Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 28, Issue 7

Issues

Mild cognitive impairment in type 2 diabetes mellitus and related risk factors: a review

Xiao-Ying Yuan
  • Department of Anatomy, College of Basic Medicine, Dalian Medical University, Dalian 116044, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xu-Gang Wang
  • Corresponding author
  • Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-12 | DOI: https://doi.org/10.1515/revneuro-2017-0016

Abstract

Type 2 diabetes mellitus (T2DM) is a global epidemic disease and has become a significant health problem. Many studies have raised concern about the mild cognitive impairment (MCI) with T2DM and even the Alzheimer’s disease patients with T2DM. The incidence of MCI is higher in individuals with T2DM than those without diabetes. Cognitive changes might affect everyday activities depending on the work and situation. Although the exact pathophysiology of MCI in T2DM is unclear, many studies suggest that the alterations in pathoglycemia, diabetic complications, related end products, and physical/psychological status are significant risk factors. In this article, we systematically overview the studies to illustrate the related risk factors of cognitive impairment in patients with T2DM. Further high quality studies and treatment need to be initiated and it will become incumbent on clinicians to identify and cure the earliest signs of clinical impairment.

Keywords: Alzheimer’s disease (AD); mild cognitive impairment (MCI); risk factor; type 2 diabetes mellitus (T2DM)

References

  • Abbatecola, A.M., Lattanzio, F., Spazzafumo, L., Molinari, A.M.,Cioffi, M.,Canonico, R.,Dicioccio, L., and Paolisso, G. (2010). Adiposity predicts cognitive decline in older persons with diabetes, a 2-year follow-up. PLoS One 5, e10333.CrossrefPubMedGoogle Scholar

  • Barnes, D. and Yaffe, K. (2011). The projected impact of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828.CrossrefGoogle Scholar

  • Biessels, G.J., Deary, I.J., and Ryan, C.M. (2008). Cognitive and diabetes, a lifespan perspective. Lancet Neurol. 7, 184–190.CrossrefPubMedGoogle Scholar

  • Blom, H.J. and Smulders, Y. (2011). Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J. Inherit. Metab. Dis. 34, 75–81.CrossrefPubMedGoogle Scholar

  • Bosco, D., Fava, A., Plastino, M., Montalcini, T., and Pujia, A. (2011). Possible implications of insulin resistance and glucose metabolism in Alzheimer’s disease pathogenesis. J. Cell Mol. Med. 15, 1807–1821.PubMedCrossrefGoogle Scholar

  • Cai, R., Jing, H., Jie, S., Rong, H., Tian, S., Shen, Y., Dong, X., Xia, W., and Wang, S. (2016). Plasma clusterin and the clu gene rs11136000 variant are associated with mild cognitive impairment in type 2 diabetic patients. Front. Aging Neurosci.8, 179.PubMedGoogle Scholar

  • Chen, R.H., Jiang, X.Z., Zhao, X.H., Qin, Y.L., Gu, Z., Gu, P.L., Zhou, B., Zhu, Z.H., Xu, L.Y., and Zou, Y.F. (2012). Risk factors of mild cognitive impairment in middle aged patients with type 2 diabetes: a cross-section study. Ann. Endocrinol. (Paris) 73, 208–212.CrossrefPubMedGoogle Scholar

  • Cheng, G., Huang, C., Deng, H., and Wang, H. (2012). Diabetes as a risk factor for dementia and mild cognitive impairment: a meta-analysis of longitudinal studies. Intern. Med. J. 42, 484–491.PubMedCrossrefGoogle Scholar

  • Christman, A.L., Matsushita, K., Gottesman, R.F., Mosley, T., Alonso, A., Coresh, J., Hill-Briggs, F., Sharrett, A.R., and Selvin, E. (2011). Glycated haemoglobin and cognitive decline: the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 54, 1645–1652.CrossrefPubMedGoogle Scholar

  • Chung, C.C., Pimentel, D., Jor’Dan, A.J., Hao, Y., Milberg, W., and Novak, V. (2015). Inflammation-associated declines in cerebral vasoreactivity and cognition in type 2 diabetes. Neurology 85, 450–458.PubMedCrossrefGoogle Scholar

