Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 29, Issue 5


Medicinal plants with acetylcholinesterase inhibitory activity

Sita Sharan Patel
  • Corresponding author
  • Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ramsaneh Raghuwanshi
  • Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Misha Masood
  • Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ashish Acharya
  • Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Surendra Kumar Jain
  • Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-05 | DOI: https://doi.org/10.1515/revneuro-2017-0054


Alzheimer’s disease, a progressive neurodegenerative disease, is characterised by hypofunction of acetylcholine (ACh) neurotransmitter in the distinct region of brain. Acetylcholinesterase (AChE) is an enzyme that metabolises the ACh at synaptic cleft resulting in Alzheimer’s disease. Medicinal plants have been used to treat numerous ailments and improve human health from ancient time. A traditional system of medicine is long recognised for its effective management of neurological disorders. The present review confers the scope of some common medicinal plants with a special focus on AChE-mediated central nervous system complications especially Alzheimer’s disease. Literature suggests that medicinal plants reduce neuronal dysfunctions by reducing AChE activity in different brain regions. In some instances, activation of AChE activity by medicinal plants also showed therapeutic potential. In conclusion, medicinal plants have a wide scope and possess therapeutic potential to efficiently manage neurological disorders associated with AChE dysregulation.

Keywords: acetylcholinesterase; Alzheimer’s disease; medicinal plants; traditional use


  • Abd-Ellatif, S., Abdel Rahman, S.M., and Deraz, S.F. (2011). Promising antifungal effect of some folkloric medicinal plants collected from El-Hammam habitat, Egypt, against dangerous pathogenic and toxinogenic fungi. ARPN J. Agric. Biol. Sci. 6, 25–32.Google Scholar

  • Abidi, A. (2014). Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J. Pharmacol. 46, 3–12.CrossrefPubMedGoogle Scholar

  • Adewusi, E.A. and Steenkamp, V. (2011). In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from southern Africa. Asian Pac. J. Trop. Med. 4, 829–835.PubMedCrossrefGoogle Scholar

  • Adsersen, A., Gauguin, B., Gudiksen, L., and Jäger, A.K. (2006). Screening of plants used in Danish folk medicine to treat memory dysfunction for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 104, 418–422.PubMedCrossrefGoogle Scholar

  • Afshari, A.R., Sadeghnia, H.R., and Mollazadeh, H. (2016). A review on potential mechanisms of Terminalia chebula in Alzheimer’s disease. Adv. Pharmacol. Sci. 2016, 8964849.PubMedGoogle Scholar

  • Aguiar, S. and Borowski, T. (2013). Neuropharmacological review of the nootropic herb Bacopa monnieri. Rejuven Res. 16, 313–326.CrossrefGoogle Scholar

  • Ahmad, I., Mehmood, Z., and Mohammad, F. (1998). Screening of some Indian medicinal plants for their antimicrobial properties. J. Ethnopharmacol. 62, 183–193.CrossrefPubMedGoogle Scholar

  • Ahmed, F., Siddaraju, N., Harish, M., and Urooj, A. (2012). Effect of Butea monosperma Lam. leaves and bark extracts on blood glucose in streptozotocin-induced severely diabetic rats. Pharmacognosy Res. 4, 33–36.CrossrefPubMedGoogle Scholar

  • Ahmed, H.H., Salem, A.M., Sabry, G.M., Husein, A.A., and Kotob, S.E. (2013). Possible therapeutic uses of Salvia triloba and Piper nigrum in Alzheimer’s disease-induced rats. J. Med. Food. 16, 437–446.PubMedCrossrefGoogle Scholar

  • Ahn, J., Um, M., Choi, W., Kim, S., and Ha, T. (2006). Protective effects of Glycyrrhiza uralensis Fisch. On the cognitive deficits caused by β-amyloid peptide 25–35 in young mice. Biogerontology 7, 239–247.CrossrefPubMedGoogle Scholar

  • Ajay, S., Rahul, S., Sumit, G., Paras, M., Mishra, A., and Gaurav, A. (2011). Comprehensive review: Murraya koenigii Linn. Asian J. Pharm. Life Sci. 1, 417–425.Google Scholar

  • Akbar, S. (2011). Andrographis paniculata: a review of pharmacological activities and clinical effects. Altern. Med. Rev. 16, 66–77.PubMedGoogle Scholar

  • Akinpelu, D.A. (2001). Antimicrobial activity of Anacardium occidentale bark. Fitoterapia 72, 286–287.CrossrefPubMedGoogle Scholar

  • Akinrimisi, E. and Akinwande, A. (1975). Effect of aqueous extract of Eugenia caryophyllus on brain acetylcholine esterase in rats. West Afr. J. Pharmacol. Drug Res. 2, 127–131.PubMedGoogle Scholar

  • Akinrimisi, E. and Akinwande, A. (1976). Biochemical studies of acetylcholine esterase inhibitor present in Eugenia caryophyllus. West Afr. J. Pharmacol. Drug Res. 3, 141–148.PubMedGoogle Scholar

  • Al-Hazmi, M.A., Rawi, S.M., Arafa, N.M., Wagas, A., and Montasser, A.O. (2015). The potent effects of ginseng root extract and memantine on cognitive dysfunction in male albino rats. Toxicol. Ind. Health 31, 494–509.PubMedCrossrefGoogle Scholar

  • Al-Qura’n, S. (2009). Ethnopharmacological survey of wild medicinal plants in Showbak, Jordan. J. Ethnopharmacol. 123, 45–50.PubMedCrossrefGoogle Scholar

  • Al-Snafi, A.E. (2013). The pharmaceutical importance of Althaea officinalis and Althaea rosea: a review. Int. J. Pharm. Tech. Res. 5, 1387–1385.Google Scholar

