Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 28, Issue 8

Issues

The role of ubiquitin proteasomal system and autophagy-lysosome pathway in Alzheimer’s disease

Yuan Zhang
  • Corresponding author
  • Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, P.R. China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xu Chen
  • Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yanfang Zhao
  • Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Murugavel Ponnusamy
  • Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ying Liu
  • Institute for Translational Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, P.R. China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-07-12 | DOI: https://doi.org/10.1515/revneuro-2017-0013

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disorder leading to dementia in the elderly population. AD is associated with the buildup of β-amyloid and tau, which aggregate into extracellular plaques and neurofibrillary tangles. Although the exact mechanism of pathological process of AD is unclear, the dysfunction of protein degradation mechanisms has been proposed to play an important role in AD. The cellular degradation of abnormal or misfolded proteins consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy-lysosomal pathway (ALP), and interaction of molecular chaperones with UPS or ALP. Any disturbance to these systems causes proteins to accumulate, resulting in pathological process of AD. In this review, we summarize the knowledge of protein degradation pathways in the pathogenesis of AD in light of the current literature. In the future, the regulation UPS or ALP machineries could be the cornerstones of the treatment of AD.

Keywords: β-amyloid; Alzheimer disease; autophagy-lysosomal pathway; tau; ubiquitin proteasomal system

References

  • Blair, L.J., Sabbagh, J.J., and Dickey, C.A. (2014). Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin. Ther. Targets 18, 1219–1232.CrossrefPubMedGoogle Scholar

  • Caccamo, A., Magri, A., Medina, D.X., Wisely, E.V., Lopez-Aranda, M.F., Silva, A.J., and Oddo, S. (2013). mTOR regulates tau phosphorylation and degradation: implications for Alzheimer’s disease and other tauopathies. Aging Cell 12, 370–380.PubMedCrossrefGoogle Scholar

  • Calvo-Rodriguez, M., de la Fuente, C., Garcia-Durillo, M., Garcia-Rodriguez, C., Villalobos, C., and Nunez, L. (2017). Aging and amyloid β oligomers enhance TLR4 expression, LPS-induced Ca2+ responses, and neuron cell death in cultured rat hippocampal neurons. J. Neuroinflammation 14, 24.PubMedCrossrefGoogle Scholar

  • Cheng, B., Anand, P., Kuang, A., Akhtar, F., and Scofield, V.L. (2016). N-Acetylcysteine in combination with IGF-1 enhances neuroprotection against proteasome dysfunction-induced neurotoxicity in SH-SY5Y cells. Parkinson’s Dis. 2016, 6564212.Google Scholar

  • Choi, J., Gao, J., Kim, J., Hong, C., Kim, J., and Tontonoz, P. (2015). The E3 ubiquitin ligase Idol controls brain LDL receptor expression, ApoE clearance, and Abeta amyloidosis. Sci. Transl. Med. 7, 314ra184.CrossrefPubMedGoogle Scholar

  • Cripps, D., Thomas, S.N., Jeng, Y., Yang, F., Davies, P., and Yang, A.J. (2006). Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48, Lys-11, and Lys-6 ubiquitin conjugation. J. Biol. Chem. 281, 10825–10838.PubMedCrossrefGoogle Scholar

  • Friedman, L.G., Qureshi, Y.H., and Yu, W.H. (2015). Promoting autophagic clearance: viable therapeutic targets in Alzheimer’s disease. Neurotherapeutics 12, 94–108.PubMedCrossrefGoogle Scholar

  • Gadhave, K., Bolshette, N., Ahire, A., Pardeshi, R., Thakur, K., Trandafir, C., Istrate, A., Ahmed, S., Lahkar, M., Muresanu, D.F., et al. (2016). The ubiquitin proteasomal system: a potential target for the management of Alzheimer’s disease. J. Cell. Mol. Med. 20, 1392–1407.PubMedCrossrefGoogle Scholar

  • Gentier, R.J. and van Leeuwen, F.W. (2015). Misframed ubiquitin and impaired protein quality control: an early event in Alzheimer’s disease. Front. Mol. Neurosci. 8, 47.PubMedGoogle Scholar

