.M. and Mathews, I.Z. (2010). Adolescent development, hypothalamic-pituitary-adrenal function, and programming of adult learning and memory. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 756–765.CrossrefGoogle Scholar

  • McCormick, C.M., Robarts, D., Kopeikina, K., and Kelsey, J.E. (2005). Long-lasting, sex- and age-specific effects of social stressors on corticosterone responses to restraint and on locomotor responses to psychostimulants in rats. Horm. Behav. 48, 64–74.CrossrefGoogle Scholar

  • Meerlo, P., Overkamp, G.J., Daan, S., Van Den Hoofdakker, R.H., and Koolhaas, J.M. (1996). Changes in behaviour and body weight following a single or double social defeat in rats. Stress 1, 21–32.CrossrefGoogle Scholar

  • Meng, Q., Li, N., Han, X., Shao, F., and Wang, W. (2011). Effects of adolescent social isolation on the expression of brain-derived neurotrophic factors in the forebrain. Eur. J. Pharmacol. 650, 229–232.Google Scholar

  • Miachon, S., Rochet, T., Mathian, B., Barbagli, B., and Claustrat, B. (1993). Long-term isolation of Wistar rats alters brain monoamine turnover, blood corticosterone, and ACTH. Brain Res. Bull. 32, 611–614.CrossrefGoogle Scholar

  • Miller, F.D. and Kaplan, D.R. (2003). Signaling mechanisms underlying dendrite formation. Curr. Opin. Neurobiol. 13, 391–398.CrossrefGoogle Scholar

  • Minichiello, L., Korte, M., Wolfer, D., Kühn, R., Unsicker, K., Cestari, V., Rossi-Arnaud, C., Lipp, H.P., Bonhoeffer, T., and Klein, R. (1999). Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24, 401–414.CrossrefGoogle Scholar

  • Mitic, M., Simic, I., Djordjevic, J., Radojcic, M.B., and Adzic, M. (2013). Gender-specific effects of fluoxetine on hippocampal glucocorticoid receptor phosphorylation and behavior in chronically stressed rats. Neuropharmacology 70, 100–111.CrossrefGoogle Scholar

  • Mizoguchi, K., Ishige, A., Aburada, M., and Tabira, T. (2003). Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119, 887–897.CrossrefGoogle Scholar

  • Mizuno, M., Yamada, K., He, J., Nakajima, A., and Nabeshima, T. (2003). Involvement of BDNF receptor TrkB in spatial memory formation. Learn. Mem. 10, 108–115.CrossrefGoogle Scholar

  • Molteni, R., Cattaneo, A., Calabrese, F., Macchi, F., Olivier, J.D.A., Racagni, G., Ellenbroek, B.A., Gennarelli, M., and Riva, M.A. (2010). Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans. Neurobiol. Dis. 37, 747–755.CrossrefGoogle Scholar

  • Murakami, S., Imbe, H., Morikawa, Y., Kubo, C., and Senba, E. (2005). Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci. Res. 53, 129–139.CrossrefGoogle Scholar

  • Nair, A., Vadodaria, K.C., Banerjee, S.B., Benekareddy, M., Dias, B.G., Duman, R.S., and Vaidya, V.A. (2007). Stressor-specific regulation of distinct brain-derived neurotrophic factor transcripts and cyclic AMP response element-binding protein expression in the postnatal and adult rat hippocampus. Neuropsychopharmacology 32, 1504–1519.CrossrefGoogle Scholar

  • Nederhof, E. and Schmidt, M.V. (2012). Mismatch or cumulative stress: toward an integrated hypothesis of programming effects. Physiol. Behav. 106, 691–700.CrossrefGoogle Scholar

  • Neeper, S.A., Gómez-Pinilla, F., Choi, J., and Cotman, C.W. (1996). Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726, 49–56.Google Scholar

  • Nibuya, M., Morinobu, S., and Duman, R.S. (1995). Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 15, 7539–7547.Google Scholar