  • Al-Snafi, A.E. (2016a). Medical importance of Cichorium intybus – a review. IOSR J. Pharm. 6, 41–56.Google Scholar

  • Al-Snafi, A.E. (2016b). The pharmacological and therapeutic importance of Cordia myxa – a review. IOSR J. Pharm. 6, 47–57.Google Scholar

  • Ali, M.A. (2014). Cassia fistula linn: a review of phytochemical and pharmacological studies. Int. J. Pharmaceut. Sci. Res. 5, 2125.Google Scholar

  • Ali, B.H., Blunden, G., Tanira, M.O., and Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food Chem. Toxicol. 46, 409–420.CrossrefGoogle Scholar

  • Ali, T., Javan, M., Sonboli, A., and Semnanian, S. (2012). Evaluation of the antinociceptive and anti-inflammatory effects of essential oil of Nepeta pogonosperma Jamzad et Assadi in rats. Daru 20, 48.CrossrefPubMedGoogle Scholar

  • Ali, S.K., Hamed, A.R., Soltan, M.M., Hegazy, U.M., Elgorashi, E.E., El-Garf, I.A., and Hussein, A.A. (2013). In vitro evaluation of selected Egyptian traditional herbal medicines for treatment of Alzheimer disease. BMC Complement. Altern. Med. 13, 121.PubMedCrossrefGoogle Scholar

  • Ali, M.Y., Jung, H.A., and Choi, J.S. (2015). Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch. Pharm. Res. 38, 2216–2227.CrossrefPubMedGoogle Scholar

  • Ali, M.Y., Jannat, S., Jung, H.A., Choi, R.J., Roy, A., and Choi, J.S. (2016). Anti-Alzheimer’s disease potential of coumarins from Angelica decursiva and Artemisia capillaris and structure-activity analysis. Asian Pac. J. Trop. Med. 9, 103–111.CrossrefPubMedGoogle Scholar

  • Alikatte, K.L., Akondi, B.R., Yerragunta, V.G., Veerareddy, P.R., and Palle, S. (2012). Antiamnesic activity of Syzygium cumini against scopolamine induced spatial memory impairments in rats. Brain Dev. 34, 844–851.CrossrefPubMedGoogle Scholar

  • Amiri, M.S., Joharchi, M.R., and TaghavizadehYazdi, M.E. (2014). Ethno-medicinal plants used to cure jaundice by traditional healers of Mashhad, Iran. Iran. J. Pharm. Res. 13, 157–162.PubMedGoogle Scholar

  • Anand, P., Singh, B., and Singh, N. (2012). A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg. Med. Chem. 20, 1175–1180.PubMedCrossrefGoogle Scholar

  • Antikolinesteraz, A. and Bitkileri, B. (2014). Lamiaceae family plants as a potential anticholinesterase source in the treatment of Alzheimer’s disease. Bezmialem Sci. 1, 1–25.Google Scholar

  • Anuradha, H., Srikumar, B., Deepti, N., Shankaranarayana Rao, B.S., and Lakshmana, M. (2010). Restoration of acetylcholinesterase activity by Euphorbia hirta in discrete brain regions of chronically stressed rats. Pharm. Biol. 48, 499–503.CrossrefPubMedGoogle Scholar

  • Anwar, F., Latif, S., Ashraf, M., and Gilani, A.H. (2007). Moringa oleifera: a food plant with multiple medicinal uses. Phytother. Res. 21, 17–25.CrossrefPubMedGoogle Scholar

  • Apaydin, H., Ertan, S., and Özekmekçi, S. (2000). Broad bean (Vicia faba) – a natural source of L-dopa prolongs “on” periods in patients with Parkinson’s disease who have “on-off” fluctuations. Mov. Disord. 15, 164–166.CrossrefPubMedGoogle Scholar

  • Arafaa, N.M.S., Abdel-Rahmanb, M., and Mahmoudc, R.A.H.A. (2013). Prophylactic effect of Hypericum perforatum L. extract in scopolamine rat model of cognitive dysfunction. Open. Conf. Proc. J. 4, 23–30.Google Scholar

  • Arora, R.K. (2014). Cordyceps sinensis (berk.) sacc. – an entomophagous medicinal fungus – a review. Int. J. Adv. Multidiscip. Res. 2, 161–170.Google Scholar

  • Arora, N. and Rai, S. (2012). Celastrus paniculatus, an endangered Indian medicinal plant with miraculous cognitive and other therapeutic properties: an overview. Int. J. Pharma Biosci. 3, 290–303.Google Scholar

  • Arora, D., Kumar, M., and Dubey, S. (2002). Centella asiatica – a review of its medicinal uses and pharmacological effects. J. Nat. Remed. 2, 143–149.Google Scholar

  • Asgarpanah, J. and Haghighat, E. (2012). Phytochemistry and pharmacologic properties of Ziziphus spina christi (L.) Willd. Afr. J. Pharm. Pharmacol. 6, 2332–2339.Google Scholar

  • Asgarpanah, J. and Kazemivash, N. (2013). Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L. Chin. J. Integr. Med. 19, 153–159.PubMedCrossrefGoogle Scholar

  • Asgarpanah, J., Mehrabani, G.D., Ahmadi, M., Ranjbar, R., and Ardebily, M.S.A. (2012). Chemistry, pharmacology and medicinal properties of Heracleum persicum Desf. Ex Fischer: a review. J. Medicinal Plants Res. 6, 1813–1820.Google Scholar

  • Asghari, J., Touli, C.K., Mazaheritehrani, M., and Aghdasi, M. (2012). Comparison of the microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Ferulago angulata (Schelcht.) Boiss. Eur. J. Medicinal Plants 2, 324–334.CrossrefGoogle Scholar

