Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 28, Issue 7


Adult hippocampal neurogenesis: an important target associated with antidepressant effects of exercise

Lina Sun
  • Corresponding author
  • School of PE No. 79, Taiyuan University of Technology, Yingze West Avenue, Taiyuan 030024, Shanxi, China; and Department of Physiology, Shanxi Medical University, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qingshan Sun / Jinshun Qi
Published Online: 2017-04-19 | DOI: https://doi.org/10.1515/revneuro-2016-0076


Depression is a prevalent devastating mental disorder that affects the normal life of patients and brings a heavy burden to whole society. Although many efforts have been made to attenuate depressive/anxiety symptoms, the current clinic antidepressants have limited effects. Scientists have long been making attempts to find some new strategies that can be applied as the alternative antidepressant therapy. Exercise, a widely recognized healthy lifestyle, has been suggested as a therapy that can relieve psychiatric stress. However, how exercise improves the brain functions and reaches the antidepressant target needs systematic summarization due to the complexity and heterogeneous feature of depression. Brain plasticity, especially adult neurogenesis in the hippocampus, is an important neurophysiology to facilitate animals for neurogenesis can occur in not only humans. Many studies indicated that an appropriate level of exercise can promote neurogenesis in the adult brains. In this article, we provide information about the antidepressant effects of exercise and its implications in adult neurogenesis. From the neurogenesis perspective, we summarize evidence about the effects of exercise in enhancing neurogenesis in the hippocampus through regulating growth factors, neurotrophins, neurotransmitters and metabolism as well as inflammations. Taken together, a large number of published works indicate the multiple benefits of exercise in the brain functions of animals, particularly brain plasticity like neurogenesis and synaptogenesis. Therefore, a new treatment method for depression therapy can be developed by regulating the exercise activity.

Keywords: depression; exercise; hippocampus; neurogenesis


  • Alvarez-Buylla, A. and Garcia-Verdugo, J.M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629–634.PubMedGoogle Scholar

  • Banasr, M., Hery, M., Printemps, R., and Daszuta, A. (2004). Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29, 450–460.CrossrefPubMedGoogle Scholar

  • Berridge, M.J., Lipp, P., and Bootman, M.D. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11–21.PubMedGoogle Scholar

  • Brooker, G.J., Kalloniatis, M., Russo, V.C., Murphy, M., Werther, G.A., and Bartlett, P.F. (2000). Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J. Neurosci. Res. 59, 332–341.PubMedCrossrefGoogle Scholar

  • Carro, E., Nunez, A., Busiguina, S., and Torres-Aleman, I. (2000). Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933.PubMedGoogle Scholar

  • Caviedes, A., Lafourcade, C., Soto, C., and Wyneken, U. (2017). BDNF/NF-κB signaling in the neurobiology of depression. Curr. Pharm. Des. [Epub ahead of print].Google Scholar

  • Chua, S.C., Jr, Chung, W.K., Wu-Peng, X.S., Zhang, Y., Liu, S.M., Tartaglia, L., and Leibel, R.L. (1996). Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271, 994–996.CrossrefPubMedGoogle Scholar

  • Clelland, C.D., Choi, M., Romberg, C., Clemenson, G.D., Jr, Fragniere, A., Tyers, P., Jessberger, S., Saksida, L.M., Barker, R.A., Gage, F.H., et al. (2009). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–213.CrossrefPubMedGoogle Scholar

  • Cotman, C.W., Berchtold, N.C., and Christie, L.A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30, 464–472.CrossrefGoogle Scholar

  • Devader, C., Khayachi, A., Veyssiere, J., Moha Ou Maati, H., Roulot, M., Moreno, S., Borsotto, M., Martin, S., Heurteaux, C., and Mazella, J. (2015). In vitro and in vivo regulation of synaptogenesis by the novel antidepressant spadin. Br. J. Pharmacol. 172, 2604–2617.CrossrefPubMedGoogle Scholar

  • Dey, S., Singh, R.H., and Dey, P.K. (1992). Exercise training: significance of regional alterations in serotonin metabolism of rat brain in relation to antidepressant effect of exercise. Physiol. Behav. 52, 1095–1099.CrossrefPubMedGoogle Scholar

  • Di Giorgi Gerevini, V.D., Caruso, A., Cappuccio, I., Ricci Vitiani, L., Romeo, S., Della Rocca, C., Gradini, R., Melchiorri, D., and Nicoletti, F. (2004). The mGlu5 metabotropic glutamate receptor is expressed in zones of active neurogenesis of the embryonic and postnatal brain. Brain Res. Dev. Brain Res. 150, 17–22.PubMedCrossrefGoogle Scholar

