American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition: DSM-5. (Washington, DC: American Psychiatric Association).Google Scholar
Anderson, M.C., Ochsner, K.N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S.W., Glover, G.H., and Gabrieli, J.D. (2004). Neural systems underlying the suppression of unwanted memories. Science 303, 232–235.CrossrefPubMedGoogle Scholar
Arthuis, M., Micoulaud-Franchi, J.A., Bartolomei, F., McGonigal, A., and Guedj, E. (2015). Resting cortical PET metabolic changes in psychogenic non-epileptic seizures (PNES). J. Neurol. Neurosurg. Psychiatry 86, 1106–1112.PubMedCrossrefGoogle Scholar
Atmaca, M., Aydin, A., Tezcan, E., Poyraz, A.K., and Kara, B. (2006). Volumetric investigation of brain regions in patients with conversion disorder. Progr. Neuro-Psychopharmacol. Biol. Psychiatry 30, 708–713.CrossrefGoogle Scholar
Atmaca, M., Baykara, S., Mermi, O., Yildirim, H., and Akaslan, U. (2015). Pituitary volumes are changed in patients with conversion disorder. Brain Imaging Behav. 10, 92–95.Google Scholar
Aybek, S., Nicholson, T.R.J., Draganski, B., Daly, E., Murphy, D.G., David, A.S., and Kanaan, R.A. (2014a). Grey matter changes in motor conversion disorder. J. Neurol. Neurosurg. Psychiatry 85, 236–238.CrossrefGoogle Scholar
Aybek, S., Nicholson, T.R., Zelaya, F., O’Daly, O.G., Craig, T.J., David, A.S., and Kanaan, R.A. (2014b). Neural correlates of recall of life events in conversion disorder. J. Am. Med. Assoc. Psychiatry 71, 52–60.Google Scholar
Aybek, S., Nicholson, T.R., O’Daly, O., Zelaya, F., Kanaan, R.A., and David, A.S. (2015). Emotion-motion interactions in conversion disorder: an FMRI study. PLoS One 10, e0123273.CrossrefPubMedGoogle Scholar
Becker, B., Scheele, D., Moessner, R., Maier, W., and Hurlemann, R. (2013). Deciphering the neural signature of conversion blindness. Am. J. Psychiatry 170, 121–122.CrossrefPubMedGoogle Scholar
Benoit, R.G. and Anderson, M.C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron 76, 450–460.PubMedCrossrefGoogle Scholar
Biane, J.S., Takashima, Y., Scanziani, M., Conner, J.M., and Tuszynski, M.H. (2016). Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron 89, 1173–1179.CrossrefPubMedGoogle Scholar
Bickford, M.E. (2016). Thalamic circuit diversity: modulation of the driver/modulator framework. Front. Neural Circuits 9, 86.PubMedGoogle Scholar
Blakemore, S.J., Goodbody, S.J., and Wolpert, D.M. (1998). Predicting the consequences of our own actions: the role of sensorimotor context estimation. J. Neurosci. 18, 7511–7518.PubMedCrossrefGoogle Scholar
Bonini, F., Burle, B., Liégeois-Chauvel, C., Régis, J., Chauvel, P., and Vidal, F. (2014). Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343, 888–891.CrossrefPubMedGoogle Scholar
Breuer, J., Freud, S., and Strachey, J. (2000). Studies on Hysteria (New York: Basic Books).Google Scholar
Brown, L.B., Nicholson, T.R., Aybek, S., Kanaan, R.A., and David, A.S. (2014). Neuropsychological function and memory suppression in conversion disorder. J. Neuropsychol. 8, 171–185.PubMedCrossrefGoogle Scholar
Burgmer, M., Konrad, C., Jansen, A., Kugel, H., Sommer, J., Heindel, W., Ringelstein, E.B., Heuft, G., and Knecht, S. (2006). Abnormal brain activation during movement observation in patients with conversion paralysis. NeuroImage 29, 1336–1343.PubMedCrossrefGoogle Scholar