  • Niknazar, S., Nahavandi, A, Peyvandi, A.A., Peyvandi, H., Akhtari, A.S., and Karimi, M. (2016). Comparison of the adulthood chronic stress effect on hippocampal BDNF signaling in male and female rats. Mol. Neurobiol. 53, 4026–4033.CrossrefGoogle Scholar

  • Nilsson, A.S., Fainzilber, M., Falck, P., and Ibáñez, C.F. (1998). Neurotrophin-7: a novel member of the neurotrophin family from the zebrafish. FEBS Lett. 424, 285–290.CrossrefGoogle Scholar

  • Nin, M.S., Martinez, L.A., Pibiri, F., Nelson, M., and Pinna, G. (2011). Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front. Endocrinol. (Lausanne) 2, 73.CrossrefGoogle Scholar

  • Nowacka, M. and Obuchowicz, E. (2013). BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies. Pharmacol. Rep. 65, 535–546.CrossrefGoogle Scholar

  • Numakawa, T., Yokomaku, D., Richards, M., Hori, H., Adachi, N., and Kunugi, H. (2010). Functional interactions between steroid hormones and neurotrophin BDNF. World J. Biol. Chem. 1, 133–143.CrossrefGoogle Scholar

  • Ohba, S., Ikeda, T., Ikegaya, Y., Nishiyama, N., Matsuki, N., and Yamada, M.K. (2005). BDNF locally potentiates GABAergic presynaptic machineries: target-selective circuit inhibition. Cereb. Cortex 15, 291–298.CrossrefGoogle Scholar

  • Ohta, K., Kuno, S., Inoue, S., Ikeda, E., Fujinami, A., and Ohta, M. (2010). The effect of dopamine agonists: the expression of GDNF, NGF, and BDNF in cultured mouse astrocytes. J. Neurol. Sci. 291, 12–16.CrossrefGoogle Scholar

  • Orefice, L.L., Waterhouse, E.G., Partridge, J.G., Lalchandani, R.R., Vicini, S., and Xu, B. (2013). Distinct roles for somatically and dendritically synthesized brain-derived neurotrophic factor in morphogenesis of dendritic spines. J. Neurosci. 33, 11618–11632.CrossrefGoogle Scholar

  • Oztan, O., Aydin, C., and Isgor, C. (2011a). Chronic variable physical stress during the peripubertal-juvenile period causes differential depressive and anxiogenic effects in the novelty-seeking phenotype: functional implications for hippocampal and amygdalar brain-derived neurotrophic factor and the mossy fibre plasticity. Neuroscience 192, 334–344.Google Scholar

  • Oztan, O., Aydin, C., and Isgor, C. (2011b). Stressful environmental and social stimulation in adolescence causes antidepressant-like effects associated with epigenetic induction of the hippocampal BDNF and mossy fibre sprouting in the novelty-seeking phenotype. Neurosci. Lett. 501, 107–111.CrossrefGoogle Scholar

  • Palazidou, E. (2012). The neurobiology of depression. Br. Med. Bull. 101, 127–145.CrossrefGoogle Scholar

  • Paré, W.P., Blair, G.R., Kluczynski, J., and Tejani-Butt, S. (1999). Gender differences in acute and chronic stress in Wistar Kyoto (WKY) rats. Integr. Physiol. Behav. Sci. 34, 227–241.CrossrefGoogle Scholar

  • Park, H. and Poo, M. (2013). Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci. 14, 7–23.CrossrefGoogle Scholar

  • Perelló, M., Chacon, F., Cardinali, D.P., Esquifino, A.I., and Spinedi, E. (2006). Effect of social isolation on 24-h pattern of stress hormones and leptin in rats. Life Sci. 78, 1857–1862.CrossrefGoogle Scholar

  • Piccinelli, M. and Wilkinson, G. (2000). Gender differences in depression. Br. J. Psychiatry 177, 486–492.Google Scholar