  • Dietrich, M.O., Mantese, C.E., Porciuncula, L.O., Ghisleni, G., Vinade, L., Souza, D.O., and Portela, L.V. (2005). Exercise affects glutamate receptors in postsynaptic densities from cortical mice brain. Brain Res. 1065, 20–25.CrossrefPubMedGoogle Scholar

  • Dietrich, M.O., Andrews, Z.B., and Horvath, T.L. (2008). Exercise-induced synaptogenesis in the hippocampus is dependent on UCP2-regulated mitochondrial adaptation. J. Neurosci. 28, 10766–10771.PubMedCrossrefGoogle Scholar

  • Duman, C.H., Schlesinger, L., Russell, D.S., and Duman, R.S. (2008). Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice. Brain Res. 1199, 148–158.CrossrefPubMedGoogle Scholar

  • Duman, R.S., Aghajanian, G.K., Sanacora, G., and Krystal, J.H. (2016). Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22, 238–249.PubMedCrossrefGoogle Scholar

  • Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2009). Brain inflammation and adult neurogenesis: the dual role of microglia. Neuroscience 158, 1021–1029.PubMedCrossrefGoogle Scholar

  • Elmquist, J.K., Bjorbaek, C., Ahima, R.S., Flier, J.S., and Saper, C.B. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. J. Compar. Neurol. 395, 535–547.CrossrefGoogle Scholar

  • Eren, I., Naziroglu, M., and Demirdas, A. (2007). Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain. Neurochem. Res. 32, 1188–1195.CrossrefPubMedGoogle Scholar

  • Fabel, K., Fabel, K., Tam, B., Kaufer, D., Baiker, A., Simmons, N., Kuo, C.J., and Palmer, T.D. (2003). VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur. J. Neurosci. 18, 2803–2812.PubMedCrossrefGoogle Scholar

  • Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F.H., and Christie, B.R. (2004). Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124, 71–79.CrossrefPubMedGoogle Scholar

  • Feske, U., Mulsant, B.H., Pilkonis, P.A., Soloff, P., Dolata, D., Sackeim, H.A., and Haskett, R.F. (2004). Clinical outcome of ECT in patients with major depression and comorbid borderline personality disorder. Am. J. Psychiatry 161, 2073–2080.CrossrefPubMedGoogle Scholar

  • Garza, J.C., Guo, M., Zhang, W., and Lu, X.Y. (2012). Leptin restores adult hippocampal neurogenesis in a chronic unpredictable stress model of depression and reverses glucocorticoid-induced inhibition of GSK-3β/β-catenin signaling. Mol. Psychiatry 17, 790–808.CrossrefGoogle Scholar

  • Goshen, I., Kreisel, T., Ben-Menachem-Zidon, O., Licht, T., Weidenfeld, J., Ben-Hur, T., and Yirmiya, R. (2008). Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry 13, 717–728.CrossrefPubMedGoogle Scholar

  • Greenwood, C.E., and Winocur, G. (2005). High-fat diets, insulin resistance and declining cognitive function. Neurobiol. Aging 26(Suppl 1), 42–45.CrossrefPubMedGoogle Scholar

  • Haslacher, H., Michlmayr, M., Batmyagmar, D., Perkmann, T., Ponocny-Seliger, E., Scheichenberger, V., Pilger, A., Dal-Bianco, P., Lehrner, J., Pezawas, L., et al. (2015). Physical exercise counteracts genetic susceptibility to depression. Neuropsychobiology 71, 168–175.PubMedCrossrefGoogle Scholar

  • Huang, T.T., Zou, Y., and Corniola, R. (2012). Oxidative stress and adult neurogenesis – effects of radiation and superoxide dismutase deficiency. Semin. Cell. Dev. Biol. 23, 738–744.CrossrefPubMedGoogle Scholar

  • Iosif, R.E., Ekdahl, C.T., Ahlenius, H., Pronk, C.J., Bonde, S., Kokaia, Z., Jacobsen, S.E., and Lindvall, O. (2006). Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci. 26, 9703–9712.CrossrefPubMedGoogle Scholar

  • Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA 99, 11946–11950.CrossrefGoogle Scholar

  • Kheirbek, M.A. and Hen, R. (2011). Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 36, 373–374.CrossrefPubMedGoogle Scholar