Burke, M.J., Ghaffar, O., Staines, W.R., Downar, J., and Feinstein, A. (2014). Functional neuroimaging of conversion disorder: the role of ancillary activation. NeuroImage Clin. 6, 333–339.CrossrefPubMedGoogle Scholar
Carson, A.J., Ringbauer, B., Stone, J., McKenzie, L., Warlow, C., and Sharpe, M. (2000). Do medically unexplained symptoms matter? A prospective cohort study of 300 new referrals to neurology outpatient clinics. J. Neurol. Neurosurg. Psychiatry 68, 207–210.CrossrefGoogle Scholar
Chambon, V., Wenke, D., Fleming, S.M., Prinz, W., and Haggard, P. (2013). An online neural substrate for sense of agency. Cereb. Cortex 23, 1031–1037.CrossrefPubMedGoogle Scholar
Cojan, Y., Waber, L., Carruzzo, A., and Vuilleumier, P. (2009). Motor inhibition in hysterical conversion paralysis. NeuroImage 47, 1026–1037.PubMedCrossrefGoogle Scholar
Craig, A.D. (2009). How do you feel – now? the anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70.PubMedCrossrefGoogle Scholar
Damoiseaux, J.S., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., and Beckmann, C.F. (2006). Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. USA 103, 13848–13853.CrossrefGoogle Scholar
de Lange, F., Roelofs, K., and Toni, I. (2007). Increased self-monitoring during imagined movements in conversion paralysis. Neuropsychologia 45, 2051–2058.CrossrefPubMedGoogle Scholar
de Lange, F.P., Roelofs, K., and Toni, I. (2008). Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex 44, 494–506.CrossrefPubMedGoogle Scholar
de Lange, F.P., Toni, I., and Roelofs, K. (2010). Altered connectivity between prefrontal and sensorimotor cortex in conversion paralysis. Neuropsychologia 48, 1782–1788.PubMedCrossrefGoogle Scholar
Ghaffar, O., Staines, W.R., and Feinstein, A. (2006). Unexplained neurologic symptoms: an fMRI study of sensory conversion disorder. Neurology 67, 2036–2038.PubMedCrossrefGoogle Scholar
Goldberg, I.I., Harel, M., and Malach, R. (2006). When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50, 329–339.PubMedCrossrefGoogle Scholar
Gupta, A. and Lang, A.E. (2009). Psychogenic movement disorders. Curr. Opin. Neurol. 22, 430–436.CrossrefPubMedGoogle Scholar
Haggard, P. (2008). Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, 934–946.CrossrefPubMedGoogle Scholar
Haggard, P., Clark, S., and Kalogeras, J. (2002). Voluntary action and conscious awareness. Nat. Neurosci. 5, 382–385.PubMedCrossrefGoogle Scholar
Haggard, P., Iannetti, G.D., and Longo, M.R. (2013). Spatial sensory organization and body representation in pain perception. Curr. Biol. 23, R164–R176.CrossrefGoogle Scholar
Hassa, T., de Jel, E., Tuescher, O., Schmidt, R., and Schoenfeld, M.A. (2016). Functional networks of motor inhibition in conversion disorder patients and feigning subjects. NeuroImage Clin. 11, 719–727.PubMedCrossrefGoogle Scholar
He, F., Sarrigiannis, P.G., Billings, S.A., Wei, H., Rowe, J., Romanowski, C., Hoggard, N., Hadjivassilliou, M., Rao, D.G., Grünewald, R., et al. (2016). Nonlinear interactions in the thalamocortical loop in essential tremor: a model-based frequency domain analysis. Neuroscience 324, 377–389.CrossrefPubMedGoogle Scholar
Hrybouski, S., Aghamohammadi-Sereshki, A., Madan, C.R., Shafer, A.T., Baron, C.A., Seres, P., Beaulieu, C., Olsen, F., and Malykhin, N.V. (2016). Amygdala subnuclei response and connectivity during emotional processing. NeuroImage 133, 98–110.CrossrefPubMedGoogle Scholar