  • Pisu, M.G., Dore, R., Mostallino, M.C., Loi, M., Pibiri, F., Mameli, R., Cadeddu, R., Secci, P.P., and Serra, M. (2011). Down-regulation of hippocampal BDNF and Arc associated with improvement in aversive spatial memory performance in socially isolated rats. Behav. Brain Res. 222, 73–80.CrossrefGoogle Scholar

  • Pisu, M.G., Garau, A., Boero, G., Biggio, F., Pibiri, V., Dore, R., Locci, V., Paci, E., Porcu, P., and Serra, M. (2016). Sex differences in the outcome of juvenile social isolation on HPA axis function in rats. Neuroscience 320, 172–182.CrossrefGoogle Scholar

  • Pugh, C.R., Nguyen, K.T., Gonyea, J.L., Fleshner, M., Wakins, L.R., Maier, S.F., and Rudy, J.W. (1999). Role of interleukin-1 beta in impairment of contextual fear conditioning caused by social isolation. Behav. Brain Res. 106, 109–118.CrossrefGoogle Scholar

  • Pyter, L.M., Kelly, S.D., Harrell, C.S., and Neigh, G.N. (2013). Sex differences in the effects of adolescent stress on adult brain inflammatory markers in rats. Brain Behav. Immun. 30, 88–94.CrossrefGoogle Scholar

  • Radley, J.J., Kabbaj, M., Jacobson, L., Heydendael, W., Yehuda, R., and Herman, J.P. (2011). Stress risk factors and stress-related pathology: neuroplasticity, epigenetics and endophenotypes. Stress 14, 481–497.CrossrefGoogle Scholar

  • Rakofsky, J.J., Ressler, K.J., and Dunlop, B.W. (2012). BDNF function as a potential mediator of bipolar disorder and post-traumatic stress disorder comorbidity. Mol. Psychiatry 17, 22–35.CrossrefGoogle Scholar

  • Razzoli, M., Domenici, E., Carboni, L., Rantamaki, T., Lindholm, J., Castrén, E., and Arban, R. (2011). A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes Brain Behav. 10, 424–433.CrossrefGoogle Scholar

  • Rizzi, S., Bianchi, P., Guidi, S., Ciani, E., and Bartesaghi, R. (2007). Neonatal isolation impairs neurogenesis in the dentate gyrus of the guinea pig. Hippocampus 17, 78–91.CrossrefGoogle Scholar

  • Roceri, M., Cirulli, F., Pessina, C., Peretto, P., Racagni, G., and Riva, M.A. (2004). Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol. Psychiatry 55, 708–714.CrossrefGoogle Scholar

  • Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M.E., Tessarollo, L., Maffei, L., Berardi, N., et al. (2006). Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur. J. Neurosci. 24, 1850–1856.CrossrefGoogle Scholar

  • Rothwell, N.J. and Luheshi, G.N. (2000). Interleukin 1 in the brain: biology, pathology and therapeutic target. Trends Neurosci. 23, 618–625.CrossrefGoogle Scholar

  • Rygula, R., Abumaria, N., Flügge, G., Fuchs, E., Rüther, E., and Havemann-Reinecke, U. (2005). Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav. Brain Res. 162, 127–134.CrossrefGoogle Scholar

  • Sandi, C. and Richter-Levin, G. (2009). From high anxiety trait to depression: a neurocognitive hypothesis. Trends Neurosci. 32, 312–320.CrossrefGoogle Scholar

  • Sánchez, M.M., Aguado, F., Sánchez-Toscano, F., and Saphier, D. (1998). Neuroendocrine and immunocytochemical demonstrations of decreased hypothalamo-pituitary-adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology 139, 579–587.CrossrefGoogle Scholar

