Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 29, Issue 4


Neuroanatomy of conversion disorder: towards a network approach

Ismael Conejero
  • Corresponding author
  • Department of Psychiatry, CHU de Nîmes, Place du Professeur Robert Debré, F-30900 Nîmes, France
  • University of Montpellier, F-34090 Montpellier, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eric Thouvenot
  • University of Montpellier, F-34090 Montpellier, France
  • Department of Neurology, CHU de Nîmes, F-30900 Nîmes, France
  • Institut de Génomique Fonctionnelle, UMR5203, Université de Montpellier, F-34295 Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mocrane Abbar
  • Department of Psychiatry, CHU de Nîmes, Place du Professeur Robert Debré, F-30900 Nîmes, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stéphane Mouchabac
  • Department of Psychiatry, Assistance Publique, Hôpitaux de Paris, Hopital Saint Antoine, F-75012 Paris, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Philippe Courtet
  • University of Montpellier, F-34090 Montpellier, France
  • Department of Emergency Psychiatry and Post-Acute Care, Hôpital Lapeyronie, CHU de Montpellier, F-34295 Montpellier, France
  • Inserm Unit 1061 ‘Neuropsychiatry: Epidemiological and Clinical Research’, F-34295 Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emilie Olié
  • University of Montpellier, F-34090 Montpellier, France
  • Department of Emergency Psychiatry and Post-Acute Care, Hôpital Lapeyronie, CHU de Montpellier, F-34295 Montpellier, France
  • Inserm Unit 1061 ‘Neuropsychiatry: Epidemiological and Clinical Research’, F-34295 Montpellier, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-19 | DOI: https://doi.org/10.1515/revneuro-2017-0041


The pathophysiology of conversion disorder is not well understood, although studies using functional brain imaging in patients with motor and sensory symptoms are progressively increasing. We conducted a systematic review of the literature with the aim of summarising the available data on the neuroanatomical features of this disorder. We also propose a general model of the neurobiological disturbance in motor conversion disorder. We systematically searched articles in Medline using the Medical Subject Headings terms ‘(conversion disorder or hysterical motor disorder) and (neuropsychology or cognition) or (functional magnetic resonance imaging or positron emission tomography or neuroimaging) or (genetics or polymorphisms or epigenetics) or (biomarkers or biology)’, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Two authors independently reviewed the retrieved records and abstracts, assessed the exhaustiveness of data abstraction, and confirmed the quality rating. Analysis of the available literature data shows that multiple specialised brain networks (self-agency, action monitoring, salience system, and memory suppression) influence action selection and modulate supplementary motor area activation. Some findings suggest that conceptualisation of movement and motor intention is preserved in patients with limb weakness. More studies are needed to fully understand the brain alterations in conversion disorders and pave the way for the development of effective therapeutic strategies.

Keywords: conversion disorder; functional neurological symptoms; neuroimaging; pathophysiology; psychogenic movement disorder


  • American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition: DSM-5. (Washington, DC: American Psychiatric Association).Google Scholar

  • Anderson, M.C., Ochsner, K.N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S.W., Glover, G.H., and Gabrieli, J.D. (2004). Neural systems underlying the suppression of unwanted memories. Science 303, 232–235.CrossrefPubMedGoogle Scholar

  • Arthuis, M., Micoulaud-Franchi, J.A., Bartolomei, F., McGonigal, A., and Guedj, E. (2015). Resting cortical PET metabolic changes in psychogenic non-epileptic seizures (PNES). J. Neurol. Neurosurg. Psychiatry 86, 1106–1112.PubMedCrossrefGoogle Scholar

  • Atmaca, M., Aydin, A., Tezcan, E., Poyraz, A.K., and Kara, B. (2006). Volumetric investigation of brain regions in patients with conversion disorder. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 30, 708–713.CrossrefGoogle Scholar

  • Atmaca, M., Baykara, S., Mermi, O., Yildirim, H., and Akaslan, U. (2015). Pituitary volumes are changed in patients with conversion disorder. Brain Imaging Behav. 10, 92–95.Google Scholar

  • Aybek, S., Nicholson, T.R.J., Draganski, B., Daly, E., Murphy, D.G., David, A.S., and Kanaan, R.A. (2014a). Grey matter changes in motor conversion disorder. J. Neurol. Neurosurg. Psychiatry 85, 236–238.CrossrefGoogle Scholar

  • Aybek, S., Nicholson, T.R., Zelaya, F., O’Daly, O.G., Craig, T.J., David, A.S., and Kanaan, R.A. (2014b). Neural correlates of recall of life events in conversion disorder. J. Am. Med. Assoc. Psychiatry 71, 52–60.Google Scholar