Kanaan, R.A.A., Craig, T.K.J., Wessely, S.C., and David, A.S. (2007). Imaging repressed memories in motor conversion disorder. Psychosom. Med. 69, 202–205.CrossrefPubMedGoogle Scholar
Khalighinejad, N., Di Costa, S., and Haggard, P. (2016). Endogenous action selection processes in dorsolateral prefrontal cortex contribute to sense of agency: a meta-analysis of tDCS studies of ‘intentional binding.’ Brain Stimul. 9, 372–379.CrossrefPubMedGoogle Scholar
Knyazeva, M.G., Jalili, M., Frackowiak, R.S., and Rossetti, A.O. (2011). Psychogenic seizures and frontal disconnection: EEG synchronisation study. J. Neurol. Neurosurg. Psychiatry 82, 505–511.PubMedCrossrefGoogle Scholar
Kranick, S.M., Moore, J.W., Yusuf, N., Martinez, V.T., LaFaver, K., Edwards, M.J., Mehta, A.R., Collins, P., Harrison, N.A., Haggard, P., et al. (2013). Action-effect binding is decreased in motor conversion disorder: implications for sense of agency. Mov. Disord. 28, 1110–1116.CrossrefPubMedGoogle Scholar
Labate, A., Cerasa, A., Mula, M., Mumoli, L., Gioia, M.C., Aguglia, U., Quattrone, A., and Gambardella, A. (2012). Neuroanatomic correlates of psychogenic nonepileptic seizures: a cortical thickness and VBM study. Epilepsia 53, 377–385.CrossrefPubMedGoogle Scholar
Laubach, M., Caetano, M.S., and Narayanan, N.S. (2015). Mistakes were made: neural mechanisms for the adaptive control of action initiation by the medial prefrontal cortex. J. Physiol. (Paris) 109, 104–117.PubMedCrossrefGoogle Scholar
Liang, Z., Watson, G.D.R., Alloway, K.D., Lee, G., Neuberger, T., and Zhang, N. (2015). Mapping the functional network of medial prefrontal cortex by combining optogenetics and fMRI in awake rats. NeuroImage 117, 114–123.PubMedCrossrefGoogle Scholar
Libet, B., Gleason, C.A., Wright, E.W., and Pearl, D.K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). Brain 106, 623–642.CrossrefPubMedGoogle Scholar
Ludwig, V.U., Seitz, J., Schönfeldt-Lecuona, C., Höse, A., Abler, B., Hole, G., Goebel, R., and Walter, H. (2015). The neural correlates of movement intentions: a pilot study comparing hypnotic and simulated paralysis. Consciousness Cognit. 35, 158–170.CrossrefGoogle Scholar
Luo, C., Li, Q., Lai, Y., Xia, Y., Qin, Y., Liao, W., Li, S., Zhou, D., Yao, D., and Gong, Q. (2011). Altered functional connectivity in default mode network in absence epilepsy: a resting-state fMRI study. Hum. Brain Mapping 32, 438–449.CrossrefGoogle Scholar
Mailis-Gagnon, A., Giannoylis, I., Downar, J., Kwan, C.L., Mikulis, D.J., Crawley, A.P., Nicholson, K., and Davis, K.D. (2003). Altered central somatosensory processing in chronic pain patients with ‘hysterical’ anesthesia. Neurology 60, 1501–1507.PubMedCrossrefGoogle Scholar
Marshall, J.C., Halligan, P.W., Fink, G.R., Wade, D.T., and Frackowiak, R.S. (1997). The functional anatomy of a hysterical paralysis. Cognition 64, B1–B8.CrossrefGoogle Scholar
Middleton, F.A. and Strick, P.L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res. Brain Res. Rev. 31, 236–250.CrossrefPubMedGoogle Scholar
Moher, D., Liberati, A., Tetzlaff, J., and Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269.CrossrefPubMedGoogle Scholar
Nicholson, T.R., Aybek, S., Kempton, M.J., Daly, E.M., Murphy, D.G., David, A.S., and Kanaan, R.A. (2014). A structural MRI study of motor conversion disorder: evidence of reduction in thalamic volume. J. Neurol. Neurosurg. Psychiatry 85, 227–229.CrossrefPubMedGoogle Scholar