  • Scaccianoce, S., Del Bianco, P., Paolone, G., Caprioli, D., Modafferi, A.M.E., Nencini, P., and Badiani, A. (2006). Social isolation selectively reduces hippocampal brain-derived neurotrophic factor without altering plasma corticosterone. Behav. Brain Res. 168, 323–325.CrossrefGoogle Scholar

  • Schmidt, H.D., Shelton, R.C., and Duman, R.S. (2011). Functional biomarkers of depression: diagnosis, treatment, and pathophysiology. Neuropsychopharmacology 36, 2375–2394.CrossrefGoogle Scholar

  • Schroeder, M., Krebs, M.O., Bleich, S., and Frieling, H. (2010). Epigenetics and depression: current challenges and new therapeutic options. Curr. Opin. Psychiatry 23, 588–592.CrossrefGoogle Scholar

  • Sen, S., Duman, R., and Sanacora, G. (2008). Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol. Psychiatry 64, 527–532.CrossrefGoogle Scholar

  • Serra, M., Pisu, M.G., Floris, I., and Biggio, G. (2005). Social isolation-induced changes in the hypothalamic-pituitary-adrenal axis in the rat. Stress 8, 259–264.CrossrefGoogle Scholar

  • Shao, F., Han, X., Shao, S., and Wang, W. (2013). Adolescent social isolation influences cognitive function in adult rats. Neural. Regen. Res. 8, 1025–1030.Google Scholar

  • Shors, T.J. and Matzel, L.D. (1997). Long-term potentiation: what’s learning got to do with it? Behav. Brain Sci. 20, 597–614, discussion 614–655.CrossrefGoogle Scholar

  • Slavich, G.M., Monroe, S.M., and Gotlib, I.H. (2011). Early parental loss and depression history: associations with recent life stress in major depressive disorder. J. Psychiatr. Res. 45, 1146–1152.CrossrefGoogle Scholar

  • Spasojević, N., Gavrilović, Lj., Varagić, V., and Dronjak, S. (2007). Effects of chronic diazepam treatments on behavior on individually housed rats. Arch. Biol. Sci 59, 113–117.CrossrefGoogle Scholar

  • Sun, H., Kennedy, P.J., and Nestler, E.J. (2013). Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38, 124–137.CrossrefGoogle Scholar

  • Suri, D., Veenit, V., Sarkar, A., Thiagarajan, D., Kumar, A., Nestler, E.J., Galande, S., and Vaidya. V.A. (2013). Early stress evokes age-dependent biphasic changes in hippocampal neurogenesis, BDNF expression, and cognition. Biol. Psychiatry 73, 658–666.CrossrefGoogle Scholar

  • Thompson Ray, M., Weickert, C.S., Wyatt, E., and Webster, M.J. (2011). Decreased BDNF, trkB-TK+ and GAD67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J. Psychiatry Neurosci. 36, 195–203.CrossrefGoogle Scholar

  • Tirelli, E., Laviola, G., and Adriani, W. (2003). Ontogenesis of behavioral sensitization and conditioned place preference induced by psychostimulants in laboratory rodents. Neurosci. Biobehav. Rev. 27, 163–178.CrossrefGoogle Scholar

  • Tong, L., Prieto, G.A., Kramár, E.A., Smith, E.D., Cribbs, D.H., Lynch, G., and Cotman, C.W. (2012). BDNF-dependent synaptic plasticity is suppressed by IL-1β via p38 MAPK. J. Neurosci. 32, 17714–17724.Google Scholar

  • Toth, M., Mikics, E., Tulogdi, A., Aliczki, M., and Haller, J. (2011). Post-weaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses. Horm. Behav. 60, 28–36.CrossrefGoogle Scholar

  • Tsankova, N.M., Berton, O., Renthal, W., Kumar, A., Neve, R.L., and Nestler, E.J. (2006). Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat. Neurosci. 9, 519–525.CrossrefGoogle Scholar

