Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 28, Issue 8


Cognitive impairment in multiple sclerosis – a review of current knowledge and recent research

Tomasz GrzegorskiORCID iD: http://orcid.org/0000-0001-9197-1117 / Jacek Losy
  • Department of Clinical Neuroimmunology, Chair of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-08-08 | DOI: https://doi.org/10.1515/revneuro-2017-0011


Multiple sclerosis (MS) is a chronic, progressive disease of the central nervous system that is characterised by inflammatory damage to the myelin sheath. Though often neglected, cognitive impairment is a common feature of MS that affects 43–70% of patients. It has a sophisticated neuroanatomic and pathophysiologic background and disturbs such vital cognitive domains as speed of information processing, memory, attention, executive functions and visual perceptual functions. In recent years there has been growing interest in neuroimaging findings with regard to cognitive impairment in MS. The possible options of managing cognitive dysfunction in MS are pharmacologic interventions, cognitive rehabilitation and exercise training; however, not enough evidence has been presented in this field. The aim of our article is to provide current knowledge on cognitive impairment in MS based on the most recent scientific results and conclusions with regard to affected cognitive domains, neuropsychological assessment, underlying mechanisms of this disturbance, neuroimaging findings and therapeutic options.

Keywords: cognitive dysfunction; executive functions; memory; neuroimaging; neuropsychological assessment


  • Adler, G. and Lembach, Y. (2015). Memory and selective attention in multiple sclerosis: cross-sectional computer-based assessment in a large outpatient sample. Eur. Arch. Psychiatry Clin. Neurosci. 265, 439–443.CrossrefGoogle Scholar

  • Amato, M.P., Goretti, B., Ghezzi, A., Lori, S., Zipoli, V., Moiola, L., Falautano, M., De Caro, M.F., Viterbo, R., Patti, F., et al. (2010). Cognitive and psychosocial features in childhood and juvenile MS: two-year follow-up. Neurology 75, 1134–1140.CrossrefPubMedGoogle Scholar

  • Amato, M.P., Hakiki, B., Goretti, B., Rossi, F., Stromillo, M.L., Giorgio, A., Roscio, M., Ghezzi, A., Guidi, L., Bartolozzi, M.L., et al. (2012). Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology 78, 309–314.CrossrefPubMedGoogle Scholar

  • Arnett, P.A., Higginson, C.I., and Randolph, J.J. (2001). Depression in multiple sclerosis: relationship to planning ability. J. Int. Neuropsychol. Soc. 7, 665–674.PubMedCrossrefGoogle Scholar

  • Audoin, B., Au Duong, M.V., Malikova, I., Confort-Gouny, S., Ibarrola, D., Cozzone, P.J., Pelletier, J. and Ranjeva, J.P. (2006). Functional magnetic resonance imaging and cognition at the very early stage of MS. J. Neurol. Sci. 245, 87–91.CrossrefPubMedGoogle Scholar

  • Beatty, W.W. and Aupperle, R.L. (2002). Sex differences in cognitive impairment in multiple sclerosis. Clin. Neuropsychol. 16, 472–480.PubMedCrossrefGoogle Scholar

  • Beatty, W.W., Goodkin, D.E., Monson, N., and Beatty, P.A. (1990). Implicit learning in patients with chronic progressive multiple sclerosis. Int. J. Clin. Neuropsychol. 12, 166–172.Google Scholar

  • Beatty, W.W., Paul, R.H., Blanco, C.R., Hames, K.A., and Wilbanks, S.L. (1995). Attention in multiple sclerosis: correlates of impairment on the WAIS-R digit span test. Appl. Neuropsychol. 2, 139–144.PubMedCrossrefGoogle Scholar

  • Benedict, R.H. and Bobholz, J.H. (2007). Multiple sclerosis. Semin. Neurol. 27, 78–85.PubMedCrossrefGoogle Scholar

  • Benedict, R.H. and Zivadinov, R. (2011). Risk factors for and management of cognitive dysfunction in multiple sclerosis. Nat. Rev. Neurol. 7, 332–342.CrossrefPubMedGoogle Scholar

  • Benedict, R.H., Fischer, J.S., Archibald, C.J., Arnett, P.A., Beatty, W.W., Bobholz, J., Chelune, G.J., Fisk, J.D., Langdon, D.W., Caruso, L., et al. (2002). Minimal neuropsychological assessment of MS patients: a consensus approach. Clin. Neuropsychol. 16, 381–397.CrossrefPubMedGoogle Scholar

  • Benedict, R.H., Carone, D.A., and Bakshi, R. (2004). Correlating brain atrophy with cognitive dysfunction, mood disturbances, and personality disorder in multiple sclerosis. J. Neuroimaging 14(Suppl.), 36–45.CrossrefGoogle Scholar

  • Benedict, R.H., Cookfair, D., Gavett, R., Gunther, M., Munschauer, F., Garg, N., and Weinstock-Guttman, B. (2006). Validity of the minimal assessment of cognitive function in multiple sclerosis. J. Int. Neuropsychol. Soc. 12, 549–558.PubMedGoogle Scholar

  • Benedict, R.H., Amato, M.P., Boringa, J., Brochet, B., Foley, F., Fredrikson, S., Hamalainen, P., Hartung, H., Krupp, L., Penner, I., et al. (2012). Brief international cognitive assessment for MS (BICAMS): international standards for validation. BMC Neurol. 12, 55.CrossrefPubMedGoogle Scholar

  • Bergendal, G., Fredrikson, S., and Almkvist, O. (2007). Selective decline in information processing in subgroups of multiple sclerosis: an 8 year old longitudinal study. Eur. Neurol. 57, 193–202.CrossrefGoogle Scholar

  • Bergsland, N., Zivadinov, R., Dwyer, M.G., Weinstock-Guttman, B., and Benedict, R.H. (2016). Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult. Scler. 22, 1327–1336.CrossrefPubMedGoogle Scholar

  • Bisecco, A., Stamenova, S., Caiazzo, G., d’Ambrosio, A., Sacco, R., Docimo, R., Esposito, S., Cirillo, M., Esposito, F., Bonavita, S., et al. (2017). Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav. (Epub ahead of print).PubMedGoogle Scholar

  • Bodling, A.M., Denney, D.R., and Lynch, S.G. (2009). Cognitive aging in patients with multiple sclerosis: a cross-sectional analysis of speeded processing. Arch. Clin. Neuropsychol. 24, 761–767.PubMedCrossrefGoogle Scholar

  • Bora, E., Özakbaş, S., Velakoulis, D., and Walterfang, M. (2016). Social cognition in multiple sclerosis: a meta-analysis. Neuropsychol. Rev. 26, 160–172.CrossrefPubMedGoogle Scholar