  • Gentier, R.J., Verheijen, B.M., Zamboni, M., Stroeken, M.M., Hermes, D.J., Kusters, B., Steinbusch, H.W., Hopkins, D.A., and Van Leeuwen, F.W. (2015). Localization of mutant ubiquitin in the brain of a transgenic mouse line with proteasomal inhibition and its validation at specific sites in Alzheimer’s disease. Front. Neuroanat. 9, 26.PubMedGoogle Scholar

  • Gerakis, Y., Dunys, J., Bauer, C., and Checler, F. (2016). Abeta42 oligomers modulate beta-secretase through an XBP-1s-dependent pathway involving HRD1. Sci. Rep. 6, 37436.PubMedCrossrefGoogle Scholar

  • Guglielmotto, M., Monteleone, D., Boido, M., Piras, A., Giliberto, L., Borghi, R., Vercelli, A., Fornaro, M., Tabaton, M. and Tamagno, E. (2012). Aβ1-42-mediated down-regulation of Uch-L1 is dependent on NF-κB activation and impaired BACE1 lysosomal degradation. Aging Cell 11, 834–844.CrossrefPubMedGoogle Scholar

  • Guo, J.L. and Lee, V.M. (2011). Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286, 15317–15331.CrossrefPubMedGoogle Scholar

  • Hamano, T., Gendron, T.F., Causevic, E., Yen, S.H., Lin, W.L., Isidoro, C., Deture, M., and Ko, L.W. (2008). Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur. J. Neurosci. 27, 1119–1130.CrossrefPubMedGoogle Scholar

  • Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., et al. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889.CrossrefPubMedGoogle Scholar

  • Hong, L., Huang, H.C., and Jiang, Z.F. (2014). Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer’s disease. Neurol. Res. 36, 276–282.PubMedCrossrefGoogle Scholar

  • Jansen, A.H., Reits, E.A., and Hol, E.M. (2014). The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front. Mol. Neurosci. 7, 73.PubMedGoogle Scholar

  • Jo, C., Gundemir, S., Pritchard, S., Jin, Y.N., Rahman, I., and Johnson, G.V. (2014). Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496.PubMedGoogle Scholar

  • Kaneko, M., Koike, H., Saito, R., Kitamura, Y., Okuma, Y., and Nomura, Y. (2010). Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-β generation. J. Neurosci. 30, 3924–3932.PubMedCrossrefGoogle Scholar

  • Khandelwal, P.J., Herman, A.M., Hoe, H.S., Rebeck, G.W., and Moussa, C.E. (2011). Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models. Hum. Mol. Genet. 20, 2091–2102.PubMedCrossrefGoogle Scholar

  • Kim, S.I., Lee, W.K., Kang, S.S., Lee, S.Y., Jeong, M.J., Lee, H.J., Kim, S.S., Johnson, G.V., and Chun, W. (2011). Suppression of autophagy and activation of glycogen synthase kinase 3β facilitate the aggregate formation of tau. Korean J. Physiol. Pharmacol. 15, 107–114.CrossrefPubMedGoogle Scholar

  • Kizilarslanoglu, M.C. and Ulger, Z. (2015). Role of autophagy in the pathogenesis of Alzheimer disease. Turk. J. Med. Sci. 45, 998–1003.PubMedCrossrefGoogle Scholar

  • Lamoke, F., Mazzone, V., Persichini, T., Maraschi, A., Harris, M.B., Venema, R.C., Colasanti, M., Gliozzi, M., Muscoli, C., Bartoli, M., et al. (2015). Amyloid beta peptide-induced inhibition of endothelial nitric oxide production involves oxidative stress-mediated constitutive eNOS/HSP90 interaction and disruption of agonist-mediated Akt activation. J. Neuroinflammation 12, 84.CrossrefPubMedGoogle Scholar

  • Lecker, S.H., Goldberg, A.L., and Mitch, W.E. (2006). Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J. Am. Soc. Nephrol. 17, 1807–1819.CrossrefPubMedGoogle Scholar

  • Lee, J.H., Yu, W.H., Kumar, A., Lee, S., Mohan, P.S., Peterhoff, C.M., Wolfe, D.M., Martinez-Vicente, M., Massey, A.C., Sovak, G., et al. (2010). Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158.PubMedCrossrefGoogle Scholar