  • Kim, S.E., Ko, I.G., Kim, B.K., Shin, M.S., Cho, S., Kim, C.J., Kim, S.H., Baek, S.S., Lee, E.K., and Jee, Y.S. (2010). Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp. Gerontol. 45, 357–365.CrossrefPubMedGoogle Scholar

  • Kim, J.Y., Liu, C.Y., Zhang, F., Duan, X., Wen, Z., Song, J., Feighery, E., Lu, B., Rujescu, D., St Clair, D., et al. (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell 148, 1051–1064.CrossrefPubMedGoogle Scholar

  • Kitamura, T., Mishina, M., and Sugiyama, H. (2003). Enhancement of neurogenesis by running wheel exercises is suppressed in mice lacking NMDA receptor epsilon 1 subunit. Neurosci. Res. 47, 55–63.PubMedCrossrefGoogle Scholar

  • Kiuchi, T., Lee, H., and Mikami, T. (2012). Regular exercise cures depression-like behavior via VEGF-Flk-1 signaling in chronically stressed mice. Neuroscience 207, 208–217.PubMedCrossrefGoogle Scholar

  • Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., and Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. J. Neurosci. 33, 8270–8275.PubMedCrossrefGoogle Scholar

  • Kramer, A.F., Erickson, K.I., and Colcombe, S.J. (2006). Exercise, cognition, and the aging brain. J. Appl. Physiol. 101, 1237–1242.CrossrefPubMedGoogle Scholar

  • Kreisel, T., Frank, M.G., Licht, T., Reshef, R., Ben-Menachem-Zidon, O., Baratta, M.V., Maier, S.F., and Yirmiya, R. (2014). Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol. Psychiatry 19, 699–709.CrossrefPubMedGoogle Scholar

  • Landt, M., Lawson, G.M., Helgeson, J.M., Davila-Roman, V.G., Ladenson, J.H., Jaffe, A.S., and Hickner, R.C. (1997). Prolonged exercise decreases serum leptin concentrations. Metabolism 46, 1109–1112.PubMedCrossrefGoogle Scholar

  • Le Belle, J.E., Orozco, N.M., Paucar, A.A., Saxe, J.P., Mottahedeh, J., Pyle, A.D., Wu, H., and Kornblum, H.I. (2011). Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 8, 59–71.CrossrefGoogle Scholar

  • Liu, R.J., and Aghajanian, G.K. (2008). Stress blunts serotonin- and hypocretin-evoked EPSCs in prefrontal cortex: role of corticosterone-mediated apical dendritic atrophy. Proc. Natl. Acad. Sci. USA 105, 359–364.CrossrefGoogle Scholar

  • Liu, Y., Ho, R.C., and Mak, A. (2012). Interleukin (IL)-6, tumour necrosis factor alpha (TNF-α) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J. Affect. Disord. 139, 230–239.PubMedCrossrefGoogle Scholar

  • Magarinos, A.M., and McEwen, B.S. (1995). Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69, 89–98.CrossrefPubMedGoogle Scholar

  • Messier, C. (2005). Impact of impaired glucose tolerance and type 2 diabetes on cognitive aging. Neurobiol. Aging 26(Suppl 1), 26–30.PubMedGoogle Scholar

  • Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W., and Ullrich, A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846.CrossrefPubMedGoogle Scholar

  • Miller, A.H., Maletic, V., and Raison, C.L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol. Psychiatry 65, 732–741.PubMedCrossrefGoogle Scholar

  • Mirelle Costa Monteiro, H., Lima Barreto-Silva, N., Elizabete Dos Santos, G., de Santana Santos, A., Sefora Bezerra Sousa, M., and Amancio-Dos-Santos, A. (2015). Physical exercise versus fluoxetine: antagonistic effects on cortical spreading depression in Wistar rats. Eur. J. Pharmacol. 762, 49–54.CrossrefPubMedGoogle Scholar

  • Molteni, R., Ying, Z., and Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur. J. Neurosci. 16, 1107–1116.PubMedCrossrefGoogle Scholar

  • Moses, A.C., Young, S.C., Morrow, L.A., O’Brien, M., and Clemmons, D.R. (1996). Recombinant human insulin-like growth factor I increases insulin sensitivity and improves glycemic control in type II diabetes. Diabetes 45, 91–100.PubMedCrossrefGoogle Scholar

  • Nyberg, F. (1997). Aging effects on growth hormone receptor binding in the brain. Exp. Gerontol. 32, 521–528.CrossrefPubMedGoogle Scholar