  • Brissart, H., Morele, E., Baumann, C., and Debouverie, M. (2012). Verbal episodic memory in 426 multiple sclerosis patients: impairment in encoding, retrieval or both? Neurol. Sci. 33, 1117–1123.CrossrefPubMedGoogle Scholar

  • Brooks, J.B., Borela, M.C., and Fragoso, Y.D. (2011). Assessment of cognition using the Rao’s Brief Repeatable Battery of Neuropsychological Tests on a group of Brazilian patients with multiple sclerosis. Arq. Neuropsiquiatr. 69, 887–891.PubMedCrossrefGoogle Scholar

  • Bruce, J.M., Bruce, A.S., and Arnett, P.A. (2007). Mild visual acuity disturbances are associated with performance on tests of complex visual attention in MS. J. Int. Neuropsychol. Soc. 13, 544–548.PubMedGoogle Scholar

  • Bunyan, R.F., Popescu, B.F., Carter, J.L., Caselli, R.J., Parisi, J.E., and Lucchinetti, C.F. (2011). Childhood-onset multiple sclerosis with progressive dementia and pathological cortical demyelination. Arch. Neurol. 68, 525–528.CrossrefPubMedGoogle Scholar

  • Caine, E.D., Bamford, K.A., Schiffer, R.B., Shoulson, I., and Levy, S. (1986). A controlled neuropsychological comparison of Huntington’s disease and multiple sclerosis. Arch. Neurol. 43, 249–254.CrossrefPubMedGoogle Scholar

  • Calabrese, M., Agosta, F., Rinaldi, F., Mattisi, I., Grossi, P., Favaretto, A., Atzori, M., Bernardi, V., Barachino, L., Rinaldi, L., et al. (2009). Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150.PubMedGoogle Scholar

  • Calabresi, P.A., Radue, E.W., Goodin, D., Jeffery, D., Rammohan, K.W., Reder, A.T., Vollmer, T., Agius, M.A., Kappos, L., Stites, T., et al. (2014). Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 13, 545–556.CrossrefGoogle Scholar

  • Caligiuri, M.E., Barone, S., Cherubini, A., Augimeri, A., Chiriaco, C., Trotta, M., Granata, A., Filippelli, E., Perrotta, P., Valentino, P., et al. (2014). The relationship between regional microstructural abnormalities of the corpus callosum and physical and cognitive disability in relapsing-remitting multiple sclerosis. Neuroimage Clin. 7, 28–33.PubMedGoogle Scholar

  • Carmona, O., Masuet, C., Santiago, O., Alía, P., Moral, E., Alonso-Magdalena, L., Casado, V., and Arbizu, T. (2011). Multiple sclerosis and cognitive decline: is ApoE-4 a surrogate marker? Acta Neurol. Scand. 124, 258–263.CrossrefPubMedGoogle Scholar

  • Charcot, J.M. (1877). Lectures on the Diseases on the Nervous System Delivered at La Salpetrière (London: New Sydenham Society).Google Scholar

  • Chenet, A., Gosseaume, A., Wiertlewski, S., and Perrouin-Verbe, B. (2016). Efficacity of exercise training on multiple sclerosis patients with cognitive impairments. Ann. Phys. Rehabil. Med. 59(Suppl.), e42.CrossrefGoogle Scholar

  • Chiaravalloti, N.D. and DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurol. 7, 1139–1151.CrossrefPubMedGoogle Scholar

  • Chiaravalloti, N.D., Demaree, H., Gaudino, E.A., and DeLuca, J. (2003). Can the repetition effect maximize learning in multiple sclerosis? Clin. Rehabil. 17, 58–68.CrossrefPubMedGoogle Scholar

  • Chiaravalloti, N.D., Wylie, G., Leavitt, V., and Deluca, J. (2012). Increased cerebral activation after behavioral treatment for memory deficits in MS. J. Neurol. 259, 1337–1346.PubMedCrossrefGoogle Scholar

  • Chiaravalloti, N.D., Genova, H.M., and DeLuca, J. (2015). Cognitive rehabilitation in multiple sclerosis: the role of plasticity. Front. Neurol. 6, 67.PubMedGoogle Scholar

  • Chillemi, G., Scalera, C., Terranova, C., Calamuneri, A., Buccafusca, M., Dattola, V., Rizzo, V., Bruschetta, D., Girlanda, P., and Quartarone, A. (2015). Cognitive processess and cognitive reserve in multiple sclerosis. Arch. Ital. Biol. 153, 19–24.PubMedGoogle Scholar

  • Cinar, B.P., Kösehasanoğulları, G., Yigit, P., and Ozakbas, S. (2017). Cognitive dysfunction in patients with multiple sclerosis treated with first-line disease-modifying therapy: a multi-center, controlled study using the BICAMS battery. Neurol. Sci. 38, 337–342.CrossrefPubMedGoogle Scholar

  • Compston, A. and Coles, A. (2008). Multiple sclerosis. Lancet 372, 1502–1517.CrossrefPubMedGoogle Scholar

  • Dagenais, E., Rouleau, I., Tremblay, A., Demers, M., Roger, É., Jobin, C., and Duquette, P. (2016). Role of executive functions in prospective memory in multiple sclerosis: impact of the strength of cue-action association. J. Clin. Exp. Neuropsychol. 38, 127–140.CrossrefPubMedGoogle Scholar

  • das Nair, R., Martin, K.J., and Lincoln, N.B. (2016). Memory rehabilitation for people with multiple sclerosis. Cochrane Database Syst. Rev. 3, CD008754.PubMedGoogle Scholar

  • De Giglio, L., De Luca, F., Prosperini, L., Borriello, G., Bianchi, V., Pantano, P., and Pozzilli, C. (2015). A low-cost cognitive rehabilitation with a commercial video game improves sustained attention and executive functions in multiple sclerosis: a pilot study. Neurorehabil. Neural Repair 29, 453–461.CrossrefPubMedGoogle Scholar

  • Deloire, M., Ruet, A., Hamel, D., Bonnet, M., and Brochet, B. (2010). Early cognitive impairment in multiple sclerosis predicts disability outcome several years later. Mult. Scler. 16, 581–587.PubMedCrossrefGoogle Scholar

  • DeLuca, G.C., Yates, R.L., Beale, H., and Morrow, S.A. (2015). Cognitive impairment in multiple sclerosis: clinical, radiologic and pathologic insights. Brain Pathol. 25, 79–98.CrossrefPubMedGoogle Scholar

  • DeLuca, J. (2005). Fatigue, cognition, and mental effort. In: Fatigue as a Window to the Brain. J. DeLuca, ed. (Cambridge, MA, USA: MIT Press), pp. 37–57.Google Scholar

  • DeLuca, J., Gaudino, E.A., Diamond, B.J., Christodoulou, C., and Engel, R.A. (1998). Acquisition and storage deficits in multiple sclerosis. J. Clin. Exp. Neuropsychol. 20, 376–390.CrossrefPubMedGoogle Scholar