  • Ashraf, H., Heidari, R., and Nejati, V. (2014). Antihyperglycemic and antihyperlipidemic effects of fruit aqueous extract of Berberis integerrima Bge. in streptozotocin-induced diabetic rats. Iran. J. Pharm. Res. 13, 1313–1318.PubMedGoogle Scholar

  • Asif, H., Akram, M., Usmanghani, K., Akhtar, N., Shah, P.A., Uzair, M., Ramzan, M., Shah, S.A., and Rehman, R. (2011). Monograph of Apium graveolens Linn. J. Medicinal Plants Res. 5, 1494–1496.Google Scholar

  • Aslam, N., Wani, A.A., Nawchoo, I.A., and Bhat, M.A. (2014). Distribution and medicinal importance of Peganum harmala – a review. Int. J. Adv. Res. 2, 751–755.Google Scholar

  • Austin, A. (2008). A review on Indian sarsaparilla, Hemidesmus indicus (L.) R. Br. J. Biol. Sci. 8, 1–12.CrossrefGoogle Scholar

  • Axelsen, P.H., Harel, M., Silman, I., and Sussman, J.L. (1994). Structure and dynamics of the active site gorge of acetylcholinesterase: synergistic use of molecular dynamics simulation and X-ray crystallography. Protein Sci. 3, 188–197.PubMedGoogle Scholar

  • Ayinde, B. and Owolabi, O. (2009). Effects of the aqueous extract of Ficus capensis Thunb. (Moraceae) leaf on gastrointestinal motility. J. Pharmacogn. Phytother. 1, 31–35.Google Scholar

  • Ayyanar, M. and Subash-Babu, P. (2012). Syzygium cumini (L.) Skeels: a review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed. 2, 240–246.CrossrefGoogle Scholar

  • Aznita, W.H., Zainal-Abidin, Z., Aznan, E., and Razi, M. (2009). The effectiveness of chlorhexidine, hexetidine and Eugenia caryophyllus. Res. J. Biol. Sci. 4, 716–719.Google Scholar

  • Babu, K., Shaker, I., Kumaraswamy, D., Saleembasha, S., and Sailaja, I. (2012). Indigenous effect of Cynodon dactylon in experimental induced ulcers and gastric secretions. Int. Res. J. Pharm. 3, 301–304.Google Scholar

  • Bahmani, M., Zargaran, A., and Rafieian-Kopaei, M. (2014). Identification of medicinal plants of Urmia for treatment of gastrointestinal disorders. Rev. Bras. Farmacogn. 24, 468–480.CrossrefGoogle Scholar

  • Bahrami, B., Noori, M., Mousavi, A., Khalighi, A., and Jafari, A. (2016). Root flavonoids of Convolvulus L. species in Markazi Province, Iran. Int. J. Ecosyst. 6, 35–42.Google Scholar

  • Baitharu, I., Jain, V., Deep, S.N., Hota, K.B., Hota, S.K., Prasad, D., and Ilavazhagan, G. (2013). Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J. Ethnopharmacol. 145, 431–441.CrossrefPubMedGoogle Scholar

  • Balakumbahan, R., Rajamani, K., and Kumanan, K. (2010). Acorus calamus: an overview. J. Med. Plants. Res. 4, 2740–2745.Google Scholar

  • Balne, D., Pallerla, P., Vanapatla, S.R., and Bobbala, R.K. (2013). Hepatoprotective effect of whole plant extract fractions of Marsilea minuta linn. Asian J. Pharm. Clin. Res. 6, 100–107.Google Scholar

  • Bandaranayake, W. (1998). Traditional and medicinal uses of mangroves. Mangroves Salt Marshes 2, 133–148.CrossrefGoogle Scholar

  • Banerjee, S., Mullick, H., Banerjee. J., and Ghosh, A. (2011). Zingiber officinale: “a natural gold”. Int. J. Pharmaceut. Bio-Sci. 2, 283–294.Google Scholar

  • Banerjee, J., Biswas, S., Madhu, N.R., Karmakar, S.R., and Biswas, S.J. (2014). A better understanding of pharmacological activities and uses of phytochemicals of Lycopodium clavatum: a review. J. Pharmacogn. Phytochem. 3, 207–210.Google Scholar

  • Banjare, L., Prasad, A., and Naik, M. (2012). Boerhaavia diffusa from traditional use to scientific assessment – a review. Int. J. Pharmaceut. Biol. Arch. 3, 1346–1354.Google Scholar

  • Bareemizadeh, F., Ghasempour, H., Maassoumi, S.M., Karimi, N., Taran, M., and Ghasempour, M. (2014). In vitro antimicrobial activity of Allium ampeloprasum L. var. atroviolaceum Regel. Int. J. Biosci. 4, 80–84.Google Scholar

  • Bhadra, S., Mukherjee, P.K., Kumar, N.S., and Bandyopadhyay, A. (2011). Anticholinesterase activity of standardized extract of Illicium verum Hook. f. fruits. Fitoterapia 82, 342–346.CrossrefGoogle Scholar

  • Bhanumathy, M., Chandrasekar, S., Chandur, U., and Somasundaram, T. (2010a). Phyto-pharmacology of Celastrus paniculatus: an overview. Int. J. Pharm. Sci. Rev. Res. 2, 176–181.Google Scholar

  • Bhanumathy, M., Harish, M., Shivaprasad, H., and Sushma, G. (2010b). Nootropic activity of Celastrus paniculatus seed. Pharm. Biol. 48, 324–327.CrossrefGoogle Scholar

  • Bhargava, V. (2011). Medicinal uses and pharmacological properties of Crocus sativus Linn (Saffron). Int. J. Pharm. Pharmaceut. Sci. 3, 22–26.Google Scholar

  • Bhattamisra, S.K., Singh, P.N., and Singh, S.K. (2012). Effect of standardized extract of Marsilea minuta on learning and memory performance in rat amnesic models. Pharm. Biol. 50, 766–772.PubMedCrossrefGoogle Scholar