Ongür, D. and Price, J.L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10, 206–219.CrossrefPubMedGoogle Scholar
Parsons, L.M. (1987). Imagined spatial transformations of one’s hands and feet. Cognit. Psychol. 19, 178–241.CrossrefGoogle Scholar
Raichle, M.E. (2015). The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447.CrossrefPubMedGoogle Scholar
Ridderinkhof, K.R., Ullsperger, M., Crone, E.A., and Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443–447.CrossrefPubMedGoogle Scholar
Roelofs, K., de Bruijn, E.R.A., and Van Galen, G.P. (2006). Hyperactive action monitoring during motor-initiation in conversion paralysis: an event-related potential study. Biol. Psychol. 71, 316–325.PubMedCrossrefGoogle Scholar
Rowe, J.B., Toni, I., Josephs, O., Frackowiak, R.S., and Passingham, R.E. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science 288, 1656–1660.CrossrefPubMedGoogle Scholar
Ruby, P. and Decety, J. (2001). Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat. Neurosci. 4, 546–550.CrossrefGoogle Scholar
Sagaspe, P., Schwartz, S., and Vuilleumier, P. (2011). Fear and stop: a role for the amygdala in motor inhibition by emotional signals. NeuroImage 55, 1825–1835.CrossrefPubMedGoogle Scholar
Saj, A., Raz, N., Levin, N., Ben-Hur, T., and Arzy, S. (2014). Disturbed mental imagery of affected body-parts in patients with hysterical conversion paraplegia correlates with pathological limbic activity. Brain Sci. 4, 396–404.CrossrefPubMedGoogle Scholar
Sakai, S.T., Inase, M., and Tanji, J. (2002). The relationship between MI and SMA afferents and cerebellar and pallidal efferents in the macaque monkey. Somatosens. Motor Res. 19, 139–148.CrossrefGoogle Scholar
Saunders, B., Lin, H., Milyavskaya, M., and Inzlicht, M. (2017). The emotive nature of conflict monitoring in the medial prefrontal cortex. Int. J. Psychophysiol. 119, 31–40.PubMedCrossrefGoogle Scholar
Schönfeldt-Lecuona, C., Lefaucheur, J.-P., Lepping, P., Liepert, J., Connemann, B.J., Sartorius, A., Nowak, D.A., and Gahr, M. (2016). Non-invasive brain stimulation in conversion (functional) weakness and paralysis: a systematic review and future perspectives. Front. Neurosci. 10, 140.PubMedGoogle Scholar
Seitz, R.J. and Roland, P.E. (1992). Vibratory stimulation increases and decreases the regional cerebral blood flow and oxidative metabolism: a positron emission tomography (PET) study. Acta Neurol. Scand. 86, 60–67.CrossrefPubMedGoogle Scholar
Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., and PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ 349, g7647–g7647.Google Scholar
Shannon, B.J., Dosenbach, R.A., Su, Y., Vlassenko, A.G., Larson-Prior, L.J., Nolan, T.S., Snyder, A.Z., and Raichle, M.E. (2013). Morning-evening variation in human brain metabolism and memory circuits. J. Neurophysiol. 109, 1444–1456.PubMedCrossrefGoogle Scholar
Song, M., Du, H., Wu, N., Hou, B., Wu, G., Wang, J., Feng, H., and Jiang, T. (2011). Impaired resting-state functional integrations within default mode network of generalized tonic-clonic seizures epilepsy. PLoS One 6, e17294.CrossrefPubMedGoogle Scholar
Spence, S.A., Crimlisk, H.L., Cope, H., Ron, M.A., and Grasby, P.M. (2000). Discrete neurophysiological correlates in prefrontal cortex during hysterical and feigned disorder of movement. Lancet 355, 1243–1244.CrossrefPubMedGoogle Scholar