  • Diker, S., Has, A.C., Kurne, A., Göçmen, R., Oğuz, K.K., and Karabudak, R. (2016). The association of cognitive impairment with gray matter atrophy and cortical lesion load in clinically isolated syndrome. Mult. Scler. Relat. Disord. 10, 14–21.PubMedCrossrefGoogle Scholar

  • Dineen, R.A., Vilisaar, J., Hlinka, J., Bradshaw, C.M., Morgan, P.S., Constantinescu, C.S., and Auer, D.P. (2009). Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 132, 239–249.CrossrefPubMedGoogle Scholar

  • Drew, M., Tippett, L.J., Starkey, N.J., and Isler, R.B. (2008). Executive dysfunction and cognitive impairment in a large community-based sample with multiple sclerosis form New Zealand: a descriptive study. Arch. Clin. Neuropsychol. 23, 1–19.CrossrefGoogle Scholar

  • Dusankova, J.B., Kalincik, T., Havrdova, E., and Benedict, R.H. (2012). Cross cultural validation of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Clin. Neuropsychol. 26, 1186–1200.CrossrefPubMedGoogle Scholar

  • Edan, G., Kappos, L., Montalbán, X., Polman, C.H., Freedman, M.S., Hartung, H.P., Miller, D., Barkhof, F., Herrmann, J., Lanius, V., et al. (2014). Long-term impact of interferon β-1b in patients with CIS: 8-year follow-up of BENEFIT. J. Neurol. Neurosurg. Psychiatry 85, 1183–1189.CrossrefPubMedGoogle Scholar

  • Feuillet, L., Reuter, F., Audoin, B., Malikova, I., Barrau, K., Cherif, A.A., and Pelletier, J. (2007). Early cognitive impairment in patients with clinically isolated syndrome suggestive of multiple sclerosis. Mult. Scler. 13, 124–127.CrossrefPubMedGoogle Scholar

  • Filippi, M., Rocca, M.A., Benedict, R.H., DeLuca, J., Geurts, J.J., Rombouts, S.A., Ron, M., and Comi, G. (2010). The contribution of MRI in assessing cognitive impairment in multiple sclerosis. Neurology 75, 2121–2128.PubMedCrossrefGoogle Scholar

  • Fink, F., Rischkau, E., Butt, M., Klein, J., Eling, P., and Hildebrandt, H. (2010). Efficacy of an executive function intervention programme in MS: a placebo-controlled and pseudo-randomized trial. Mult. Scler. 16, 1148–1151.CrossrefGoogle Scholar

  • Fischer, J.S., Priore, R.L., Jacobs, L.D., Cookfair, D.L., Rudick, R.A., Herndon, R.M., Richert, J.R., Salazar, A.M., Goodkin, D.E., Granger, C.V., et al. (2000). Neuropsychological effects of interferon beta-1a in relapsing multiple sclerosis. Ann. Neurol. 48, 885–892.CrossrefPubMedGoogle Scholar

  • Ford-Johnson, L., DeLuca, J., Zhang, J., Elovic, E., Lengenfelder, J., and Chiaravalloti, N.D. (2016). Cognitive effects of modafinil in patients with multiple sclerosis: a clinical trial. Rehabil. Psychol. 61, 82–91.CrossrefPubMedGoogle Scholar

  • Frith, C. and Frith, U. (2005). Theory of mind. Curr. Biol. 15, R644–R646.CrossrefGoogle Scholar

  • Frith, C.D. and Frith, U. (2012). Mechanisms of social cognition. Annu. Rev. Psychol. 63, 287–313.PubMedCrossrefGoogle Scholar

  • Gainotti, G. (2006). Measures of cognitive and emotional changes in multiple sclerosis and underlying models of brain dysfunction. J. Neurol. Sci. 245, 15–20.CrossrefPubMedGoogle Scholar

  • Geisler, M.W., Sliwinski, M., Coyle, P.K., Masur, D.M., Doscher, C., and Krupp, L.B. (1996). The effects of amantadine and pemoline on cognitive functioning in multiple sclerosis. Arch. Neurol. 53, 185–188.CrossrefPubMedGoogle Scholar

  • Geurts, J.J., Calabrese, M., Fisher, E., and Rudick, R.A. (2012). Measurement and clinical effect of grey matter pathology in multiple sclerosis. Lancet Neurol. 11, 1082–1092.CrossrefPubMedGoogle Scholar

  • Ghaffar, O., Reis, M., Pennell, N., O‘Connor, P., and Feinstein, A. (2010). APOE epsilon4 and the cognitive genetics of multiple sclerosis. Neurology 74, 1611–1618.PubMedCrossrefGoogle Scholar

  • Golan, D., Doniger, G.M., Wissemann, K., Zarif, M., Bumstead, B., Buhse, M., Fafard, L., Lavi, I., Wilken, J., and Gudesblatt, M. (2017). The impact of subjective cognitive fatigue and depression on cognitive function in patients with multiple sclerosis. Mult. Scler. 1, 1352458517695470.Google Scholar

  • Goretti, B., Niccolai, C., Hakiki, B., Sturchio, A., Falautano, M., Minacapelli, E., Martinelli, V., Incerti, C., Nocentini, U., Murgia, M., et al. (2014). The Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS): normative values with gender, age and education corrections in the Italian population. BMC Neurol. 14, 171.CrossrefPubMedGoogle Scholar

  • Goverover, Y., Chiaravalloti, N., and DeLuca, J. (2016). Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) and performance of everyday life tasks: actual reality. Mult. Scler. 22, 544–550.CrossrefPubMedGoogle Scholar

  • Granberg, T., Martola, J., Bergendal, G., Shams, S., Damangir, S., Aspelin, P., Fredrikson, S., and Kristoffersen-Wiberg, M. (2015). Corpus callosum atrophy is strongly associated with cognitive impairment in multiple sclerosis: results of a 17-year longitudinal study. Mult. Scler. 21, 1151–1158.CrossrefPubMedGoogle Scholar

  • Guimarães, J. and Sá, M.J. (2012). Cognitive dysfunction in multiple sclerosis. Front. Neurol. 3, 74.PubMedGoogle Scholar

  • Hanssen, K.T., Beiske, A.G., Landrø, N.I., Hofoss, D., and Hessen, E. (2016). Cognitive rehabilitation in multiple sclerosis: a randomized controlled trial. Acta Neurol. Scand. 133, 30–40.CrossrefPubMedGoogle Scholar

  • Harel, Y., Appleboim, N., Lavie, M., and Achiron, A. (2009). Single dose of methylphenidate improves cognitive performance in multiple sclerosis patients with impaired attention process. J. Neurol. Sci. 276, 38–40.CrossrefPubMedGoogle Scholar