  • Aybek, S., Nicholson, T.R., O’Daly, O., Zelaya, F., Kanaan, R.A., and David, A.S. (2015). Emotion-motion interactions in conversion disorder: an FMRI study. PLoS One 10, e0123273.CrossrefPubMedGoogle Scholar

  • Becker, B., Scheele, D., Moessner, R., Maier, W., and Hurlemann, R. (2013). Deciphering the neural signature of conversion blindness. Am. J. Psychiatry 170, 121–122.CrossrefPubMedGoogle Scholar

  • Benoit, R.G. and Anderson, M.C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron 76, 450–460.PubMedCrossrefGoogle Scholar

  • Biane, J.S., Takashima, Y., Scanziani, M., Conner, J.M., and Tuszynski, M.H. (2016). Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron 89, 1173–1179.CrossrefPubMedGoogle Scholar

  • Bickford, M.E. (2016). Thalamic circuit diversity: modulation of the driver/modulator framework. Front. Neural Circuits 9, 86.PubMedGoogle Scholar

  • Blakemore, S.J., Goodbody, S.J., and Wolpert, D.M. (1998). Predicting the consequences of our own actions: the role of sensorimotor context estimation. J. Neurosci. 18, 7511–7518.PubMedCrossrefGoogle Scholar

  • Bonini, F., Burle, B., Liégeois-Chauvel, C., Régis, J., Chauvel, P., and Vidal, F. (2014). Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343, 888–891.CrossrefPubMedGoogle Scholar

  • Breuer, J., Freud, S., and Strachey, J. (2000). Studies on Hysteria (New York: Basic Books).Google Scholar

  • Brown, L.B., Nicholson, T.R., Aybek, S., Kanaan, R.A., and David, A.S. (2014). Neuropsychological function and memory suppression in conversion disorder. J. Neuropsychol. 8, 171–185.PubMedCrossrefGoogle Scholar

  • Burgmer, M., Konrad, C., Jansen, A., Kugel, H., Sommer, J., Heindel, W., Ringelstein, E.B., Heuft, G., and Knecht, S. (2006). Abnormal brain activation during movement observation in patients with conversion paralysis. NeuroImage 29, 1336–1343.PubMedCrossrefGoogle Scholar

  • Burke, M.J., Ghaffar, O., Staines, W.R., Downar, J., and Feinstein, A. (2014). Functional neuroimaging of conversion disorder: the role of ancillary activation. NeuroImage Clin. 6, 333–339.CrossrefPubMedGoogle Scholar

  • Carson, A.J., Ringbauer, B., Stone, J., McKenzie, L., Warlow, C., and Sharpe, M. (2000). Do medically unexplained symptoms matter? A prospective cohort study of 300 new referrals to neurology outpatient clinics. J. Neurol. Neurosurg. Psychiatry 68, 207–210.CrossrefGoogle Scholar

  • Chambon, V., Wenke, D., Fleming, S.M., Prinz, W., and Haggard, P. (2013). An online neural substrate for sense of agency. Cereb. Cortex 23, 1031–1037.CrossrefPubMedGoogle Scholar

  • Cojan, Y., Waber, L., Carruzzo, A., and Vuilleumier, P. (2009). Motor inhibition in hysterical conversion paralysis. NeuroImage 47, 1026–1037.PubMedCrossrefGoogle Scholar

  • Craig, A.D. (2009). How do you feel – now? the anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70.PubMedCrossrefGoogle Scholar

  • Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., and Beckmann, C.F. (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 103, 13848–13853.CrossrefGoogle Scholar

  • de Lange, F., Roelofs, K., and Toni, I. (2007). Increased self-monitoring during imagined movements in conversion paralysis. Neuropsychologia 45, 2051–2058.CrossrefPubMedGoogle Scholar

  • de Lange, F.P., Roelofs, K., and Toni, I. (2008). Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex 44, 494–506.CrossrefPubMedGoogle Scholar

  • de Lange, F.P., Toni, I., and Roelofs, K. (2010). Altered connectivity between prefrontal and sensorimotor cortex in conversion paralysis. Neuropsychologia 48, 1782–1788.PubMedCrossrefGoogle Scholar

  • Ghaffar, O., Staines, W.R., and Feinstein, A. (2006). Unexplained neurologic symptoms: an fMRI study of sensory conversion disorder. Neurology 67, 2036–2038.PubMedCrossrefGoogle Scholar