  • Bihaqi, S.W., Sharma, M., Singh, A.P., and Tiwari, M. (2009). Neuroprotective role of Convolvulus pluricaulis on aluminium induced neurotoxicity in rat brain. J. Ethnopharmacol. 124, 409–415.CrossrefPubMedGoogle Scholar

  • Boğa, M., Hacıbekiroğlu, I., and Kolak, U. (2011). Antioxidant and anticholinesterase activities of eleven edible plants. Pharm. Biol. 49, 290–295.CrossrefPubMedGoogle Scholar

  • Borade, A.S., Kale, B.N., and Shete, R.V. (2011). A phytopharmacological review on Lawsonia inermis (Linn.). Int. J. Pharm. Life. Sci. 2, 536–541.Google Scholar

  • Boumaraf, M., Mekkiou, R., Benyahia, S., Chalchat, J.C., Chalard, P., Benayache, F., and Benayache, S. (2016). Essential oil composition of Pulicaria undulata (L.) DC. (Asteraceae) growing in Algeria. Int. J. Pharmacogn. Phytochem. Res. 8, 746–749.Google Scholar

  • Bracesco, N., Sanchez, A.G., Contreras, V., Menini, T., and Gugliucci, A. (2011). Recent advances on Ilex paraguariensis research: mini review. J. Ethnopharmacol. 136, 378–384.CrossrefGoogle Scholar

  • Can, Ö.D., Öztürk, Y., Öztürk, N., Sagratini, G., Ricciutelli, M., Vittori, S., and Maggi, F. (2011). Effects of treatment with St. John’s Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats. Fitoterapia 82, 576–584.CrossrefPubMedGoogle Scholar

  • Chakrabortty, S. and Choudhary, R. (2014). Hemidesmus indicus (anantmool): rare herb of Chhattisgarh. Indian J. Sci. Res. 4, 89–93.Google Scholar

  • Chandrasekar, S., Bhanumathy, M., Pawar, A., and Somasundaram, T. (2010). Phytopharmacology of Ficus religiosa. Pharmacogn. Rev. 4, 195–159.PubMedCrossrefGoogle Scholar

  • Chattipakorn, S., Pongpanparadorn, A., Pratchayasakul, W., Pongchaidacha, A., Ingkaninan, K., and Chattipakorn, N. (2007). Tabernaemontana divaricata extract inhibits neuronal acetylcholinesterase activity in rats. J. Ethnopharmacol. 110, 61–68.CrossrefPubMedGoogle Scholar

  • Chen, P.X., Wang, S., Nie, S., and Marcone, M. (2013). Properties of Cordyceps sinensis: a review. J. Funct. Foods 5, 550–569.CrossrefGoogle Scholar

  • Cho, N., Lee, H.K., Jeon, B.J., Kim, H.W., Kim, H.P., Lee, J.H., Kim, Y.C., and Sung, S.H. (2014). The effects of Betula platyphylla bark on amyloid beta-induced learning and memory impairment in mice. Food Chem. Toxicol. 74, 156–163.PubMedCrossrefGoogle Scholar

  • Cho, J.H., Kwon, J.E., Cho, Y., Kim, I., and Kang, S.C. (2015). Anti-inflammatory effect of Angelica gigas via heme oxygenase (HO)-1 expression. Nutrients 7, 4862–4874.CrossrefPubMedGoogle Scholar

  • Choi, M.R., Lee, M.Y., Hong, J.E., Kim, J.E., Lee, J.Y., Kim, T.H., Chun, J.W., Shin, H.K., and Kim, E.J. (2014). Rubus coreanus miquel ameliorates scopolamine-induced memory impairments in ICR mice. J. Med. Food. 17, 1049–1056.CrossrefPubMedGoogle Scholar

  • Choi, J.H., Kim, D.W., Park, S.E., Lee, H.J., Kim, K.M., Kim, K.J., Kim, M.K., Kim, S.J., and Kim, S. (2015a). Anti-thrombotic effect of rutin isolated from Dendropanax morbifera Leveille. J. Biosci. Bioeng. 120, 181–186.CrossrefGoogle Scholar

  • Choi, Y.J., Yang, H.S., Jo, J.H., Lee, S.C., Park, T.Y., Choi, B.S., Seo, K.S., and Huh, C.K. (2015b). Anti-amnesic effect of fermented Ganoderma lucidum water extracts by lactic acid bacteria on scopolamine-induced memory impairment in rats. Prev. Nutr. Food Sci. 20, 126–132.CrossrefGoogle Scholar

  • Chudiwal, A., Jain, D., and Somani, R. (2010). Alpinia galanga Willd. – an overview on phyto-pharmacological properties. Indian J. Nat. Prod. Resources 1, 143–149.Google Scholar

  • Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., Bondzic, A.M., and Vasic, V.M. (2013). Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr. Neuropharmacol. 11, 315–335.PubMedCrossrefGoogle Scholar

  • Cuellar, M., Giner, R., Recio, M., Manez, S., and Rios, J. (2001). Topical anti-inflammatory activity of some Asian medicinal plants used in dermatological disorders. Fitoterapia 72, 221–229.PubMedCrossrefGoogle Scholar

  • Damanhouri, Z.A. and Ahmad, A. (2014). A review on therapeutic potential of Piper nigrum L. (black pepper): the king of spices. Med. Aromat. Plants 3, 1–6.Google Scholar

  • Damle, M. (2014). Glycyrrhiza glabra (Liquorice) – a potent medicinal herb. Int. J. Herb. Med. 2, 132–136.Google Scholar