  • Hawellek, D.J., Hipp, J.F., Lewis, C.M., Corbetta, M., and Engel, A.K. (2011). Increased functional connectivity indicates the severity of cognitive impairment in multiple sclerosis. Proc. Natl. Acad. Sci. USA 108, 19066–19071.CrossrefGoogle Scholar

  • Henry, J.D. and Beatty, W.W. (2006). Verbal fluency deficits in multiple sclerosis. Neuropsychologia 44, 1166–1174.CrossrefPubMedGoogle Scholar

  • Herndon, R.M. (2003). Multiple Sclerosis: Immunology, Pathology and Pathophysiology (New York: Demos Medical Publishing).Google Scholar

  • Hollenbach, J.A. and Oksenberg, J.R. (2015). The immunogenetics of multiple sclerosis: a comprehensive review. J. Autoimmun. 64, 13–25.CrossrefPubMedGoogle Scholar

  • Honan, C.A., Brown, R.F., and Batchelor, J. (2015). Perceived cognitive difficulties and cognitive test performance as predictors of employment outcomes in people with multiple sclerosis. J. Int. Neuropsychol. Soc. 21, 156–168.PubMedCrossrefGoogle Scholar

  • Hosseini, B., Flora, D.B., Banwell, B.L., and Till, C. (2014). Age of onset as a moderator of cognitive decline in pediatric-onset multiple sclerosis. J. Int. Neuropsychol. Soc. 20, 796–804.PubMedCrossrefGoogle Scholar

  • Huolman, S., Hämäläinen, P., Vorobyev, V., Ruutiainen, J., Parkkola, R., Laine, T., and Hämäläinen, H. (2011). The effects of rivastigmine on processing speed and brain activation in patients with multiple sclerosis and subjective cognitive fatigue. Mult. Scler. 17, 1351–1361.PubMedCrossrefGoogle Scholar

  • Iaffaldano, P., Viterbo, R.G., Paolicelli, D., Lucchese, G., Portaccio, E., Goretti, B., Direnzo, V., D‘Onghia, M., Zoccolella, S., Amato, M.P., et al. (2012). Impact of natalizumab on cognitive performances and fatigue in relapsing multiple sclerosis: a prospective, open-label, two years observational study. PLoS One 7, e35843.CrossrefPubMedGoogle Scholar

  • Iaffaldano, P., Viterbo, R.G., and Trojano, M. (2016). Natalizumab discontinuation is associated with a rebound of cognitive impairment in multiple sclerosis patients. J. Neurol. 263, 1620–1625.CrossrefPubMedGoogle Scholar

  • Janculjak, D., Mubrin, A., Brinar, V., and Spilich, G. (2002). Changes of attention and memory in a group of patients with multiple sclerosis. Clin. Neurol. Neurosurg. 104, 221–227.CrossrefGoogle Scholar

  • Jonkman, L.E., Rosenthal, D.M., Sormani, M.P., Miles, L., Herbert, J., Grossman, R.I., and Inglese, M. (2015) Gray matter correlates of cognitive performance differ between relapsing-remitting and primary-progressive multiple sclerosis. PLoS One 10, e0129380.CrossrefPubMedGoogle Scholar

  • Kappos, L., Freedman, M.S., Polman, C.H., Edan, G., Hartung, H.P., Miller, D.H., Montalbán, X., Barkhof, F., Radü, E.W., Metzig, C., et al. (2009). Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 8, 987–997.CrossrefPubMedGoogle Scholar

  • Kappos, L., Wiendl, H., Selmaj, K., Arnold, D.L., Havrdova, E., Boyko, A., Kaufman, M., Rose, J., Greenberg, S., Sweetser, M., et al. (2015). Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 373, 1418–1428.PubMedCrossrefGoogle Scholar

  • Keser, Z., Hasan, K.M., Mwangi, B., Gabr, R.E., and Nelson, F.M. (2017). Diffusion tensor imaging-defined sulcal enlargement is related to cognitive impairment in multiple sclerosis. J. Neuroimaging. 27, 312–317.PubMedCrossrefGoogle Scholar

  • Khatri, B., Barkhof, F., Comi, G., Hartung, H.P., Kappos, L., Montalban, X., Pelletier, J., Stites, T., Wu, S., Holdbrook, F., et al. (2011). Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS Study. Lancet Neurol. 10, 520–529.PubMedCrossrefGoogle Scholar

  • Kinner, M., Hoepner, R., Klotz, P., Prehn, C., Faissner, S., Salmen, A., Linker, R.A., Gold, R., and Chan, A. (2016). Immunotherapy improves cognitive function in secondary progressive multiple sclerosis. CNS Neurosci. Ther. 22, 1019–1022.PubMedCrossrefGoogle Scholar

  • Koenig, K.A., Sakaie, K.E., Lowe, M.J., Lin, J., Stone, L., Bermel, R.A., Beall, E.B., Rao, S.M., Trapp, B.D., and Phillips, M.D. (2015). The relationship between cognitive function and high-resolution diffusion tensor MRI of the cingulum bundle in multiple sclerosis. Mult. Scler. 21, 1794–1801.CrossrefPubMedGoogle Scholar

  • Krupp, L.B., Christodoulou, C., Melville, P., Scherl, W.F., MacAllister, W.S., and Elkins, L.E. (2004). Donepezil improved memory in multiple sclerosis in a randomized clinical trial. Neurology 63, 1579–1585.CrossrefGoogle Scholar

  • Krupp, L.B., Christodoulou, C., Melville, P., Scherl, W.F., Pai, L.Y., Muenz, L.R., He, D., Benedict, R.H., Goodman, A., Rizvi, S., et al. (2011). Multicenter randomized clinical trial of donepezil for memory impairment in multiple sclerosis. Neurology 76, 1500–1507.CrossrefPubMedGoogle Scholar

  • Kujala, P., Portin, R., Revonsuo, A., and Ruutiainen, J. (1995). Attention related performance in two cognitively different subgroups of patients with multiple sclerosis. J. Neurol. Neurosurgery Psychiatry 59, 77–82.CrossrefGoogle Scholar

  • Lacy, M., Hauser, M., Pliskin, N., Assuras, S., Valentine, M.O., and Reder, A. (2013). The effects of long-term interferon-beta-1b treatment on cognitive functioning in multiple sclerosis: a 16-year longitudinal study. Mult. Scler. 19, 1765–1772.PubMedCrossrefGoogle Scholar

  • Langdon, D.W., Amato, M.P., Boringa, J., Brochet, B., Foley, F., Fredrikson, S., Hämäläinen, P., Hartung, H.P., Krupp, L., Penner, I.K., et al. (2012). Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 18, 891–898.CrossrefPubMedGoogle Scholar