  • Li, Q., Liu, Y., and Sun, M. (2017). Autophagy and Alzheimer’s disease. Cell. Mol. Neurobiol. 37, 377–388.PubMedCrossrefGoogle Scholar

  • Ling, D., Magallanes, M., and Salvaterra, P.M. (2014). Accumulation of amyloid-like Abeta1-42 in AEL (autophagy-endosomal-lysosomal) vesicles: potential implications for plaque biogenesis. ASN Neuro 6, e00139.PubMedGoogle Scholar

  • Liu, X., Hao, W., Qin, Y., Decker, Y., Wang, X., Burkart, M., Schotz, K., Menger, M.D., Fassbender, K., and Liu, Y. (2015a). Long-term treatment with Ginkgo biloba extract EGb 761 improves symptoms and pathology in a transgenic mouse model of Alzheimer’s disease. Brain Behav. Immun. 46, 121–131.CrossrefGoogle Scholar

  • Liu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., and Wei, J. (2015b). The ambiguous relationship of oxidative stress, Tau hyperphosphorylation, and autophagy dysfunction in Alzheimer’s disease. Oxid. Med. Cell. Longev. 2015, 352723.Google Scholar

  • Lonskaya, I., Shekoyan, A.R., Hebron, M.L., Desforges, N., Algarzae, N.K., and Moussa, C.E. (2013). Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer’s disease. J. Alzheimer’s Dis. JAD 33, 231–247.Google Scholar

  • Lonskaya, I., Hebron, M.L., Desforges, N.M., Schachter, J.B., and Moussa, C.E. (2014). Nilotinib-induced autophagic changes increase endogenous parkin level and ubiquitination, leading to amyloid clearance. J. Mol. Med. 92, 373–386.PubMedCrossrefGoogle Scholar

  • Ma, L.Y., Lv, Y.L., Huo, K., Liu, J., Shang, S.H., Fei, Y.L., Li, Y.B., Zhao, B.Y., Wei, M., Deng, Y.N., et al. (2017). Autophagy-lysosome dysfunction is involved in Aβ deposition in STZ-induced diabetic rats. Behav. Brain Res. 320, 484–493.CrossrefPubMedGoogle Scholar

  • Matej, R., Rohan, Z., Holada, K., and Olejar, T. (2015). The contribution of proteinase-activated receptors to intracellular signaling, transcellular transport and autophagy in Alzheimer’s disease. Curr. Alzheimer Res. 12, 2–12.PubMedCrossrefGoogle Scholar

  • McKinnon, C. and Tabrizi, S.J. (2014). The ubiquitin-proteasome system in neurodegeneration. Antioxid. Redox Signal. 21, 2302–2321.CrossrefPubMedGoogle Scholar

  • Myeku, N., Clelland, C.L., Emrani, S., Kukushkin, N.V., Yu, W.H., Goldberg, A.L., and Duff, K.E. (2016). Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling. Nat. Med. 22, 46–53.PubMedGoogle Scholar

  • Necchi, D., Lomoio, S., and Scherini, E. (2011). Dysfunction of the ubiquitin-proteasome system in the cerebellum of aging Ts65Dn mice. Exp. Neurol. 232, 114–118.PubMedCrossrefGoogle Scholar

  • Nilsson, P. and Saido, T.C. (2014). Dual roles for autophagy: degradation and secretion of Alzheimer’s disease Abeta peptide. BioEssays 36, 570–578.CrossrefPubMedGoogle Scholar

  • Nixon, R.A. and Yang, D.S. (2011). Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol. Dis. 43, 38–45.CrossrefPubMedGoogle Scholar

  • Penke, B., Bogar, F., and Fulop, L. (2016). Protein folding and misfolding, endoplasmic reticulum stress in neurodegenerative diseases: in trace of novel drug targets. Curr. Protein Peptide Sci. 17, 169–182.CrossrefGoogle Scholar

  • Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P.A., Small, S., Spencer, B., Rockenstein, E., Levine, B., et al. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J. Clin. Invest. 118, 2190–2199.PubMedGoogle Scholar

  • Qu, A., Huang, F., Li, A., Yang, H., Zhou, H., Long, J., and Shi, L. (2017). The synergistic effect between KLVFF and self-assembly chaperones on both disaggregation of β-amyloid fibrils and reducing consequent toxicity. Chem. Commun. 53, 1289–1292.CrossrefGoogle Scholar