  • Das, A., Shanker, G., Nath, C., Pal, R., Singh, S., and Singh, H.K. (2002). A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: anticholinesterase and cognitive enhancing activities. Pharmacol. Biochem. Behav. 73, 893–900.CrossrefPubMedGoogle Scholar

  • Deb, A., Barua, S., and Das, B. (2016). Pharmacological activities of Baheda (Terminalia bellerica): a review. J. Pharmacogn. Phytochem. 5, 194–197.Google Scholar

  • Devi, V.S. and Rao, M.G. (2014). Valeriana wallichii – a rich aroma root plant. World J. Pharm. Pharm. Sci. 3, 1516–1525.Google Scholar

  • Devi Priya, M. and Siril, E. (2014). Traditional and modern use of Indian madder (Rubia cordifolia L.): an overview. Int. J. Pharm. Sci. Rev. Res. 25, 154–164.Google Scholar

  • Dhanasekaran, S., Perumal, P., and Palayan, M. (2015). In-vitro screening for acetylcholinesterase enzyme inhibition potential and antioxidant activity of extracts of Ipomoea aquatica Forsk: therapeutic lead for Alzheimer’s disease. J. App. Pharm. Sci. 5, 012–016.Google Scholar

  • Dhingra, D., Parle, M., and Kulkarni, S. (2006). Comparative brain cholinesterase-inhibiting activity of Glycyrrhiza glabra, Myristica fragrans, ascorbic acid, and metrifonate in mice. J. Med. Food 9, 281–283.CrossrefPubMedGoogle Scholar

  • Dhivya, P., Sobiya, M., Selvamani, P., and Latha, S. (2014). An approach to Alzheimer’s disease treatment with cholinesterase inhibitory activity from various plant species. Int. J. Pharm. Tech. Res. 6, 1450–1467.Google Scholar

  • Dixon, A.R., McMillen, H., and Etkin, N.L. (1999). Ferment this: the transformation of Noni, a traditional Polynesian medicine (Morinda citrifolia, Rubiaceae). Econom. Bot. 53, 51–68.CrossrefGoogle Scholar

  • Dunga, P.L. and Latha, K. (2011). Antibacterial activity of extracts from Hypnea valentiae against standard pathogenic bacterial strains. Int. J. Pharm. Tech. Res. 3, 1622–1624.Google Scholar

  • Dvir, H., Silman, I., Harel, M., Rosenberry, T.L., and Sussman, J.L. (2010). Acetylcholinesterase: from 3D structure to function. Chem. Biol. Interact. 187, 10–22.PubMedCrossrefGoogle Scholar

  • Dwivedi, S., Dubey, R., and Mehta, K. (2008). Achyranthes aspera Linn. (Chirchira): a magic herb in folk medicine. Ethnobot. Leaflets 2, 228–240.Google Scholar

  • Dzoyem, J.P., Kuete, V., McGaw, L.J., and Eloff, J.N. (2014). The 15-lipoxygenase inhibitory, antioxidant, antimycobacterial activity and cytotoxicity of fourteen ethnomedicinally used African spices and culinary herbs. J. Ethnopharmacol. 156, 1–8.CrossrefPubMedGoogle Scholar

  • El-Akabawy, G. and El-Kholy, W. (2014). Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats. Ann. Anat. 196, 119–128.CrossrefPubMedGoogle Scholar

  • El-Khadragy, M.F., Al-Olayan, E.M., and Abdel Moneim, A.E. (2014). Neuroprotective effects of Citrus reticulata in scopolamine-induced dementia oxidative stress in rats. CNS Neurol. Disord. Drug Targets 13, 684–690.CrossrefPubMedGoogle Scholar

  • El-Mokasabi, F. (2014). Floristic composition and traditional uses of plant species at Wadi Alkuf, Al-Jabal Al-Akhder, Libya. Am.-Eur. J. Agric. Environ. Sci. 14, 685–697.Google Scholar

  • Erol, A. and Alpsoy, H.C. (2007). Sarımsak (Allium sativum) ve geleneksel tedavide kullanımı. Türkiye Parazitoloji Dergisi 31, 145–149 [in Turkish].Google Scholar

  • Fahey, J.W. (2005). Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J. 1, 1–15.Google Scholar

  • Faridi, P., Moatamedi, M., Zarshenas, M.M., Abolhassanzadeh, Z., and Mohagheghzadeh, A. (2015). Natural remedies in the Canon of Medicine for dentistry and oral biology. Trends Pharm. Sci. 1, 4–9.Google Scholar

  • Fathi, H., Lashtoo Aghaee, B., and Ebrahimzadeh, M.A. (2011). Antioxidant activity and phenolic contents of Achillea wilhemsii. Pharmacol. Online 2, 942–949.Google Scholar

  • Favela-Hernández, J.M., González-Santiago, O., Ramírez-Cabrera, M.A., Esquivel-Ferriño, P.C., and Camacho-Corona Mdel, R. (2016). Chemistry and pharmacology of Citrus sinensis. Molecules 21, 247.CrossrefGoogle Scholar

  • Fennell, C. and Van Staden, J. (2001). Crinum species in traditional and modern medicine. J. Ethnopharmacol. 78, 15–26.PubMedCrossrefGoogle Scholar

  • Ferlemi, A.V. and Lamari, F.N. (2016). Berry leaves: an alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants (Basel) 5, E17.CrossrefPubMedGoogle Scholar

  • Ferreira, A., Proença, C., Serralheiro, M.L., and Araujo, M.E. (2006). The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol. 108, 31–37.PubMedCrossrefGoogle Scholar

  • Foyet, H.S., Abaïssou, H.H., Wado, E., Acha, E.A., and Alin, C. (2015). Emilia coccinae (SIMS) G Extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in scopolamine-treated rats. BMC Complement. Altern. Med. 15, 333.CrossrefGoogle Scholar