  • Leclercq, E., Cabaret, M., Guilbert, A., Jougleux, C., Vermersch, P., and Moroni, C. (2014). The influence of age and illness duration on cognitive impairment in aging patients with relapsing-remitting multiple sclerosis (RR-MS). Geriatr. Psychol. Neuropsychiatr. Vieil. 12, 331–338.PubMedGoogle Scholar

  • Lincoln, N.B., Dent, A., Harding, J., Weyman, N., Nicholl, C., Blumhardt, L.D., and Playford, E.D. (2002). Evaluation of cognitive assessment and cognitive intervention for people with multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 72, 93–98.CrossrefPubMedGoogle Scholar

  • Lopes Costa, S., Gonçalves, O.F., DeLuca, J., Chiaravalloti, N., Chakravarthi, R., and Almeida, J. (2016). The temporal dynamics of visual processing in multiple sclerosis. Appl. Neuropsychol. Adult 23, 133–140.CrossrefPubMedGoogle Scholar

  • Lovera, J., Bagert, B., Smoot, K., Morris, C.D., Frank, R., Bogardus, K., Wild, K., Oken, B., Whitham, R., and Bourdette, D. (2007). Ginkgo biloba for the improvement of cognitive performance in multiple sclerosis: a randomized, placebo-controlled trial. Mult. Scler. 13, 376–385.PubMedCrossrefGoogle Scholar

  • Lovera, J.F., Frohman, E., Brown, T.R., Bandari, D., Nguyen, L., Yadav, V., Stuve, O., Karman, J., Bogardus, K., Heimburger, G., et al. (2010). Memantine for cognitive impairment in multiple sclerosis: a randomized placebo-controlled trial. Mult. Scler. 16, 715–723.CrossrefPubMedGoogle Scholar

  • Luerding, R., Gebel, S., Gebel, E.M., Schwab-Malek, S., and Weissert, R. (2016). Influence of formal education on cognitive reserve in patients with multiple sclerosis. Front. Neurol. 7, 46.PubMedGoogle Scholar

  • Martínez-Lapiscina, E.H., Fraga-Pumar, E., Gabilondo, I., Martínez-Heras, E., Torres-Torres, R., Ortiz-Pérez, S., Llufriu, S., Tercero, A., Andorra, M., Roca, M.F., et al. (2014). The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS. BMC Res. Notes 7, 910.CrossrefPubMedGoogle Scholar

  • McCarthy, M., Beaumont, J.G., Thompson, R., and Peacock, S. (2005). Modalityspecific aspects of sustained and divided attentional performance in multiple sclerosis. Arch. Clin. Neuropsychol. 20, 705–718.CrossrefGoogle Scholar

  • Meijer, K.A., Cercignani, M., Muhlert, N., Sethi, V., Chard, D., Geurts, J.J., and Ciccarelli, O. (2016). Patterns of white matter damage are non-random and associated with cognitive function in secondary progressive multiple sclerosis. Neuroimage Clin. 12, 123–131.CrossrefPubMedGoogle Scholar

  • Migliore, S., Ghazaryan, A., Simonelli, I., Pasqualetti, P., Landi, D., Palmieri, M.G., Moffa, F., Rinaldi, P., Vernieri, F., and Filippi, M.M. (2016). Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS) in the Italian population. Neurol. Sci. 37, 1261–1270.PubMedCrossrefGoogle Scholar

  • Mitolo, M., Venneri, A., Wilkinson, I.D., and Sharrack, B. (2015). Cognitive rehabilitation in multiple sclerosis: a systematic review. J. Neurol. Sci. 354, 1–9.PubMedCrossrefGoogle Scholar

  • Mokhber, N., Azarpazhooh, A., Orouji, E., Rao, S.M., Khorram, B., Sahraian, M.A., Foroghipoor, M., Gharavi, M.M., Kakhi, S., Nikkhah, K., et al. (2014). Cognitive dysfunction in patients with multiple sclerosis treated with different types of interferon β: a randomized clinical trial. J. Neurol. Sci. 342, 16–20.PubMedCrossrefGoogle Scholar

  • Mori, F., Kusayanagi, H., Buttari, F., Centini, B., Monteleone, F., Nicoletti, C.G., Bernardi, G., Di Cantogno, E.V., Marciani, M.G., and Centonze, D. (2012). Early treatment with high-dose interferon β-1a reverses cognitive and cortical plasticity deficits in multiple sclerosis. Funct. Neurol. 27, 163–168.Google Scholar

  • Moroso, A., Ruet, A., Lamargue-Hamel, D., Munsch, F., Deloire, M., Coupé, P., Ouallet, J.C., Planche, V., Moscufo, N., Meier, D.S., et al. (2017). Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 88, 146–151.PubMedCrossrefGoogle Scholar

  • Morrow, S.A., Smerbeck, A., Patrick, K., Cookfair, D., Weinstock-Guttman, B., andBenedict, R.H. (2009). Lisdexamfetamine dimesylate improves processing speed and memory in cognitively impaired MS patients: a phase II study. J. Neurol. 260, 489–497.Google Scholar

  • Morrow, S.A., O’Connor, P.W., Polman, C.H., Goodman, A.D., Kappos, L., Lublin, F.D., Rudick, R.A., Jurgensen, S., Paes, D., Forrestal, F., et al. (2010). Evaluation of the symbol digit modalities test (SDMT) and MS neuropsychological screening questionnaire (MSNQ) in natalizumab-treated MS patients over 48 weeks. Mult. Scler. 16, 1385–1392.CrossrefPubMedGoogle Scholar

  • Motl, R.W., Sandroff, B.M., and Benedict, R.H. (2011). Cognitive dysfunction and multiple sclerosis: developing a rationale for considering the efficacy of exercise training. Mult. Scler. 17, 1034–1040.CrossrefPubMedGoogle Scholar

  • Nocentini, U., Pasqualetti, P., Bonavita, S., Buccafusca, M., De Caro, M.F., Farina, D., Girlanda, P., Le Pira, F., Lugaresi, A., Quattrone, A., et al. (2006). Cognitive dysfunction in patients with relapsing-remitting multiple sclerosis. Mult. Scler. 12, 77–87.PubMedCrossrefGoogle Scholar

  • Nourbakhsh, B., Nunan-Saah, J., Maghzi, A.H., Julian, L.J., Spain, R., Jin, C., Lazar, A., Pelletier, D., and Waubant E. (2016). Longitudinal associations between MRI and cognitive changes in very early MS. Mult. Scler. Relat. Disord. 5, 47–52.CrossrefGoogle Scholar

  • Nunnari, D., De Cola, M.C., D’Aleo, G., Rifici, C., Russo, M., Sessa, E., Bramanti, P., and Marino, S. (2015) Impact of depression, fatigue, and global measure of cortical volume on cognitive impairment in multiple sclerosis. Biomed. Res. Int. 2015, 519785.PubMedGoogle Scholar