Stins, J.F., Kempe, C.L., Hagenaars, M.A., Beek, P.J., and Roelofs, K. (2015). Attention and postural control in patients with conversion paresis. J. Psychosom. Res. 78, 249–254.CrossrefPubMedGoogle Scholar
Stone, J., Zeman, A., Simonotto, E., Meyer, M., Azuma, R., Flett, S., and Sharpe, M. (2007). FMRI in patients with motor conversion symptoms and controls with simulated weakness. Psychosom. Med. 69, 961–969.CrossrefPubMedGoogle Scholar
Sumner, P., Nachev, P., Morris, P., Peters, A.M., Jackson, S.R., Kennard, C., and Husain, M. (2007). Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54, 697–711.CrossrefPubMedGoogle Scholar
van Beilen, M., de Jong, B.M., Gieteling, E.W., Renken, R., and Leenders, K.L. (2011). Abnormal parietal function in conversion paresis. PLoS One 6, e25918.CrossrefPubMedGoogle Scholar
van der Kruijs, S.J.M., Bodde, N.M.G., Vaessen, M.J., Lazeron, R.H.C., Vonck, K., Boon, P., Hofman, P.A., Backes, W.H., Aldenkamp, A.P., and Jansen, J.F.A. (2012). Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures. J. Neurol. Neurosurg. Psychiatry 83, 239–247.PubMedCrossrefGoogle Scholar
van der Kruijs, S.J.M., Jagannathan, S.R., Bodde, N.M.G., Besseling, R.M.H., Lazeron, R.H.C., Vonck, K.E.J., Boon, P.A.J.M., Cluitmans, P.J.M., Hofman, P.A.M, Backes, W.H., et al. (2014). Resting-state networks and dissociation in psychogenic non-epileptic seizures. J. Psychiatric Res. 54, 126–133.CrossrefGoogle Scholar
Vincent, J.L., Snyder, A.Z., Fox, M.D., Shannon, B.J., Andrews, J.R., Raichle, M.E., and Buckner, R.L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–3531.CrossrefPubMedGoogle Scholar
Vogt, B.A., Vogt, L., and Laureys, S. (2006). Cytology and functionally correlated circuits of human posterior cingulate areas. NeuroImage 29, 452–466.CrossrefPubMedGoogle Scholar
Voon, V., Brezing, C., Gallea, C., Ameli, R., Roelofs, K., LaFrance, W.C., and Hallett, M. (2010a). Emotional stimuli and motor conversion disorder. Brain 133, 1526–1536.CrossrefGoogle Scholar
Voon, V., Gallea, C., Hattori, N., Bruno, M., Ekanayake, V., and Hallett, M. (2010b). The involuntary nature of conversion disorder. Neurology 74, 223–228.CrossrefGoogle Scholar
Voon, V., Brezing, C., Gallea, C., and Hallett, M. (2011). Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder. Mov. Disord. 26, 2396–2403.CrossrefPubMedGoogle Scholar
Vuilleumier, P., Chicherio, C., Assal, F., Schwartz, S., Slosman, D., and Landis, T. (2001). Functional neuroanatomical correlates of hysterical sensorimotor loss. Brain 124, 1077–1090.PubMedCrossrefGoogle Scholar
Vuilleumier, P., and Cojan, Y. (2011). Functional brain-imaging of psychogenic paralysis during conversion and hypnosis. Psychogenic Movement Disorders and Other Conversion Disorders. Cambridge: Cambridge University Press, 143–159.Google Scholar
Warren, C.M., Hyman, J.M., Seamans, J.K., and Holroyd, C.B. (2015). Feedback-related negativity observed in rodent anterior cingulate cortex. J. Physiol. (Paris) 109, 87–94.PubMedCrossrefGoogle Scholar
Werring, D.J., Weston, L., Bullmore, E.T., Plant, G.T., and Ron, M.A. (2004). Functional magnetic resonance imaging of the cerebral response to visual stimulation in medically unexplained visual loss. Psychol. Med. 34, 583–589.PubMedCrossrefGoogle Scholar
Comments (0)