  • Tyler, W.J. and Pozzo-Miller, L. (2003). Miniature synaptic transmission and BDNF modulate dendritic spine growth and form in rat CA1 neurones. J. Physiol. (London) 553, 497–509.Google Scholar

  • Van Bokhoven, P., Oomen, C.A., Hoogendijk, W.J.G., Smit, A.B., Lucassen, P.J., and Spijker, S. (2011). Reduction in hippocampal neurogenesis after social defeat is long-lasting and responsive to late antidepressant treatment. Eur. J. Neurosci. 33, 1833–1840.CrossrefGoogle Scholar

  • Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590.CrossrefGoogle Scholar

  • Venna, V.R., Xu, Y., Doran, S.J., Patrizz, A., and McCullough, L.D. (2014). Social interaction plays a critical role in neurogenesis and recovery after stroke. Transl. Psychiatry 4, e351.CrossrefGoogle Scholar

  • von Bohlen und Halbach, O., Minichiello, L., and Unsicker, K. (2005). Haploinsufficiency for trkB and trkC receptors induces cell loss and accumulation of α-synuclein in the substantia nigra. FASEB J. 19, 1740–1742.Google Scholar

  • Wahlstrom, D., Collins, P., White, T., and Luciana, M. (2010). Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 72, 146–159.CrossrefGoogle Scholar

  • Waterhouse, E.G., An, J.J., Orefice, L.L., Baydyuk, M., Liao, G.Y., Zheng, K., Lu, B., and Xu, B. (2012). BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. J. Neurosci. 32, 14318–14330.CrossrefGoogle Scholar

  • Weintraub, A., Singaravelu, J., and Bhatnagar, S. (2010). Enduring and sex-specific effects of adolescent social isolation in rats on adult stress reactivity. Brain Res. 1343, 83–92.Google Scholar

  • Weiss, I.C., Pryce, C.R., Jongen-Rêlo, A.L., Nanz-Bahr, N.I., and Feldon, J. (2004). Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav. Brain Res. 152, 279–295.CrossrefGoogle Scholar

  • Westenbroek, C., Den Boer, J.A., Veenhuis, M., and Ter Horst, G.J. (2004). Chronic stress and social housing differentially affect neurogenesis in male and female rats. Brain Res. Bull. 64, 303–308.CrossrefGoogle Scholar

  • Williams, J.B., Pang, D., Delgado, B., Kocherginsky, M., Tretiakova, M., Krausz, T., Pan, D., He, J., McClintock, M.K., and Conzen, S.D. (2009). A model of gene-environment interaction reveals altered mammary gland gene expression and increased tumor growth following social isolation. Cancer Prev. Res. (Phila) 2, 850–861.CrossrefGoogle Scholar

  • Wongwitdecha, N. and Marsden, C.A. (1996). Effects of social isolation rearing on learning in the Morris water maze. Brain Res. 715, 119–124.CrossrefGoogle Scholar

  • Woo, N.H., Teng, H.K., Siao, C.J., Chiaruttini, C., Pang, P.T., Milner, T.A., Hempstead, B.L., and Lu, B. (2005). Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat. Neurosci. 8, 1069–1077.CrossrefGoogle Scholar

  • Xu, B., Gottschalk, W., Chow, A., Wilson, R.I., Schnell, E., Zang, K., Wang, D., Nicoll, R.A., Lu, B., and Reichardt, L.F. (2000). The role of brain-derived neurotrophic factor receptors in the mature hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 20, 6888–6897.Google Scholar

  • Yoshii, A. and Constantine-Paton, M. (2010). Postsynaptic BDNF-TrkB signaling in synapse maturation, plasticity, and disease. Dev. Neurobiol. 70, 304–322.Google Scholar

  • Zafra, F., Castrén, E., Thoenen, H., and Lindholm, D. (1991). Interplay between glutamate and gamma-aminobutyric acid transmitter systems in the physiological regulation of brain-derived neurotrophic factor and nerve growth factor synthesis in hippocampal neurons. Proc. Natl. Acad. Sci. USA 88, 10037–10041.CrossrefGoogle Scholar