  • Oken, B.S., Kishiyama, S., Zajdel, D., Bourdette, D., Carlsen, J., Haas, M., Hugos, C., Kraemer, D.F., Lawrence, J., and Mass, M. (2004). Randomized controlled trial of yoga and exercise in multiple sclerosis. Neurology 62, 2058–2064.PubMedCrossrefGoogle Scholar

  • Papathanasiou, A., Messinis, L., Zampakis, P., Panagiotakis, G., Gourzis, P., Georgiou, V., and Papathanasopoulos, P. (2015) Thalamic atrophy predicts cognitive impairment in relapsing remitting multiple sclerosis. Effect on instrumental activities of daily living and employment status. J. Neurol. Sci. 358, 236–242.CrossrefPubMedGoogle Scholar

  • Patanella, A.K., Zinno, M., Quaranta, D., Nociti, V., Frisullo, G., Gainotti, G., Tonali, P.A., Batocchi, A.P., and Marra, C. (2010). Correlations between peripheral blood mononuclear cell production of BDNF, TNF-α, IL-6, IL-10 and cognitive performances in multiple sclerosis patients. J. Neurosci. Res. 88, 1106–1112.PubMedGoogle Scholar

  • Patten, S.B., Beck, C.A., Williams, J.V., Barbui, C., and Metz, L.M. (2003). Major depression in multiple sclerosis: a population-based perspective. Neurology 61, 1524–1527.PubMedCrossrefGoogle Scholar

  • Patti, F., Morra, V.B., Amato, M.P., Trojano, M., Bastianello, S., Tola, M.R., Cottone, S., Plant, A., Picconi, O., and COGIMUS Study Group. (2013). Subcutaneous interferon β-1a may protect against cognitive impairment in patients with relapsing-remitting multiple sclerosis: 5-year follow-up of the COGIMUS study. PLoS One 8, e74111.CrossrefPubMedGoogle Scholar

  • Pelosi, L., Geesken, J.M., Holly, M., Hayward, M., and Blumhardt, L.D. (1997). Working memory impairment in early multiple-sclerosis. Evidence from an event-related potential study of patients with clinically isolated myelopathy. Brain 120, 2039–2058.CrossrefPubMedGoogle Scholar

  • Penner, I.K., Opwis, K., and Kappos, L. (2007). Relation between functional brain imaging, cognitive impairment and cognitive rehabilitation in patients with multiple sclerosis. J. Neurol. 254(Suppl. 2), II53–II57.Google Scholar

  • Penner, I.K., Raselli, C., Stöcklin, M., Opwis, K., Kappos, L., and Calabrese, P. (2009). The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult. Scler. 15, 1509–1517.CrossrefPubMedGoogle Scholar

  • Penner, I.K., Stemper, B., Calabrese, P., Freedman, M.S., Polman, C.H., Edan, G., Hartung, H.P., Miller, D.H., Montalbán, X., Barkhof, F., et al. (2012). Effects of interferon β-1b on cognitive performance in patients with a first event suggestive of multiple sclerosis. Mult. Scler. 18, 1466–1471.CrossrefPubMedGoogle Scholar

  • Peyro Saint Paul, L., Creveuil, C., Heinzlef, O., De Seze, J., Vermersch, P., Castelnovo, G., Cabre, P., Debouverie, M., Brochet, B., Dupuy, B., et al. (2016). Efficacy and safety profile of memantine in patients with cognitive impairment in multiple sclerosis: a randomized, placebo-controlled study. J. Neurol. Sci. 363, 69–76.PubMedCrossrefGoogle Scholar

  • Peyser, J.M., Rao, S.M., LaRocca, N.G., and Kaplan, E. (1990). Guidelines for neuropsychological research in multiple sclerosis. Arch. Neurol. 47, 94–97.CrossrefPubMedGoogle Scholar

  • Piras, M.R., Magnano, I., Canu, E.D., Paulus, K.S., Satta, W.M., Soddu, A., Conti, M., Achene, A., Solinas, G., and Aiello, I. (2003). Longitudinal study of cognitive dysfunction in multiple sclerosis: neuropsychological, neuroradiological, and neurophysiological findings. J. Neurol. Neurosurg. Psychiatry 74, 878–885.PubMedCrossrefGoogle Scholar

  • Planche, V., Gibelin, M., Cregut, D., Pereira, B., and Clavelou, P. (2016). Cognitive impairment in a population-based study of patients with multiple sclerosis: differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur. J. Neurol. 23, 282–289.CrossrefGoogle Scholar

  • Polychroniadou, E., Bakirtzis, C., Langdon, D., Lagoudaki, R., Kesidou, E., Theotokis, P., Tsalikakis, D., Poulatsidou, K., Kyriazis, O., Boziki, M., et al. (2016). Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Greek population with multiple sclerosis. Mult. Scler. Relat. Disord. 9, 68–72.CrossrefPubMedGoogle Scholar

  • Portaccio, E., Stromillo, M.L., Goretti, B., Hakiki, B., Giorgio, A., Rossi, F., De Leucio, A., De Stefano, N., and Amato, M.P. (2013). Natalizumab may reduce cognitive changes and brain atrophy rate in relapsing-remitting multiple sclerosis – a prospective, non-randomized pilot study. Eur. J. Neurol. 20, 986–990.CrossrefPubMedGoogle Scholar

  • Potagas, C., Giogkaraki, E., Koutsis, G., Mandellos, D., Tsirempolou, E., Sfagos, C., and Vassilopoulos, D. (2008). Cognitive impairment in different MS subtypes and clinically isolated syndromes. J. Neurol. Sci. 267, 100–106.CrossrefPubMedGoogle Scholar

  • Pöttgen, J., Dziobek, I., Reh, S., Heesen, C., and Gold, S.M. (2013). Impaired social cognition in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 84, 523–528.PubMedCrossrefGoogle Scholar

  • Pozzilli, C., Passafiume, D., Bernardi, S., Pantano, P., Incoccia, C., Bastianello, S., Bozzao, L., Lenzi, G.L., and Fieschi, C. (1991). SPECT, MRI and cognitive functions in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 54, 110–115.CrossrefPubMedGoogle Scholar

  • Preziosa, P., Rocca, M.A., Pagani, E., Stromillo, M.L., Enzinger, C., Gallo, A. Hulst, H.E., Atzori, M., Pareto, D., Riccitelli, G.C., et al. (2016). Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: a multicenter study. Hum. Brain Mapp. 37, 1627–1644.PubMedCrossrefGoogle Scholar

  • Rao, S.M. (1986). Neuropsychology of multiple sclerosis: a critical review. J. Clin. Exp. Neuropsychol. 8, 503–542.PubMedCrossrefGoogle Scholar

  • Rao, S.M. and Cognitive Function Study Group, National Multiple Sclerosis Society. (1990). A manual for the Brief Repeatable Battery of Neuropsychological Tests in multiple sclerosis. (New York: National Multiple Sclerosis Society).Google Scholar