  • Clarke, R., Halsey, J., Bennett, D., and Lewington, S. (2011). Homocysteine and vascular disease: review of published results of the homocysteine-lowering trials. J. Inherit. Metab. Dis. 34, 83–91.PubMedCrossrefGoogle Scholar

  • Craft, S. (2007). Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr. Alzheimer Res. 4, 147–152.CrossrefPubMedGoogle Scholar

  • Crosby-Nwaobi, R., Sivaprasad, S., and Forbes, A. (2012). A systematic review of the association of diabetic retinopathy and cognitive impairment in people with type 2 diabetes. Diabetes Res. Clin. Pract. 96, 101–110.PubMedCrossrefGoogle Scholar

  • Cui, Y., Liang, X., Gu, H., Hu, Y., Zhao, Z., Yang, X.Y., Qian, C, Yang, Y., and Teng, G.J. (2016). Cerebral perfusion alterations in type 2 diabetes and its relation to insulin resistance and cognitive dysfunction. Brain Imaging Behav. 6, 1–10.Google Scholar

  • Cukierman-Yaffe, T., Gerstein, H.C., Williamson, J.D., Lazar, R.M., Lovato, L., Miller, M.E., Coker, L.H., Murray, A., Sullivan, M.D., Marcovina, S.M., et al. (2009). Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors. Diabetes Care 32, 221–226.PubMedCrossrefGoogle Scholar

  • de Luis, D.A., Fernandez, N., Arranz, M., Aller, R., and Izaola, O. (2002). Total homocysteine and cognitive deterioration in people with type 2 diabetes. Diabetes Res. Clin. Pract. 55, 185–190.PubMedCrossrefGoogle Scholar

  • Deane, R. and Zlokovic, B.V. (2007). Role of the blood-brain barrier in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res. 4, 191–197.PubMedCrossrefGoogle Scholar

  • Degen, C., Toro, P., Schönknecht, P., Sattler, C., and Schröder, J. (2016). Diabetes mellitus type II and cognitive capacity in healthy aging, mild cognitive impairment and Alzheimer’s disease. Psychiatry Res. 240, 42–46.CrossrefPubMedGoogle Scholar

  • Ding, J., Strachan, M.W., Reynolds, R.M., Frier, B.M., Deary, I.J., Fowkes, F.G., Lee, A.J.,McKnight, J., Halpin, P.,Swa, K., et al. (2010). Diabetic retinopathy and cognitive decline in older people with type 2 diabetes. Diabetes 59, 2883–2889.CrossrefPubMedGoogle Scholar

  • Farris, W., Mansourian, S., Chang, Y., Lindsley, L., Eckman, E.A.,Frosch, M.P.,Eckman, C.B.,Tanzi, R.E.,Selkoe, D.J., and Guenette, S. (2003). Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo. Proc. Natl Acad. Sci. USA 100, 4162–4167.CrossrefGoogle Scholar

  • Ford, A.H., Flicker, L., Hankey, G.J., Norman, P., van Bockxmeer, F.M., and Almeida, O.P. (2011). Homocysteine, methylenetetrahydrofolate reductase C677T polymorphism and cognitive impairment: the health in men study. Mol. Psychiatry 17, 559–566.PubMedGoogle Scholar

  • Ford, A.H., Garrido, G.J., Beer, C., Lautenschlager, N.T.,Arnolda, L.,Flicker, L.,and Almeida, O.P. (2012). Homocysteine, grey matter and cognitive function in adults with cardiovascular disease. PLoS One 7, e33345.CrossrefPubMedGoogle Scholar

  • Gao, Y., Xiao, Y., Miao, R., Zhao, J.,Cui, M.,Huang, G., andFei, M. (2015). The prevalence of mild cognitive impairment with type 2 diabetes mellitus among elderly people in China: a cross-sectional study. Arch. Gerontol. Geriatr. 62, 138–142.Google Scholar

  • Gasparini, L., Gouras, G.K., Wang, R., Gross, R.S.,Beal, M.F.,Greengard, P.,and Xu, H. (2001). Stimulation of β-amyloid precursor protein trafficking by insulin reduces intraneuronal β-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci. 21, 2561–2570.PubMedGoogle Scholar