  • Querfurth, H.W. and LaFerla, F.M. (2010). Alzheimer’s disease. N. Engl. J. Med. 362, 329–344.CrossrefPubMedGoogle Scholar

  • Renziehausen, J., Hiebel, C., Nagel, H., Kundu, A., Kins, S., Kogel, D., Behl, C., and Hajieva, P. (2015). The cleavage product of amyloid-β protein precursor sAβPPα modulates BAG3-dependent aggresome formation and enhances cellular proteasomal activity. J. Alzheimer’s Dis. 44, 879–896.Google Scholar

  • Rosso, P., Moreno, S., Fracassi, A., Rocco, M.L., and Aloe, L. (2015). Nerve growth factor and autophagy: effect of nasal anti-NGF-antibodies administration on Ambra1 and Beclin-1 expression in rat brain. Growth Factors 33, 401–409.CrossrefPubMedGoogle Scholar

  • Saito, R., Kaneko, M., Okuma, Y., and Nomura, Y. (2010). Correlation between decrease in protein levels of ubiquitin ligase HRD1 and amyloid-beta production. J. Pharmacol. Sci. 113, 285–288.CrossrefPubMedGoogle Scholar

  • Sakono, M. and Zako, T. (2010). Amyloid oligomers: formation and toxicity of Abeta oligomers. FEBS J. 277, 1348–1358.CrossrefPubMedGoogle Scholar

  • Sala, G., Marinig, D., Arosio, A., and Ferrarese, C. (2016). Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson’s disease. Front. Mol. Neurosci. 9, 157.PubMedGoogle Scholar

  • Shen, J. and Kelleher, R.J., 3rd. (2007). The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc. Natl. Acad. Sci. USA 104, 403–409.CrossrefGoogle Scholar

  • Singh, A.K. and Pati, U. (2015). CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of β-secretase. Aging Cell 14, 595–604.PubMedCrossrefGoogle Scholar

  • Son, S.M., Shin, H.J., Byun, J., Kook, S.Y., Moon, M., Chang, Y.J., and Mook-Jung, I. (2016). Metformin facilitates amyloid-beta generation by beta- and gamma-secretases via autophagy activation. J. Alzheimer’s Dis. 51, 1197–1208.CrossrefGoogle Scholar

  • Song, S., Kim, S.Y., Hong, Y.M., Jo, D.G., Lee, J.Y., Shim, S.M., Chung, C.W., Seo, S.J., Yoo, Y.J., Koh, J.Y., et al. (2003). Essential role of E2-25K/Hip-2 in mediating amyloid-beta neurotoxicity. Mol. Cell 12, 553–563.CrossrefPubMedGoogle Scholar

  • Song, S., Lee, H., Kam, T.I., Tai, M.L., Lee, J.Y., Noh, J.Y., Shim, S.M., Seo, S.J., Kong, Y.Y., Nakagawa, T., et al. (2008). E2-25K/Hip-2 regulates caspase-12 in ER stress-mediated Aβ neurotoxicity. J. Cell Biol. 182, 675–684.PubMedCrossrefGoogle Scholar

  • Takashima, A. (2010). Tau aggregation is a therapeutic target for Alzheimer’s disease. Curr. Alzheimer Res. 7, 665–669.PubMedCrossrefGoogle Scholar

  • Tanaka, K. and Matsuda, N. (2014). Proteostasis and neurodegeneration: the roles of proteasomal degradation and autophagy. Biochim. Biophys. Acta 1843, 197–204.PubMedCrossrefGoogle Scholar

  • Tanokashira, D., Mamada, N., Yamamoto, F., Taniguchi, K., Tamaoka, A., Lakshmana, M.K., and Araki, W. (2017). The neurotoxicity of amyloid beta-protein oligomers is reversible in a primary neuron model. Mol. Brain 10, 4.CrossrefGoogle Scholar

  • Tramutola, A., Di Domenico, F., Barone, E., Perluigi, M., and Butterfield, D.A. (2016). It is all about (u)biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxid. Med. Cell. Longev. 2016, 2756068.PubMedGoogle Scholar