  • Rao, S.M., Leo, G.J., and St. Aubin-Faubert, P. (1989). On the nature of memory disturbance in multiple sclerosis. J. Clin. Exp. Neuropsychol. 11: 699–712.PubMedCrossrefGoogle Scholar

  • Rao, S., Leo, G., Bernardin, L., and Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis: frequency, patterns, and predictions. Neurology 41, 685–691.CrossrefGoogle Scholar

  • Rocca, M.A., Valsasina, P., Hulst, H.E., Abdel-Aziz, K., Enzinger, C., Gallo, A., Pareto, D., Riccitelli, G., Muhlert, N., Ciccarelli, O., et al. (2014). Functional correlates of cognitive dysfunction in multiple sclerosis: a multicenter fMRI study. Hum. Brain Mapp. 35, 5799–5814.CrossrefPubMedGoogle Scholar

  • Rocca, M.A., Amato, M.P., De Stefano, N., Enzinger, C., Geurts, J.J., Penner, I.K., Rovira, A., Sumowski, J.F., Valsasina, P., Filippi, M., et al. (2015). Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 14, 302–317.PubMedCrossrefGoogle Scholar

  • Rojas, J.I., Patrucco, L., Miguez, J., and Cristiano, E. (2016). Brain atrophy in multiple sclerosis: therapeutic, cognitive and clinical impact. Arq. Neuropsiquiatr. 74, 235–243.PubMedCrossrefGoogle Scholar

  • Roosendaal, S.D., Geurts, J.J., Vrenken, H., Hulst, H.E., Cover, K.S., Castelijns, J.A., Pouwels, P.J., and Barkhof, F. (2009). Regional DTI differences in multiple sclerosis patients. Neuroimage 44, 1397–1403.PubMedCrossrefGoogle Scholar

  • Roosendaal, S.D., Moraal, B., Vrenken, H., Castelijns, J.A., Pouwels, P.J., Barkhof, F., and Geurts, J.J. (2008). In vivo MR imaging of hippocampal lesions in multiple sclerosis. J. Magn. Reson. Imaging. 27, 726–731.CrossrefPubMedGoogle Scholar

  • Rosti-Otajärvi, E.M. and Hämäläinen, P.I. (2014). Neuropsychological rehabilitation for multiple sclerosis. Cochrane Database of Systematic Reviews, Issue 2. Art. No.: CD009131.Google Scholar

  • Ruet, A., Deloire, M., Charré-Morin, J., Hamel, D., and Brochet, B. (2013a). Cognitive impairment differs between primary progressive and relapsing-remitting MS. Neurology 80, 1501–1508.CrossrefGoogle Scholar

  • Ruet, A., Deloire, M., Hamel, D., Ouallet, J.C., Petry, K., and Brochet, B. (2013b). Cognitive impairment, health related quality of life and vocational status at early stages of multiple sclerosis: a 7-year longitudinal study. J. Neurol. 260, 776–784.CrossrefGoogle Scholar

  • Sacco, R., Bisecco, A., Corbo, D., Della Corte, M., d’Ambrosio, A., Docimo, R., Gallo, A., Esposito, F., Esposito, S., Cirillo, M., et al. (2015). Cognitive impairment and memory disorders in relapsing-remitting multiple sclerosis: the role of white matter, gray matter and hippocampus. J. Neurol. 262, 1691–1697.CrossrefPubMedGoogle Scholar

  • Sailer, M., Heinze, H.J., Schoenfeld, M.A., Hauser, U., and Smid, H.G. (2000). Amantadine influences cognitive processing in patients with multiple sclerosis. Pharmacopsychiatry 33, 28–37.CrossrefPubMedGoogle Scholar

  • Sandi, D., Rudisch, T., Füvesi, J., Fricska-Nagy, Z., Huszka, H., Biernacki, T., Langdon, D.W., Langane, É., Vécsei, L., and Bencsik, K. (2015). The Hungarian validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) battery and the correlation of cognitive impairment with fatigue and quality of life. Mult. Scler. Relat. Disord. 4, 499–504.PubMedCrossrefGoogle Scholar

  • Sandroff, B.M., Johnson, C.L., and Motl, R.W. (2017). Exercise training effects on memory and hippocampal viscoelasticity in multiple sclerosis: a novel application of magnetic resonance elastography. Neuroradiology 59, 61–67.CrossrefPubMedGoogle Scholar

  • Santos, T., Pinheiro, J., and Barros, P. (2015). Cognitive Impairment in Multiple Sclerosis. Eur. Neurol. Rev. 10, 157–163.CrossrefGoogle Scholar

  • Schoonheim, M.M., Geurts, J.J., and Barkhof, F. (2010). The limits of functional reorganization in multiple sclerosis. Neurology 74, 1246–1247.CrossrefPubMedGoogle Scholar

  • Schoonheim, M.M., Geurts, J.J., Landi, D., Douw, L., van der Meer, M.L., Vrenken, H., Polman, C.H., Barkhof, F., and Stam, C.J. (2013). Functional connectivity changes in multiple sclerosis patients: a graph analytical study of MEG resting state data. Hum. Brain Mapp. 34, 52–61.PubMedCrossrefGoogle Scholar

  • Schoonheim, M.M., Meijer, K.A., and Geurts, J.J. (2015). Network collapse and cognitive impairment in multiple sclerosis. Front. Neurol. 6, 82.PubMedGoogle Scholar

  • Schoonheim, M.M., Vigeveno, R.M., Rueda Lopes, F.C., Pouwels, P.J., Polman, C.H., Barkhof, F., and Geurts, J.J. (2014). Sex-specific extent and severity of white matter damage in multiple sclerosis: implications for cognitive decline. Hum. Brain Mapp. 35, 2348–2358.PubMedCrossrefGoogle Scholar

  • Schwid, S.R., Goodman, A.D., Weinstein, A., McDermott, M.P., Johnson, K.P., and Copaxone Study Group. (2007). Cognitive function in relapsing multiple sclerosis: minimal changes in a 10-year clinical trial. J. Neurol. Sci. 255, 57–63.CrossrefGoogle Scholar

  • Shatil, E., Metzer, A., Horvitz, O., and Miller, A. (2010). Home-based personalized cognitive training in MS patients: a study of adherence and cognitive performance. NeuroRehabil. 26, 143–153.Google Scholar

  • Shi, J., Tu, J.L., Gale, S.D., Baxter, L., Vollmer, T.L., Campagnolo, D.I., Tyry, T.M., Zhuang, Y., and Kuniyoshi, S.M. (2011). APOE ε4 is associated with exacerbation of cognitive decline in patients with multiple sclerosis. Cogn. Behav. Neurol. 24, 128–133.PubMedCrossrefGoogle Scholar