  • Gorska-Ciebiada, M., Saryuszwolska, M., Borkowska, A., Ciebiada, M.,and Loba, J. (2015). C-Reactive protein, advanced glycation end products, and their receptor in type 2 diabetic, elderly patients with mild cognitive impairment. Front. Aging Neurosci. 29, 209.Google Scholar

  • Gorska-Ciebiada, M., Saryusz-Wolska, M., Borkowska, A., Ciebiada, M., and Loba, J. (2016). Adiponectin, leptin and IL-1 β in elderly diabetic patients with mild cognitive impairment. Metab. Brain Dis. 31, 257266.PubMedCrossrefGoogle Scholar

  • Goveas, J.S., Espeland, M.A., Hogan, P., Dotson, V., Tarima, S., Coker, L.H., Ockene, J., Brunner, R., Woods, N.F., Wassertheil-Smoller, S., et al. (2011). Depressive symptoms, brain volumes and subclinical cerebrovascular disease in postmenopausal women: the women’s health initiative MRI study. J. Affect. Disord. 132, 275284.CrossrefPubMedGoogle Scholar

  • Greenwood, C.E., Kaplan, R.J., Hebblethwaite, S., and Jenkins, D.J. (2003). Carbon hydrate induced memory impairment in adults with type 2 diabetes. Diabetes Care 26, 1961–1966.CrossrefGoogle Scholar

  • Hagger-Johnson, G., Sabia, S., Brunner, E.J., Shipley, M., Bobak, M., Marmot, M., Kivimaki, M., and Singh-Manoux, A. (2013). Combined impact of smoking and heavy alcohol use on cognitive decline in early old age: Whitehall II prospective cohort study. Br. J. Psychiatry 203, 120–125.CrossrefPubMedGoogle Scholar

  • Heidari Gorji, M.A., Ghahremanlu, H., Haghshenas, M., Sadeghi, M.R., and Heidari Gorji, A.M. (2012). Comparison of memory impairments among two groups of patients with diabetes with different disease durations. BMC Res. Notes 5, 353.PubMedCrossrefGoogle Scholar

  • Imamine, R., Kawamura, T., Umemura, T., Umegaki, H.,Kawano, N.,Hotta, M.,Kouchi, Y.,Hatsuda, S.,Watarai, A., Kanai, A., et al. (2011). Does cerebral small vessel disease predict future decline of cognitive function in elderly people with type 2 diabetes? Diabetes Res. Clin. Pract. 94, 91–99.Google Scholar

  • Infantegarcia, C., Ramosrodriguez, J.J., Galindogonzalez, L., and Garciaalloza, M. (2015). Long-term central pathology and cognitive impairment are exacerbated in a mixed model of Alzheimer’s disease and type 2 diabetes. Psychoneuroendocrinology65, 15–25.Google Scholar

  • Jiménezpalomares, M., Ramosrodríguez, J.J., Lópezacosta, J.F., Pacheco-Herrero, M., Lechuga-Sancho, A.M., Perdomo, G., García-Alloza, M., and Cózar-Castellano, I. (2012). Increased Aβ production prompts the onset of glucose intolerance and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 302, E1373.CrossrefPubMedGoogle Scholar

  • Kodl, C.T. and Seaquist, E.R. (2008). Cognitive dysfunction and diabetes mellitus. Endocr. Rev. 29, 494–511.CrossrefPubMedGoogle Scholar

  • Kumano-Kuramochi, M., Ohnishi-Kameyama, M., Xie, Q., Niimi, S., Kubota, F., Komba, S., and Machida, S. (2009). Minimum stable structure of the receptor for advanced glycation end product possesses multi ligand binding ability. Biochem. Biophys. Res. Commun. 386, 130–134.CrossrefPubMedGoogle Scholar

  • Lee, S.M., Koh, D., Fun, S.N., and Sum, C.F. (2010). Diabetes management and hyperglycemia in safety sensitive jobs. Saf. Health Work 2, 9–16.Google Scholar

  • Li, W., Wang, T., and Xiao, S. (2016). Type 2 diabetes mellitus might be a risk factor for mild cognitive impairment progressing to Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 12, 2489–2495.CrossrefPubMedGoogle Scholar

  • Liu, W., Ye, P., O’Kusky, J.R., and D’Ercole, A.J. (2009). Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J. Neurosci. Res. 87, 2821–2832.PubMedCrossrefGoogle Scholar