  • Goldberg, I.I., Harel, M., and Malach, R. (2006). When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50, 329–339.PubMedCrossrefGoogle Scholar

  • Gupta, A. and Lang, A.E. (2009). Psychogenic movement disorders. Curr. Opin. Neurol. 22, 430–436.CrossrefPubMedGoogle Scholar

  • Haggard, P. (2008). Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, 934–946.CrossrefPubMedGoogle Scholar

  • Haggard, P., Clark, S., and Kalogeras, J. (2002). Voluntary action and conscious awareness. Nat. Neurosci. 5, 382–385.PubMedCrossrefGoogle Scholar

  • Haggard, P., Iannetti, G.D., and Longo, M.R. (2013). Spatial sensory organization and body representation in pain perception. Curr. Biol. 23, R164–R176.CrossrefGoogle Scholar

  • Hassa, T., de Jel, E., Tuescher, O., Schmidt, R., and Schoenfeld, M.A. (2016). Functional networks of motor inhibition in conversion disorder patients and feigning subjects. NeuroImage Clin. 11, 719–727.PubMedCrossrefGoogle Scholar

  • He, F., Sarrigiannis, P.G., Billings, S.A., Wei, H., Rowe, J., Romanowski, C., Hoggard, N., Hadjivassilliou, M., Rao, D.G., Grünewald, R., et al. (2016). Nonlinear interactions in the thalamocortical loop in essential tremor: a model-based frequency domain analysis. Neuroscience 324, 377–389.CrossrefPubMedGoogle Scholar

  • Hrybouski, S., Aghamohammadi-Sereshki, A., Madan, C.R., Shafer, A.T., Baron, C.A., Seres, P., Beaulieu, C., Olsen, F., and Malykhin, N.V. (2016). Amygdala subnuclei response and connectivity during emotional processing. NeuroImage 133, 98–110.CrossrefPubMedGoogle Scholar

  • Kanaan, R.A.A., Craig, T.K.J., Wessely, S.C., and David, A.S. (2007). Imaging repressed memories in motor conversion disorder. Psychosom. Med. 69, 202–205.CrossrefPubMedGoogle Scholar

  • Khalighinejad, N., Di Costa, S., and Haggard, P. (2016). Endogenous action selection processes in dorsolateral prefrontal cortex contribute to sense of agency: a meta-analysis of tDCS studies of ‘intentional binding.’ Brain Stimul. 9, 372–379.CrossrefPubMedGoogle Scholar

  • Knyazeva, M.G., Jalili, M., Frackowiak, R.S., and Rossetti, A.O. (2011). Psychogenic seizures and frontal disconnection: EEG synchronisation study. J. Neurol. Neurosurg. Psychiatry 82, 505–511.PubMedCrossrefGoogle Scholar

  • Kranick, S.M., Moore, J.W., Yusuf, N., Martinez, V.T., LaFaver, K., Edwards, M.J., Mehta, A.R., Collins, P., Harrison, N.A., Haggard, P., et al. (2013). Action-effect binding is decreased in motor conversion disorder: implications for sense of agency. Mov. Disord. 28, 1110–1116.CrossrefPubMedGoogle Scholar

  • Labate, A., Cerasa, A., Mula, M., Mumoli, L., Gioia, M.C., Aguglia, U., Quattrone, A., and Gambardella, A. (2012). Neuroanatomic correlates of psychogenic nonepileptic seizures: a cortical thickness and VBM study. Epilepsia 53, 377–385.CrossrefPubMedGoogle Scholar

  • Laubach, M., Caetano, M.S., and Narayanan, N.S. (2015). Mistakes were made: neural mechanisms for the adaptive control of action initiation by the medial prefrontal cortex. J. Physiol. (Paris) 109, 104–117.PubMedCrossrefGoogle Scholar

  • Liang, Z., Watson, G.D.R., Alloway, K.D., Lee, G., Neuberger, T., and Zhang, N. (2015). Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats. NeuroImage 117, 114–123.PubMedCrossrefGoogle Scholar

  • Libet, B., Gleason, C.A., Wright, E.W., and Pearl, D.K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). Brain 106, 623–642.CrossrefPubMedGoogle Scholar

  • Ludwig, V.U., Seitz, J., Schönfeldt-Lecuona, C., Höse, A., Abler, B., Hole, G., Goebel, R., and Walter, H. (2015). The neural correlates of movement intentions: a pilot study comparing hypnotic and simulated paralysis. Consciousness Cognit. 35, 158–170.CrossrefGoogle Scholar