  • Shkil‘niuk, G.G., Il‘ves, A.G., Prakhova, L.N., Kataeva, G.V., and Stolirov, I.D. (2013). PET-patterns of cognitive impairment in patients with multiple sclerosis. Zh. Nevrol. Psikhiatr. Im. S S Korsakova 113, 53–56.PubMedGoogle Scholar

  • Siegert, R.J. and Abernethy, D.A. (2005). Depression in multiple sclerosis: a review. J. Neurol. Neurosurg. Psychiatry. 76, 469–475.PubMedCrossrefGoogle Scholar

  • Staples, D. and Lincoln, N.B. (1979). Intellectual impairment in multiple sclerosis and its relation to functional abilities. Rheumatol. Rehabil. 18, 153–160.CrossrefPubMedGoogle Scholar

  • Strober, L., Englert, J., Munschauer, F., Weinstock-Guttman, B., Rao, S., and Benedict, R.H. (2009). Sensitivity of conventional memory tests in multiple sclerosis: comparing the Rao Brief Repeatable Neuropsychological Battery and the Minimal Assessment of Cognitive Function in MS. Mult. Scler. 15, 1077–1084.PubMedCrossrefGoogle Scholar

  • Sumowski, J.F. and Leavitt, V.M. (2013). Cognitive reserve in multiple sclerosis. Mult. Scler. 19, 1122–1127.CrossrefPubMedGoogle Scholar

  • Sundgren, M., Piehl, F., Wahlin, Å., and Brismar, T. (2016). Cognitive function did not improve after initiation of natalizumab treatment in relapsing-remitting multiple sclerosis. A prospective one-year dual control group study. Mult. Scler. Relat. Disord. 10, 36–43.CrossrefPubMedGoogle Scholar

  • Thornton, A.E., Raz, N., and Tucke, K.A. (2002). Memory in multiple sclerosis: contextual encoding deficits. J. Int. Neuropsychol. 8, 395–409.CrossrefGoogle Scholar

  • Triche, E.W., Ruiz, J.A., Olson, K.M., and Lo, A.C. (2016). Changes in cognitive processing speed, mood, and fatigue in an observational study of persons with multiple sclerosis treated with dalfampridine-ER. Clin. Neuropharmacol. 39, 73–80.CrossrefGoogle Scholar

  • van Munster, C.E., Jonkman, L.E., Weinstein, H.C., Uitdehaag, B.M., and Geurts, J.J. (2015). Gray matter damage in multiple sclerosis: impact on clinical symptoms. Neuroscience 303, 446–461.PubMedCrossrefGoogle Scholar

  • Van Schependom, J., Gielen, J., Laton, J., D’hooghe, M.B., De Keyser, J., and Nagels, G. (2014). Graph theoretical analysis indicates cognitive impairment in MS stems from neural disconnection. Neuroimage Clin. 4, 403–410.CrossrefPubMedGoogle Scholar

  • Van Schependom, J., D‘hooghe, M.B., Cleynhens, K., D’hooge, M., Haelewyck, M.C., De Keyser, J., and Nagels, G. (2015). Reduced information processing speed as primum movens for cognitive decline in MS. Mult. Scler. 21, 83–91.PubMedCrossrefGoogle Scholar

  • Vleugels, L., Lafosse, C., van Nunen, A., Nachtergaele, S., Ketelaer, P., Charlier, M., and Vandenbussche, E. (2000). Visuospatial impairment in multiple sclerosis patients diagnosed with neuropsychological tasks. Mult. Scler. 6, 241–254.CrossrefGoogle Scholar

  • Vogt, A., Kappos, L., Calabrese, P., Stocklin, M., Gschwind, L., Opwis, K., and Penner, I.K. (2009). Working memory training in patients with multiple sclerosis – comparison of two different training schedules. Restor. Neurol. Neurosci. 27, 225–235.PubMedGoogle Scholar

  • Waxman, S.G. (1982). Membranes, myelin, and the pathophysiology of multiple sclerosis. N. Engl. J. Med. 306, 1529–1533.PubMedCrossrefGoogle Scholar

  • Wegener, S., Marx, I., and Zettl, U.K. (2013). Cognitive deficits and dementia in patients with multiple sclerosis: status quo and open questions. Fortschr. Neurol. Psychiatr. 81, 639–647.PubMedGoogle Scholar

  • Weinstein, A., Schwid, S.I.L., Schiffer, R.B., McDermott, M.P., Giang, D.W., and Goodman, A.D. (1999). Neuropsychologic status in multiple sclerosis after treatment with Glatiramer. Arch. Neurol. 56, 319–324.CrossrefPubMedGoogle Scholar

  • Weinstock-Guttman, B., Benedict, R.H., Tamaño-Blanco, M., Ramasamy, D.P., Stosic, M., Polito, J., Zivadinov, R., and Ramanathan, M. (2011). The rs2030324 SNP of brain-derived neurotrophic factor (BDNF) is associated with visual cognitive processing in multiple sclerosis. Pathophysiology 18, 43–52.PubMedCrossrefGoogle Scholar

  • Weinstock-Guttman, B., Galetta, S.L., Giovannoni, G., Havrdova, E., Hutchinson, M., Kappos, L., O’Connor, P.W., Phillips, J.T., Polman, C., Stuart, W.H., et al. (2012). Additional efficacy endpoints from pivotal natalizumab trials in relapsing-remitting MS. J. Neurol. 259, 898–905.PubMedCrossrefGoogle Scholar

  • Wilken, J., Kane, R.L., Sullivan., C.L., Gudesblatt, M., Lucas, S., Fallis, R., You, X., and Foulds, P. (2013). Changes in fatigue and cognition in patients with relapsing forms of multiple sclerosis treated with natalizumab: the ENER-G study. Int. J. MS Care. 15, 120–128.CrossrefPubMedGoogle Scholar

  • Winkelmann, A., Engel, C., Apel, A., and Zettl, U.K. (2007). Cognitive impairment in multiple sclerosis. J. Neurol. 254(Suppl. 2), II35–II42.Google Scholar

  • Zipoli, V., Goretti, B., Hakiki, B., Siracusa, G., Sorbi, S., Portaccio, E., and Amato, M.P. (2010). Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult. Scler. 16, 62–67.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-02-08

Accepted: 2017-05-19

Published Online: 2017-08-08

Published in Print: 2017-11-27

Citation Information: Reviews in the Neurosciences, Volume 28, Issue 8, Pages 845–860, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0011.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alham Al-Sharman, Hanan Khalil, Mohammad Nazzal, Nihaya Al-Sheyab, Alia Alghwiri, Khalid El-Salem, and Mais AlDughmi
Physiotherapy Research International, 2018, Page e1709
Heidi Maloni
The Journal for Nurse Practitioners, 2018

Comments (0)

Please log in or register to comment.
Log in