  • Gami, B., Pathak, S., and Parabia, M. (2012). Ethnobotanical, phytochemical and pharmacological review of Mimusops elengi Linn. Asian Pac. J. Trop. Biomed. 2, 743–748.PubMedCrossrefGoogle Scholar

  • Ganjhu, R., Mudgal, P., and Arunkumar, G. (2014). Pharmacological and phytoconstituent profile of Desmodium gangeticum – an update. Int. J. Pharmacogn. Phytochem. Res. 6, 643–657.Google Scholar

  • Gasparetto, J.C., Martins, C.A., Hayashi, S.S., Otuky, M.F., and Pontarolo, R. (2012). Ethnobotanical and scientific aspects of Malva sylvestris L.: a millennial herbal medicine. J. Pharm. Pharmacol. 64, 172–189.CrossrefGoogle Scholar

  • Gathirwa, J., Rukunga, G., Njagi, E., Omar, S., Mwitari, P., Guantai, A., Tolo, F., Kimani, C., Muthaura, C., and Kirira, P. (2008). The in vitro anti-plasmodial and in vivo anti-malarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. J. Ethnopharmacol. 115, 223–231.CrossrefPubMedGoogle Scholar

  • Gattu, M., Boss, K.L., Terry, A.V., and Buccafusco, J.J. (1997). Reversal of scopolamine-induced deficits in navigational memory performance by the seed oil of Celastrus paniculatus. Pharmacol. Biochem. Behav. 57, 793–799.CrossrefPubMedGoogle Scholar

  • Gawande, D.Y. and Goel, R.K. (2015). Pharmacological validation of in-silico guided novel nootropic potential of Achyranthes aspera L. J. Ethnopharmacol. 175, 324–334.CrossrefGoogle Scholar

  • Gholamhossainian, A., Moradi, M., and Sharifi-Far, F. (2010). Screening the methanol extracts of some Iranian plants for acetylcholinesterase inhibitory activity. Res. Pharm. Sci. 4, 105–112.Google Scholar

  • Giancarlo, S., Rosa, L.M., Nadjafi, F., and Francesco, M. (2006). Hypoglycaemic activity of two spices extracts: Rhus coriaria L. and Bunium persicum Boiss. Nat. Prod. Res. 20, 882–886.CrossrefGoogle Scholar

  • Giridharan, V.V., Thandavarayan, R.A., and Konishi, T. (2011a). Amelioration of scopolamine induced cognitive dysfunction and oxidative stress by Inonotus obliquus – a medicinal mushroom. Food Funct. 2, 320–327.CrossrefGoogle Scholar

  • Giridharan, V.V., Thandavarayan, R.A., Mani, V., Ashok Dundapa, T., Watanabe, K., and Konishi, T. (2011b). Ocimum sanctum Linn. leaf extracts inhibit acetylcholinesterase and improve cognition in rats with experimentally induced dementia. J. Med. Food. 14, 912–919.CrossrefGoogle Scholar

  • Godkar, P., Gordon, R., Ravindran, A., and Doctor, B. (2006). Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxide-and glutamate-induced injury in embryonic rat forebrain neuronal cells. Phytomedicine 13, 29–36.CrossrefPubMedGoogle Scholar

  • Goel, A., Garg, A., and Kumar, A. (2016). Effect of Capparis spinosa Linn. extract on lipopolysaccharide-induced cognitive impairment in rats. Indian J. Exp. Biol. 54, 126–132.PubMedGoogle Scholar

  • Gohil, K.J., Patel, J.A., and Gajjar, A.K. (2010). Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J. Pharm. Sci. 72, 546–556.PubMedCrossrefGoogle Scholar

  • Golechha, M., Bhatia, J., and Arya D.S. (2012). Studies on effects of Emblica officinalis (Amla) on oxidative stress and cholinergic function in scopolamine induced amnesia in mice. J. Environ. Biol. 33, 95–100.PubMedGoogle Scholar

  • Gong, M., Xu, J., Chu, Z., and Luan, J. (2011). Effect of Cordyceps sinensis sporocarp on learning-memory in mice. Zhong Yao. Cai. 34, 1403–1405.PubMedGoogle Scholar

  • Gonzales, G.F. (2011). Ethnobiology and ethnopharmacology of Lepidium meyenii (Maca), a plant from the Peruvian highlands. Evid. Based Complement. Alternat. Med. 2012, 193496.PubMedGoogle Scholar

  • Hachemi, N., Hasnaoui, O., Bouazza, M., Benmehdi, I., and Medjati, N. (2013). The therophytes aromatic and medicinal plants of the Southern slopes of the mountains of Tlemcen (Western Algeria) between utility and degradation. Res. J. Pharm. Biol. Chem. Sci. 4, 1194–1203.Google Scholar

  • Hadipour, A., Azizi, M., Naghdi Badi, H., Panahandeh, J., Delazar, A., and Aroei, H. (2016). Phytochemical diversity of Eremostachys laciniata bunge populations in Iran. J. Medicinal Plants 1, 9–18.Google Scholar

  • Hamidpour, M., Hamidpour, R., Hamidpour, S., and Shahlari, M. (2014). Chemistry, pharmacology, and medicinal property of sage (salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. J. Tradit. Complement. Med. 4, 82–88.CrossrefPubMedGoogle Scholar

  • Hasan, M.R., Islam, M.N., and Islam, M.R. (2016). Phytochemistry, pharmacological activities and traditional uses of Emblica officinalis: a review. Int. Curr. Pharmaceut. J. 5, 14–21.CrossrefGoogle Scholar

  • He, W. and Huang, B. (2011). A review of chemistry and bioactivities of a medicinal spice: Foeniculum vulgare. J. Medicinal Plants Res. 5, 3595–3600.Google Scholar