  • Lowe, G.D.O. (2001). Is sticky blood a treatable determinant of cognitive decline and of dementia? Age Ageing 30, 101–103.CrossrefGoogle Scholar

  • Luchsinger, J.A., Reitz, C., Patel, B., Tang, M.X., Manly, J.J., and Mayeux, R. (2007). Relation of diabetes to mild cognitive impairment. Arch. Neurol. 64, 570–575.CrossrefPubMedGoogle Scholar

  • Malkki, H. (2014). Alzheimer disease: chaperone protein clusterin is involved in amyloid-β-associated entorhinal atrophy in early AD. Nat. Rev. Neurol. 10, 60.CrossrefPubMedGoogle Scholar

  • Marioni, R.E., Stewart, M.C., Murray, G.D., Deary, I.J., Fowkes, F.G., Lowe, G.D., Rumley, A., and Price, J.F. (2009). Peripheral levels of fibrinogen, C-reactive protein, and plasma viscosity predict future cognitive decline in individuals without dementia. Psychosom. Med. 71, 901–906.CrossrefPubMedGoogle Scholar

  • Marioni, R.E., Deary, I.J., Strachan, M.W., Lowe, G.D., Rumley, A., Murray, G.D., and Price, J.F. (2010). Blood rheology and cognition in the Edinburgh type 2 Diabetes Study. Age Ageing 39, 354–359.PubMedCrossrefGoogle Scholar

  • McNay, E.C., Ong, C.T., McCrimmon, R.J., Cresswell, J., Bogan, J.S., and Sherwin, R.S. (2010). Hippocampal memory processes are modulated by insulin and high-fat-induced insulin resistance. Neurobiol. Learn. Mem. 93, 546–553.PubMedCrossrefGoogle Scholar

  • Mehrabian, S., Raycheva, M., Gateva, A., Todorova, G., Angelova, P., Traykova, M., Stankova, T., Kamenov, Z., and Traykov, L. (2012). Cognitive dysfunction profile and arterial stiffness in type 2 diabetes. J. Neurol. Sci. 322, 152–156.CrossrefPubMedGoogle Scholar

  • Mi, K. and Johnson, G.V. (2006). The role of tau phosphorylation in the pathogenesis of Alzheimer’s disease. Curr. Alzheimer Res.3, 449–463.CrossrefPubMedGoogle Scholar

  • Mogi, M. and Horiuchi, M. (2011). Neurovascular coupling in cognitive impairment associated with diabetes mellitus. Circ. J. 75, 1042–1048.CrossrefPubMedGoogle Scholar

  • Park, S., Mathis, K.W., and Lee, I.K. (2014). The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev. Endocr. Metab. Disord. 15, 45–53.PubMedCrossrefGoogle Scholar

  • Patel, S.S., Mehta, V., Changotra, H., and Malairaman, U. (2016). Depression mediates impaired glucose tolerance and cognitive dysfunction: a neuromodulatory role of rosiglitazone. Horm. Behav. 78, 200–210.CrossrefPubMedGoogle Scholar

  • Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Kokmen, E., and Tangelos, E.G. (1997). Aging, memory, and mild cognitive impairment. Int. Psychogeriatr. 9, 65–69.PubMedCrossrefGoogle Scholar

  • Petersen, R.C., Smith, G.E., Warning, S.C., Ivnik, R.J., Tangalos, E.G., and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Arch. Neurol. 56, 303–308.PubMedCrossrefGoogle Scholar

  • Petersen, R.C., Doody, R., Kurz, A., Mohs, R.C.,Morris, J.C.,Rabins, P.V.,Ritchie, K.,Rossor, M., Thal, L., and Winblad, B. (2001). Current concepts in mild cognitive impairment. Arch. Neurol. 58, 1985–1992.CrossrefPubMedGoogle Scholar

  • Petrova, M., Prokopenko, S., Pronina, E., and Mozheyko, E. (2010). Diabetes type 2, hypertension and cognitive dysfunction in middle age women. J. Neurol. Sci. 299, 39–41.CrossrefPubMedGoogle Scholar