  • Luo, C., Li, Q., Lai, Y., Xia, Y., Qin, Y., Liao, W., Li, S., Zhou, D., Yao, D., and Gong, Q. (2011). Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum. Brain Mapping 32, 438–449.CrossrefGoogle Scholar

  • Mailis-Gagnon, A., Giannoylis, I., Downar, J., Kwan, C.L., Mikulis, D.J., Crawley, A.P., Nicholson, K., and Davis, K.D. (2003). Altered central somatosensory processing in chronic pain patients with ‘hysterical’ anesthesia. Neurology 60, 1501–1507.PubMedCrossrefGoogle Scholar

  • Marshall, J.C., Halligan, P.W., Fink, G.R., Wade, D.T., and Frackowiak, R.S. (1997). The functional anatomy of a hysterical paralysis. Cognition 64, B1–B8.CrossrefGoogle Scholar

  • Middleton, F.A. and Strick, P.L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Brain Res. Rev. 31, 236–250.CrossrefPubMedGoogle Scholar

  • Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269.CrossrefPubMedGoogle Scholar

  • Nicholson, T.R., Aybek, S., Kempton, M.J., Daly, E.M., Murphy, D.G., David, A.S., and Kanaan, R.A. (2014). A structural MRI study of motor conversion disorder: evidence of reduction in thalamic volume. J. Neurol. Neurosurg. Psychiatry 85, 227–229.CrossrefPubMedGoogle Scholar

  • Ongür, D. and Price, J.L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219.CrossrefPubMedGoogle Scholar

  • Parsons, L.M. (1987). Imagined spatial transformations of one’s hands and feet. Cognit. Psychol. 19, 178–241.CrossrefGoogle Scholar

  • Raichle, M.E. (2015). The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447.CrossrefPubMedGoogle Scholar

  • Ridderinkhof, K.R., Ullsperger, M., Crone, E.A., and Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443–447.CrossrefPubMedGoogle Scholar

  • Roelofs, K., de Bruijn, E.R.A., and Van Galen, G.P. (2006). Hyperactive action monitoring during motor-initiation in conversion paralysis: an event-related potential study. Biol. Psychol. 71, 316–325.PubMedCrossrefGoogle Scholar

  • Rowe, J.B., Toni, I., Josephs, O., Frackowiak, R.S., and Passingham, R.E. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660.CrossrefPubMedGoogle Scholar

  • Ruby, P. and Decety, J. (2001). Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat. Neurosci. 4, 546–550.CrossrefGoogle Scholar

  • Sagaspe, P., Schwartz, S., and Vuilleumier, P. (2011). Fear and stop: a role for the amygdala in motor inhibition by emotional signals. NeuroImage 55, 1825–1835.CrossrefPubMedGoogle Scholar

  • Saj, A., Raz, N., Levin, N., Ben-Hur, T., and Arzy, S. (2014). Disturbed mental imagery of affected body-parts in patients with hysterical conversion paraplegia correlates with pathological limbic activity. Brain Sci. 4, 396–404.CrossrefPubMedGoogle Scholar

  • Sakai, S.T., Inase, M., and Tanji, J. (2002). The relationship between MI and SMA afferents and cerebellar and pallidal efferents in the macaque monkey. Somatosens. Motor Res. 19, 139–148.CrossrefGoogle Scholar

  • Saunders, B., Lin, H., Milyavskaya, M., and Inzlicht, M. (2017). The emotive nature of conflict monitoring in the medial prefrontal cortex. Int. J. Psychophysiol. 119, 31–40.PubMedCrossrefGoogle Scholar

  • Schönfeldt-Lecuona, C., Lefaucheur, J.-P., Lepping, P., Liepert, J., Connemann, B.J., Sartorius, A., Nowak, D.A., and Gahr, M. (2016). Non-invasive brain stimulation in conversion (functional) weakness and paralysis: a systematic review and future perspectives. Front. Neurosci. 10, 140.PubMedGoogle Scholar

  • Seitz, R.J. and Roland, P.E. (1992). Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol. Scand. 86, 60–67.CrossrefPubMedGoogle Scholar

  • Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., and PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647–g7647.Google Scholar

  • Shannon, B.J., Dosenbach, R.A., Su, Y., Vlassenko, A.G., Larson-Prior, L.J., Nolan, T.S., Snyder, A.Z., and Raichle, M.E. (2013). Morning-evening variation in human brain metabolism and memory circuits. J. Neurophysiol. 109, 1444–1456.PubMedCrossrefGoogle Scholar

  • Song, M., Du, H., Wu, N., Hou, B., Wu, G., Wang, J., Feng, H., and Jiang, T. (2011). Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy. PLoS One 6, e17294.CrossrefPubMedGoogle Scholar