  • Ugalde, C.L., Finkelstein, D.I., Lawson, V.A., and Hill, A.F. (2016). Pathogenic mechanisms of prion protein, amyloid-beta and alpha-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J. Neurochem. 139, 162–180.CrossrefPubMedGoogle Scholar

  • Viola, K.L. and Klein, W.L. (2015). Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 129, 183–206.CrossrefPubMedGoogle Scholar

  • Vriend, J., Ghavami, S., and Marzban, H. (2015). The role of the ubiquitin proteasome system in cerebellar development and medulloblastoma. Mol. Brain 8, 64.CrossrefPubMedGoogle Scholar

  • Wang, Y. and Mandelkow, E. (2012). Degradation of tau protein by autophagy and proteasomal pathways. Biochem. Soc. Trans. 40, 644–652.PubMedCrossrefGoogle Scholar

  • Wang, C., Zhang, X., Teng, Z., Zhang, T., and Li, Y. (2014). Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice. Eur. J. Pharmacol. 740, 312–320.CrossrefPubMedGoogle Scholar

  • Wolfe, D.M., Lee, J.H., Kumar, A., Lee, S., Orenstein, S.J., and Nixon, R.A. (2013). Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur. J. Neurosci. 37, 1949–1961.CrossrefPubMedGoogle Scholar

  • Xue, X., Wang, L.R., Sato, Y., Jiang, Y., Berg, M., Yang, D.S., Nixon, R.A., and Liang, X.J. (2014). Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of Alzheimer’s disease. Nano Lett. 14, 5110–5117.CrossrefPubMedGoogle Scholar

  • Yurinskaya, M.M., Mit’kevich, V.A., Evgen’ev, M.B., Makarov, A.A., and Vinokurov, M.G. (2016). Heat-shock protein HSP70 reduces the secretion of TNFα by neuroblastoma cells and human monocytes induced with beta-amyloid peptides. Mol. Biol. 50, 1053–1056.Google Scholar

  • Zhang, M., Deng, Y., Luo, Y., Zhang, S., Zou, H., Cai, F., Wada, K., and Song, W. (2012a). Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J. Neurochem. 120, 1129–1138.Google Scholar

  • Zhang, X., Garbett, K., Veeraraghavalu, K., Wilburn, B., Gilmore, R., Mirnics, K., and Sisodia, S.S. (2012b). A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32, 8633–8648.CrossrefGoogle Scholar

  • Zhang, M., Cai, F., Zhang, S., Zhang, S., and Song, W. (2014). Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci. Rep. 4, 7298.PubMedGoogle Scholar

About the article

Yuan Zhang and Xu Chen: These authors contributed equally to this work.


Received: 2017-02-16

Accepted: 2017-04-21

Published Online: 2017-07-12

Published in Print: 2017-11-27


Citation Information: Reviews in the Neurosciences, Volume 28, Issue 8, Pages 861–868, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0013.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Thomas W. Rösler, Amir Tayaranian Marvian, Matthias Brendel, Niko-Petteri Nykänen, Matthias Höllerhage, Sigrid C. Schwarz, Franziska Hopfner, Thomas Koeglsperger, Gesine Respondek, Kerstin Schweyer, Johannes Levin, Victor L. Villemagne, Henryk Barthel, Osama Sabri, Ulrich Müller, Wassilios G. Meissner, Gabor G. Kovacs, and Günter U. Höglinger
Progress in Neurobiology, 2019, Page 101644
[2]
Brandon F. Maziuk, Daniel J. Apicco, Anna Lourdes Cruz, Lulu Jiang, Peter E. A. Ash, Edroaldo Lummertz da Rocha, Cheng Zhang, Wai Haung Yu, John Leszyk, Jose F. Abisambra, Hu Li, and Benjamin Wolozin
Acta Neuropathologica Communications, 2018, Volume 6, Number 1
[3]
Gabriella Testa, Erica Staurenghi, Serena Giannelli, Simona Gargiulo, Michela Guglielmotto, Massimo Tabaton, Elena Tamagno, Paola Gamba, and Gabriella Leonarduzzi
Redox Biology, 2018
[4]
Michaela Press, Tobias Jung, Jeannette König, Tilman Grune, and Annika Höhn
Mechanisms of Ageing and Development, 2018

Comments (0)

Please log in or register to comment.
Log in