  • Pritchard, S.M., Dolan, P.J., Vitkus, A., and Johnson, G.V. (2011). The toxicity of tau in Alzheimer disease, turnover, targets and potential therapeutics. J. Cell. Mol. Med. 15, 1621–1635.PubMedCrossrefGoogle Scholar

  • Reijmer, Y.D., van den Berg, E., Ruis, C., Kappelle, L.J., and Biessels, G.J. (2010). Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 26, 507–519.PubMedCrossrefGoogle Scholar

  • Richards, R.S. and Nwose, E.U. (2010). Blood viscosity at different stages of diabetes pathogenesis. B. J. Biomed. Sci. 67, 67–70.CrossrefGoogle Scholar

  • Rizzo, M.R., Marfella, R., Barbieri, M., Boccardi, V., Vestini, F., Lettieri, B., Canonico, S.,and Paolisso, G. (2010). Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients. Diabetes Care 33, 2169–2174.CrossrefPubMedGoogle Scholar

  • Roy, S., Kim, N., Desai, A., Komaragiri, M.,Baxi, N.,Jassil, N.,Blessinger, M.,Khan, M.,Cole, R.,Desai, N., et al. (2015). Cognitive function and control of type 2 diabetes mellitus in young adults. N. Am. J. Med. Sci. 7, 220–226.PubMedCrossrefGoogle Scholar

  • Sheen, Y.J. and Sheu, W.H. (2016). Association between hypoglycemia and dementia in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 116, 279–287.CrossrefPubMedGoogle Scholar

  • Steen, E., Terry, B.M., Rivera, E.J., Cannon, J.L., Neely, T.R., Tavares, R., Xu, X.J., Wands, J.R., and de la Monte, S.M. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease – is this type 3 diabetes? J. Alzheimers Dis. 7, 63–80.PubMedCrossrefGoogle Scholar

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11, 1006–1012.PubMedCrossrefGoogle Scholar

  • Su, F., Shu, H., Ye, Q., Wang, Z., Xie, C., Yuan, B., Zhang, Z., and Bai, F. (2016). Brain insulin resistance deteriorates cognition by altering the topological features of brain networks Neuroimage Clin. 13, 280–287.PubMedGoogle Scholar

  • Suzuki, M. (2006). Factors associated with cognitive impairment in elderly patients with diabetes mellitus. J. Am. Geriatr. Soc. 54, 558–559.CrossrefPubMedGoogle Scholar

  • Talbot, K., Wang, H.Y., Kazi, H., Han, L.Y., Bakshi, K.P., Stucky, A., Fuino, R.L., Kawaguchi, K.R., Samoyedny, A.J., Wilson, R.S., et al. (2012). Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122, 1316–1338.PubMedCrossrefGoogle Scholar

  • Tansey, M.G., Mccoy, M.K., and Frankcannon, T.C. (2007). Neuroinflammatory mechanisms in Parkinson’s disease, potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 208, 1–25.PubMedCrossrefGoogle Scholar

  • Tian, S., Han, J., Huang, R., Xia, W., Sun, J., Cai, R., Dong, X., Shen, Y., and Wang, S. (2016). Association of increased serum ACE activity with logical memory ability in type 2 diabetic patients with mild cognitive impairment. Front. Behav. Neurosci. 10, 239.PubMedGoogle Scholar

  • Toro, P., Schonknecht, P., and Schroder, J. (2009). Type II diabetes in mild cognitive impairment and Alzheimer’s disease: results from a prospective population-based study in Germany. J. Alzheimers Dis. 16, 687–691.PubMedCrossrefGoogle Scholar

  • Ulrich, P. and Cerami, A. (2001). Protein glycation, diabetes, and aging. Recent Prog. Horm. Res. 56, 1–21.CrossrefPubMedGoogle Scholar

  • Umegaki, H., Iimuro, S., Shinozaki, T., Araki, A., Sakurai, T., Iijima, K., Ohashi, Y., Ito, H., and Japanese ElderlyDiabetes Intervention Trial Study Group. (2012). Risk factors associated with cognitive decline in the elderly with type 2 diabetes: pooled logistic analysis of a 6-year observation in the Japanese Elderly Diabetes Intervention Trial. Geriatr. Gerontol. Int. 12, 110–116.CrossrefGoogle Scholar

  • Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., and Durany, N. (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer’s disease and diabetes mellitus. Neurobiol. Dis. 37, 67–76.CrossrefPubMedGoogle Scholar

  • Wang, P., Huang, R., Lu, S., Xia, W., Cai, R., Sun, H., and Wang, S. (2016). RAGE and AGEs in mild cognitive impairment of diabetic patients: a cross-sectional study. PLoS One 11, e0145521.PubMedCrossrefGoogle Scholar

  • Watari, K., Letomendi, A., Elderkin-Thompton, V., Haroon, E., Miller, J., Darwin, C., and Kumar, A. (2006). Cognitive function in adults with type 2 diabetes and major depression. Arch. Clin. Neuropsychol. 21, 787–796.PubMedCrossrefGoogle Scholar

  • Whitmer, R.A., Karter, A.J., Yaffe, K., Quesenberry, C.P., and Selbt, J.V. (2009). Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. J. Am. Med. Assoc. 301, 1565–1572.CrossrefGoogle Scholar

  • Win, M.T., Yamamoto, Y., Munesue, S., Saito, H., Han, D., Motoyoshi, S., Kamal, T., Ohara, T., Watanabe, T., and Yamamoto, H. (2012). Regulation of RAGE for attenuating progression of diabetic vascular complications. Exp. Diabetes Res. 2012, 894605.PubMedGoogle Scholar

  • Wu, J.W., Hussaini, S.A., Bastille, I.M., Rodriguez, G.A., Mrejeru, A., Rilett, K., Sanders, D.W., Cook, C., Fu, H., Boonen, R.A., et al. (2016). Neuronal activity enhances tau propagation and tau pathology in vivo. Nat. Neurosci. 19, 1085–1092.CrossrefPubMedGoogle Scholar

  • Xie, L., Helmerhorst, E., Taddei, K., Plewright, B., Van Bronswijk, W., and Martins, R. (2002). Alzheimer’s β-amyloid peptides compete for insulin binding to the insulin receptor. J. Neurosci. 22, RC221.PubMedGoogle Scholar

  • Xu, Z.P., Yang, S.L., Zhao, S., Zheng, C.H., Li, H.H., Zhang, Y., Huang, R.X., Li, M.Z., Gao, Y., Zhang, S.J., et al. (2016). Biomarkers for early diagnostic of mild cognitive impairment in type-2 diabetes patients: a multicentre, retrospective, nested case-control study. eBiomedicine 5, 105–113.CrossrefPubMedGoogle Scholar

  • Yaffe, K., Falvey, C., Hamilton, N., Schwartz, A.V., Simonsick, E.M., Satterfield, S., Cauley, J.A., Rosano, C., Launer, L.J., Strotmeyer, E.S., et al. (2012). Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch. Neurol. 69, 1170–1175.PubMedGoogle Scholar

  • Zhong, Y., Miao, Y., Jia, W.P., Yan, H., Wang, B.Y., and Jin, J. (2012a). Hyperinsulinemia, insulin resistance and cognitive decline in older cohort. Biomed. Environ. Sci. 25, 8–14.Google Scholar

  • Zhong, Y., Zhang, X.Y., Miao, Y., Zhu, J.H., Yan, H., Wang, B.Y., Jin, J., Hu, T.J., and Jia, W.P. (2012b). The relationship between glucose excursion and cognitive function in aged type 2 diabetes patients. Biomed. Environ. Sci. 25, 1–7.Google Scholar

  • Zhu, X., Smith, M.A., Honda, K., Aliev, G., Moreira, P.I., Nunomura, A., Casadesus, G., Harris, P.L., Siedlak, S.L., and Perry, G. (2007). Vascular oxidative stress in Alzheimer disease. J. Neurol. Sci. 257, 240–246.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-02-20

Accepted: 2017-04-18

Published Online: 2017-07-12

Published in Print: 2017-10-26


Citation Information: Reviews in the Neurosciences, Volume 28, Issue 7, Pages 715–723, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0016.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Min Min, Tingting Shi, Chenyu Sun, Mingming Liang, Yun Zhang, Yile Wu, and Yehuan Sun
International Journal of Geriatric Psychiatry, 2018

Comments (0)

Please log in or register to comment.
Log in