  • Spence, S.A., Crimlisk, H.L., Cope, H., Ron, M.A., and Grasby, P.M. (2000). Discrete neurophysiological correlates in prefrontal cortex during hysterical and feigned disorder of movement. Lancet 355, 1243–1244.CrossrefPubMedGoogle Scholar

  • Stins, J.F., Kempe, C.L., Hagenaars, M.A., Beek, P.J., and Roelofs, K. (2015). Attention and postural control in patients with conversion paresis. J. Psychosom. Res. 78, 249–254.CrossrefPubMedGoogle Scholar

  • Stone, J., Zeman, A., Simonotto, E., Meyer, M., Azuma, R., Flett, S., and Sharpe, M. (2007). FMRI in patients with motor conversion symptoms and controls with simulated weakness. Psychosom. Med. 69, 961–969.CrossrefPubMedGoogle Scholar

  • Sumner, P., Nachev, P., Morris, P., Peters, A.M., Jackson, S.R., Kennard, C., and Husain, M. (2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54, 697–711.CrossrefPubMedGoogle Scholar

  • van Beilen, M., de Jong, B.M., Gieteling, E.W., Renken, R., and Leenders, K.L. (2011). Abnormal parietal function in conversion paresis. PLoS One 6, e25918.CrossrefPubMedGoogle Scholar

  • van der Kruijs, S.J.M., Bodde, N.M.G., Vaessen, M.J., Lazeron, R.H.C., Vonck, K., Boon, P., Hofman, P.A., Backes, W.H., Aldenkamp, A.P., and Jansen, J.F.A. (2012). Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures. J. Neurol. Neurosurg. Psychiatry 83, 239–247.PubMedCrossrefGoogle Scholar

  • van der Kruijs, S.J.M., Jagannathan, S.R., Bodde, N.M.G., Besseling, R.M.H., Lazeron, R.H.C., Vonck, K.E.J., Boon, P.A.J.M., Cluitmans, P.J.M., Hofman, P.A.M, Backes, W.H., et al. (2014). Resting-state networks and dissociation in psychogenic non-epileptic seizures. J. Psychiatric Res. 54, 126–133.CrossrefGoogle Scholar

  • Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., and Buckner, R.L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531.CrossrefPubMedGoogle Scholar

  • Vogt, B.A., Vogt, L., and Laureys, S. (2006). Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage 29, 452–466.CrossrefPubMedGoogle Scholar

  • Voon, V., Brezing, C., Gallea, C., Ameli, R., Roelofs, K., LaFrance, W.C., and Hallett, M. (2010a). Emotional stimuli and motor conversion disorder. Brain 133, 1526–1536.CrossrefGoogle Scholar

  • Voon, V., Gallea, C., Hattori, N., Bruno, M., Ekanayake, V., and Hallett, M. (2010b). The involuntary nature of conversion disorder. Neurology 74, 223–228.CrossrefGoogle Scholar

  • Voon, V., Brezing, C., Gallea, C., and Hallett, M. (2011). Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder. Mov. Disord. 26, 2396–2403.CrossrefPubMedGoogle Scholar

  • Vuilleumier, P., Chicherio, C., Assal, F., Schwartz, S., Slosman, D., and Landis, T. (2001). Functional neuroanatomical correlates of hysterical sensorimotor loss. Brain 124, 1077–1090.PubMedCrossrefGoogle Scholar

  • Vuilleumier, P., and Cojan, Y. (2011). Functional brain-imaging of psychogenic paralysis during conversion and hypnosis. Psychogenic Movement Disorders and Other Conversion Disorders. Cambridge: Cambridge University Press, 143–159.Google Scholar

  • Warren, C.M., Hyman, J.M., Seamans, J.K., and Holroyd, C.B. (2015). Feedback-related negativity observed in rodent anterior cingulate cortex. J. Physiol. (Paris) 109, 87–94.PubMedCrossrefGoogle Scholar

  • Werring, D.J., Weston, L., Bullmore, E.T., Plant, G.T., and Ron, M.A. (2004). Functional magnetic resonance imaging of the cerebral response to visual stimulation in medically unexplained visual loss. Psychol. Med. 34, 583–589.PubMedCrossrefGoogle Scholar

About the article

Received: 2017-06-18

Accepted: 2017-09-16

Published Online: 2017-12-19

Published in Print: 2018-06-27

Conflict of interest statement: The authors declare no conflicts of interest.

Citation Information: Reviews in the Neurosciences, Volume 29, Issue 4, Pages 355–368, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0041.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in