  • Otsuka, T., Nishii, A., Amemiya, S., Kubota, N., Nishijima, T., and Kita, I. (2016). Effects of acute treadmill running at different intensities on activities of serotonin and corticotropin-releasing factor neurons, and anxiety- and depressive-like behaviors in rats. Behav. Brain Res. 298, 44–51.PubMedCrossrefGoogle Scholar

  • Park, S., Jang, J.S., Jun, D.W., and Hong, S.M. (2005). Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinology 82, 282–293.PubMedGoogle Scholar

  • Pereira, A.C., Huddleston, D.E., Brickman, A.M., Sosunov, A.A., Hen, R., McKhann, G.M., Sloan, R., Gage, F.H., Brown, T.R., and Small, S.A. (2007). An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. USA 104, 5638–5643.CrossrefGoogle Scholar

  • Perera, T.D., Dwork, A.J., Keegan, K.A., Thirumangalakudi, L., Lipira, C.M., Joyce, N., Lange, C., Higley, J.D., Rosoklija, G., Hen, R., et al. (2011a). Necessity of hippocampal neurogenesis for the therapeutic action of antidepressants in adult nonhuman primates. PLoS One 6, e17600.CrossrefGoogle Scholar

  • Perera, T.D., Lu, D., Thirumangalakudi, L., Smith, E.L., Yaretskiy, A., Rosenblum, L.A., Kral, J.G., and Coplan, J.D. (2011b). Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural. Plast. 2011, 1–6.Google Scholar

  • Perusse, L., Collier, G., Gagnon, J., Leon, A.S., Rao, D.C., Skinner, J.S., Wilmore, J.H., Nadeau, A., Zimmet, P.Z., and Bouchard, C. (1997). Acute and chronic effects of exercise on leptin levels in humans. J. Appl. Physiol. 83, 5–10.PubMedGoogle Scholar

  • Radak, Z., Chung, H.Y., and Goto, S. (2008). Systemic adaptation to oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 44, 153–159.CrossrefPubMedGoogle Scholar

  • Ransford, C.P. (1982). A role for amines in the antidepressant effect of exercise: a review. Med. Sci. Sports Exerc. 14, 1–10.PubMedCrossrefGoogle Scholar

  • Rola, R., Raber, J., Rizk, A., Otsuka, S., VandenBerg, S.R., Morhardt, D.R., and Fike, J.R. (2004). Radiation-induced impairment of hippocampal neurogenesis is associated with cognitive deficits in young mice. Exp. Neurol. 188, 316–330.CrossrefPubMedGoogle Scholar

  • Russo-Neustadt, A., Beard, R.C., and Cotman, C.W. (1999). Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21, 679–682.PubMedCrossrefGoogle Scholar

  • Sahay, A., Scobie, K.N., Hill, A.S., O’Carroll, C.M., Kheirbek, M.A., Burghardt, N.S., Fenton, A.A., Dranovsky, A., and Hen, R. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470.PubMedCrossrefGoogle Scholar

  • Sakatani, K., Fujii, M., Takemura, N., and Hirayama, T. (2016). Effects of acupuncture on anxiety levels and prefrontal cortex activity measured by near-infrared spectroscopy: a pilot study. Adv. Exp. Med. Biol. 876, 297–302.PubMedCrossrefGoogle Scholar

  • Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809.PubMedCrossrefGoogle Scholar

  • Sarandol, A., Sarandol, E., Eker, S.S., Erdinc, S., Vatansever, E., and Kirli, S. (2007). Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum. Psychopharmacol. 22, 67–73.CrossrefPubMedGoogle Scholar

  • Slavich, G.M., and Irwin, M.R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychol. Bull. 140, 774–815.CrossrefPubMedGoogle Scholar

  • Snyder, J.S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H.A. (2011). Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476, 458–461.CrossrefPubMedGoogle Scholar

  • Song, C. and Wang, H. (2011). Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 760–768.CrossrefGoogle Scholar

  • Song, J., Zhong, C., Bonaguidi, M.A., Sun, G.J., Hsu, D., Gu, Y., Meletis, K., Huang, Z.J., Ge, S., Enikolopov, G., et al. (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489, 150–154.CrossrefPubMedGoogle Scholar

  • Stahl, S.M. (1998). Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect Disord. 51, 215–235.Google Scholar

  • Steiner, J., Bielau, H., Brisch, R., Danos, P., Ullrich, O., Mawrin, C., Bernstein, H.G., and Bogerts, B. (2008). Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J. Psychiatr. Res. 42, 151–157.PubMedCrossrefGoogle Scholar