  • He, X., Wang, J., Li, M., Hao, D., Yang, Y., Zhang, C., He, R., and Tao, R. (2014). Eucommia ulmoides Oliv.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 151, 78–92.PubMedCrossrefGoogle Scholar

  • Heidari Sureshjani, M., Tabatabaei Yazdi, F., Mortazavi, A., Shahidi, F., and Alizadeh Behbahani, B. (2013). Antimicrobial effect of Satureja bachtiarica extracts aqueous and ethanolic on Escherichia coli and Staphylococcus aureus. Sci. J. Biol. Sci. 2, 24–31.Google Scholar

  • Hillhouse, B., Ming, D.S., French, C., and Towers, G. (2004). Acetylcholine esterase inhibitors in Rhodiola rosea. Pharm. Biol. 42, 68–72.CrossrefGoogle Scholar

  • Hossan, S., Agarwala, B., Sarwar, S., Karim, M., Jahan, R., and Rahmatullah, M. (2010). Traditional use of medicinal plants in Bangladesh to treat urinary tract infections and sexually transmitted diseases. Ethnobot. Res. Appl. 8, 61–74.CrossrefGoogle Scholar

  • Hosseini, M., Mohammadpour, T., Karami, R., Rajaei, Z., Sadeghnia, H.R., and Soukhtanloo, M. (2015). Effects of the hydro-alcoholic extract of Nigella Sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism. Chin. J. Integr. Med. 21, 438–444.PubMedCrossrefGoogle Scholar

  • Hosseinzadeh, S., Kukhdan, A., Hosseini, A., and Armand, R. (2015). The application of Thymus vulgaris in traditional and modern medicine: a review. Global J. Pharmacol. 9, 260–266.Google Scholar

  • Huang, S.Y., Li, G.Q., Shi, J.G., and Mo, S.Y. (2004). Chemical constituents of the rhizomes of Coeloglossum viride var. bracteatum. J. Asian Nat. Prod. Res. 6, 49–61.PubMedCrossrefGoogle Scholar

  • Huang, Y.X., Wang, G., Zhu, J.S., Zhang, R., and Zhang, J. (2016). Traditional uses, phytochemistry, and pharmacological properties of Sophora alopecuroides L. Eur. J. Inflamm. 14, 128–132.CrossrefGoogle Scholar

  • Huh, J.E., Hong, J.M., Baek, Y.H., Lee, J.D., Choi, D.Y., and Park, D.S. (2011). Anti-inflammatory and anti-nociceptive effect of Betula platyphylla var. japonica in human interleukin-1β-stimulated fibroblast-like synoviocytes and in experimental animal models. J. Ethnopharmacol. 135, 126–134.PubMedCrossrefGoogle Scholar

  • Hussain, T., Tan, B., Liu, G., Oladele, O.A., Rahu, N., Tossou, M., and Yin, Y. (2016). Health-promoting properties of Eucommia ulmoides: a review. Evid. Based Complement. Alternat. Med. 2016, 5202908.PubMedGoogle Scholar

  • Indhumol, V., Pradeep, H., Sushrutha, C., Jyothi, T., and Shavas, M. (2013). Ethnomedicinal, phytochemical, and therapeutic applications of Evolvulus alsinoides Linn. – a review. Int. Res. J. Pharm. Plant Sci. 1, 1–6.Google Scholar

  • Ingkaninan, K., Temkitthawon, P., Chuenchom, K., Yuyaem, T., and Thongnoi, W. (2003). Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. 89, 261–264.PubMedCrossrefGoogle Scholar

  • Ishola, I.O., Adeyemi, O.O., Agbaje, E.O., Tota, S., and Shukla, R. (2013a). Combretum mucronatum and Capparis thonningii prevent scopolamine-induced memory deficit in mice. Pharm. Biol. 51, 49–57.CrossrefGoogle Scholar

  • Ishola, I.O., Tota, S., Adeyemi, O.O., Agbaje, E.O., Narender, T., and Shukla, R. (2013b). Protective effect of Cnestis ferruginea and its active constituent on scopolamine-induced memory impairment in mice: a behavioral and biochemical study. Pharm. Biol. 51, 825–835.CrossrefGoogle Scholar

  • Jain, P. and Sharma, H. (2013). A potential ethno medicinal plant: Semecarpus anacardium Linn. – a review. Int. J. Res. Pharm. Chem. 3, 564–572.Google Scholar

  • Jarald, E.E., Joshi, S., and Jain, D. (2008). Antidiabetic activity of flower buds of Michelia champaca Linn. Indian J. Pharmacol. 40, 256–260.Google Scholar

  • Javed, H., Erum, S., Tabassum, S., and Ameen, F. (2013). An overview on medicinal importance of thymus vulgaris. J. Asian Sci. Res. 3, 974–982.Google Scholar

  • Jawaid, T., Shakya, A.K., Siddiqui, H.H., and Kamal, M. (2014). Evaluation of Cucurbita maxima extract against scopolamine-induced amnesia in rats: implication of tumour necrosis factor α. Z. Naturforsch. C 69, 407–417.PubMedGoogle Scholar

  • Jeong, H.Y., Kim, J.Y., Lee, H.K., Ha, D.T., Song, K.S., Bae, K., and Seong, Y.H. (2010). Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25–35)-induced neurotoxicity. Arch. Pharm. Res. 33, 1655–1664.CrossrefPubMedGoogle Scholar

  • Jeong, H.R., Jo, Y.N., Jeong, J.H., Kim, H.J., Kim, M.J., and Heo, H.J. (2013). Blueberry (Vaccinium virgatum) leaf extracts protect against Aβ-induced cytotoxicity and cognitive impairment. J. Med. Food 16, 968–976.CrossrefPubMedGoogle Scholar