  • Zaletel, I., Filipović, D., and Puškaš, N. (2016). Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far? Rev. Neurosci. 27, 397–409.CrossrefGoogle Scholar

  • Zlatković, J., Todorović, N., Bošković, M., Pajović, S.B., Demajo, M., and Filipović, D. (2014). Different susceptibility of prefrontal cortex and hippocampus to oxidative stress following chronic social isolation stress. Mol. Cell Biochem. 393, 43–57.Google Scholar

About the article

aThese authors contributed equally to this work.


Received: 2016-10-30

Accepted: 2017-02-16

Published Online: 2017-04-07

Published in Print: 2017-07-26


Conflict of interest statement: The authors declare that they have no conflict of interest.


Citation Information: Reviews in the Neurosciences, Volume 28, Issue 6, Pages 675–692, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0072.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Victoria Zakopoulou, Angeliki-Maria Vlaikou, Marousa Darsinou, Zoe Papadopoulou, Daniela Theodoridou, Kyriaki Papageorgiou, George A. Alexiou, Haralambos Bougias, Vassiliki Siafaka, Pierluigi Zoccolotti, George P. Chroussos, Maria Syrrou, and Theologos M. Michaelidis
Frontiers in Human Neuroscience, 2019, Volume 13
[2]
[3]
Scott T. Nelson, Lisa Hsiao, and Sarah M. Turgeon
Behavioural Pharmacology, 2019, Volume 30, Number 7, Page 539
[4]
Aurélie Ledreux, Krister Hkansson, Roger Carlsson, Mhretab Kidane, Laura Columbo, Yvonne Terjestam, Eliza Ryan, Erich Tusch, Bengt Winblad, Kirk Daffner, Ann-Charlotte Granholm, and Abdul Kadir H. Mohammed
Journal of Alzheimer's Disease, 2019, Page 1
[5]
Anna Sjörsa Dhlman, Kaj Blennow, Henrik Zetterberg, Kristina Glise, and Ingibjörg H. Jonsdottir
Psychoneuroendocrinology, 2019, Volume 109, Page 104415
[6]
Bruno Lima Giacobbo, Betânia Souza de Freitas, Kelem Vedovelli, Lívia Machado Schlemmer, Vivian Naziaseno Pires, Vinicius Antoniazzi, Cristophod de Souza dos Santos, Leticia Paludo, Juliano Viana Borges, Daiane Borba de Lima, Nadja Schröder, Erik F.J. de Vries, and Elke Bromberg
Behavioural Brain Research, 2019, Volume 372, Page 111965
[7]
Natasha M. Sosanya, Thomas H. Garza, Winfred Stacey, Stephen L. Crimmins, Robert J. Christy, and Bopaiah P. Cheppudira
BMC Neuroscience, 2019, Volume 20, Number 1
[8]
Juliano Viana Borges, Betânia Souza de Freitas, Vinicius Antoniazzi, Cristophod de Souza dos Santos, Kelem Vedovelli, Vivian Naziaseno Pires, Leticia Paludo, Maria Noêmia Martins de Lima, and Elke Bromberg
Behavioural Brain Research, 2019, Volume 366, Page 36
[9]
Trevor Archer
MOJ Gerontology & Geriatrics, 2017, Volume 1, Number 6
[11]
Lucas Matt, Philipp Eckert, Rama Panford-Walsh, Hyun-Soon Geisler, Anne E. Bausch, Marie Manthey, Nicolas I. C. Müller, Csaba Harasztosi, Karin Rohbock, Peter Ruth, Eckhard Friauf, Thomas Ott, Ulrike Zimmermann, Lukas Rüttiger, Thomas Schimmang, Marlies Knipper, and Wibke Singer
Frontiers in Molecular Neuroscience, 2018, Volume 11

Comments (0)

Please log in or register to comment.
Log in