  • Strohle, A. (2009). Physical activity, exercise, depression and anxiety disorders. J. Neural. Transm. (Vienna) 116, 777–784.PubMedCrossrefGoogle Scholar

  • Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X.O., Logvinova, A., and Greenberg, D.A. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851.CrossrefPubMedGoogle Scholar

  • Taga, T. and Fukuda, S. (2005). Role of IL-6 in the neural stem cell differentiation. Clin. Rev. Allergy Immunol. 28, 249–256.PubMedCrossrefGoogle Scholar

  • Thundyil, J., Pavlovski, D., Sobey, C.G., and Arumugam, T.V. (2012). Adiponectin receptor signalling in the brain. Br. J. Pharmacol. 165, 313–327.CrossrefPubMedGoogle Scholar

  • Trejo, J.L., Carro, E., and Torres-Aleman, I. (2001). Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634.PubMedGoogle Scholar

  • Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492.PubMedGoogle Scholar

  • Vaynman, S., Ying, Z., and Gomez-Pinilla, F. (2004). Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur. J. Neurosci. 20, 2580–2590.CrossrefPubMedGoogle Scholar

  • Vollert, C., Zagaar, M., Hovatta, I., Taneja, M., Vu, A., Dao, A., Levine, A., Alkadhi, K., and Salim, S. (2011). Exercise prevents sleep deprivation-associated anxiety-like behavior in rats: potential role of oxidative stress mechanisms. Behav. Brain Res. 224, 233–240.PubMedCrossrefGoogle Scholar

  • Vukovic, J., Colditz, M.J., Blackmore, D.G., Ruitenberg, M.J., and Bartlett, P.F. (2012). Microglia modulate hippocampal neural precursor activity in response to exercise and aging. J. Neurosci. 32, 6435–6443.CrossrefPubMedGoogle Scholar

  • Warner-Schmidt, J.L. and Duman, R.S. (2007). VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc. Natl. Acad. Sci. USA 104, 4647–4652.CrossrefGoogle Scholar

  • Wolf, S.A., Melnik, A., and Kempermann, G. (2011). Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav. Immun. 25, 971–980.CrossrefGoogle Scholar

  • Wu, C.W., Chen, Y.C., Yu, L., Chen, H.I., Jen, C.J., Huang, A.M., Tsai, H.J., Chang, Y.T., and Kuo, Y.M. (2007). Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. J. Neurochem. 103, 2471–2481.CrossrefPubMedGoogle Scholar

  • Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., et al. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946.PubMedCrossrefGoogle Scholar

  • Yau, S.Y., Li, A., Hoo, R.L., Ching, Y.P., Christie, B.R., Lee, T.M., Xu, A., and So, K.F. (2014). Physical exercise-induced hippocampal neurogenesis and antidepressant effects are mediated by the adipocyte hormone adiponectin. Proc. Natl. Acad. Sci. USA 111, 15810–15815.CrossrefGoogle Scholar

  • Zhang, F., Basinski, M.B., Beals, J.M., Briggs, S.L., Churgay, L.M., Clawson, D.K., DiMarchi, R.D., Furman, T.C., Hale, J.E., Hsiung, H.M., et al. (1997). Crystal structure of the obese protein leptin-E100. Nature 387, 206–209.CrossrefPubMedGoogle Scholar

  • Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.CrossrefPubMedGoogle Scholar

  • Zunszain, P.A., Anacker, C., Cattaneo, A., Carvalho, L.A., and Pariante, C.M. (2011). Glucocorticoids, cytokines and brain abnormalities in depression. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 35, 722–729.CrossrefGoogle Scholar

About the article

Received: 2016-11-28

Accepted: 2017-03-08

Published Online: 2017-04-19

Published in Print: 2017-10-26

Conflict of interest statement: The authors declare that they have no conflict of interest.

Citation Information: Reviews in the Neurosciences, Volume 28, Issue 7, Pages 693–703, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0076.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Weina Liu, Xiangli Xue, Jie Xia, Jiatong Liu, and Zhengtang Qi
Journal of Affective Disorders, 2017
Kathleen Mikkelsen, Lily Stojanovska, Momir Polenakovic, Marijan Bosevski, and Vasso Apostolopoulos
Maturitas, 2017, Volume 106, Page 48
Camila Barrera-Bugueño, Ornella Realini, Jorge Escobar-Luna, Ramón Sotomayor-Zárate, Martin Gotteland, Marcela Julio-Pieper, and Javier A. Bravo
Neuroscience, 2017, Volume 359, Page 18

Comments (0)

Please log in or register to comment.
Log in