  • Jin, G.L., Su, Y.P., Liu, M., Xu, Y., Yang, J., Liao, K.J., and Yu, C.X. (2014). Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales) – a review of their phytochemistry, pharmacology, toxicology and traditional use. J. Ethnopharmacol. 152, 33–52.CrossrefPubMedGoogle Scholar

  • Johnson, G. and Moore, S. (2006). The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Curr. Pharm. Des. 12, 217–225.CrossrefPubMedGoogle Scholar

  • Joseph, B. and Raj, S. (2011). An overview: pharmacognostic properties of Phyllanthus amarus Linn. Int. J. Pharmacol 7, 40–45.CrossrefGoogle Scholar

  • Joshi, H. and Parle, M. (2006a). Antiamnesic effects of Desmodium gangeticum in mice. Yakugaku. Zasshi. 126, 795–804.CrossrefGoogle Scholar

  • Joshi, H. and Parle, M. (2006b). Cholinergic basis of memory-strengthening effect of Foeniculum vulgare Linn. J. Med. Food 9, 413–417.CrossrefGoogle Scholar

  • Joshi, H. and Parle, M. (2007a). Evaluation of the antiamnesic effects of Phyllanthus amarus in mice. Colomb. Med. 38, 132–139.Google Scholar

  • Joshi, H. and Parle, M. (2007b). Pharmacological evidences for antiamnesic potentials of Phyllanthus amarus in mice. Afr. J. Biomed. Res. 10, 165–173.Google Scholar

  • Justin Thenmozhi, A., Dhivyabharathi, M., William Raja, T.R., Manivasagam, T., and Essa, M.M. (2016). Tannoid principles of Emblica officinalis renovate cognitive deficits and attenuate amyloid pathologies against aluminum chloride induced rat model of Alzheimer’s disease. Nutr. Neurosci. 19, 269–278.CrossrefPubMedGoogle Scholar

  • Jyothi, T., Prabhu, K., Jayachandran, E., Lakshminarasu, S., and Setty, R. (2008). Hepatoprotective and antioxidant activity of Euphorbia antiquorum. Pharmacogn. Mag. 4, 127–133.Google Scholar

  • Ka, M.H., Choi, E.H., Chun, H.S., and Lee, K.G. (2005). Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. J. Agric. Food Chem. 53, 4124–4129.CrossrefPubMedGoogle Scholar

  • Kadiyala, M., Ponnusankar, S., and Elango, K. (2014). Screening of siddha medicinal plants for its in-vitro acetylcholinesterase and butyrylcholinesterase inhibitory activity. Pharmacogn. Mag. 10, S294–S298.Google Scholar

  • Kaur, T., Pathak, C., Pandhi, P., and Khanduja, K. (2008). Effects of green tea extract on learning, memory, behavior and acetylcholinesterase activity in young and old male rats. Brain Cogn. 67, 25–30.CrossrefGoogle Scholar

  • Kaur, S., Singh, V., and Shri, R. (2015). In vitro evaluation of acetylcholinesterase inhibition by standardized extracts of selected plants. Int. J. Biol. Pharmaceut. Res. 6, 247–250.Google Scholar

  • Khan, M.S.A. (2011). Gastroprotective effect of Tabernaemontana divaricata (Linn.) R. Br. flower methanolic extract in Wistar rats. Br. J. Pharmaceut. Res. 1, 88–98.CrossrefGoogle Scholar

  • Khan, R.A. (2012). Effects of Launaea procumbens on brain antioxidant enzymes and cognitive performance of rat. BMC Complement. Altern. Med. 12, 219.PubMedGoogle Scholar

  • Khan, A.V. and Ahmed, Q.U. (2011). Antibacterial efficacy of Bacopa monnieri leaf extracts against pathogenic bacteria. Asian Biomed. 4, 651–655.Google Scholar

  • Khan, A., Vaibhav, K., Javed, H., Khan, M.M., Tabassum, R., Ahmed, M.E., Raza, S.S., Ashafaq, M., Khuwaja, G., and Gupta, V. (2011a). Neuroprotective effect of Bellis perennis and Hypericum perforatum on PC12 cells. Indian J. Res. Homoeopathy 5, 27–35.Google Scholar

  • Khan, M., Saini, V., Bhati, V., Karchuli, M., and Kasturi, M. (2011b). Anxiolytic activity of Ipomoea aquatica leaves. Eur. J. Exp. Biol. 1, 63–70.Google Scholar

  • Khan, R.A., Khan, M.R., Ahmed, M., Sahreen, S., Shah, N.A., Shah, M.S., Bokhari, J., Rashid, U., Ahmad, B., and Jan, S. (2012a). Hepatoprotection with a chloroform extract of Launaea procumbens against CCl 4-induced injuries in rats. BMC Complement. Altern. Med. 12, 114.Google Scholar

  • Khan, R.A., Khan, M.R., and Sahreen, S. (2012b). Brain antioxidant markers, cognitive performance and acetylcholinesterase activity of rats: efficiency of Sonchus asper. Behav. Brain Funct. 8, 21.CrossrefGoogle Scholar

  • Khan, R.A., Khan, M.R., Sahreen, S., and Ahmed, M. (2012c). Evaluation of phenolic contents and antioxidant activity of various solvent extracts of Sonchus asper (L.) Hill. Chem. Cent. J. 6, 12.Google Scholar

  • Khan, R.A., Khan, M.R., Sahreen, S., and Alkreathy, H.M. (2016). Effect of Launaea procumbens extract on oxidative marker, p53, and CYP 2E1: a randomized control study. Food Nutr. Res. 2016, 60.Google Scholar

  • Khatak, M., Khatak, S., Siddqui, A., Vasudeva, N., Aggarwal, A., and Aggarwal, P. (2010). Salvadora persica. Pharmacogn. Rev. 4, 209–214.CrossrefPubMedGoogle Scholar

  • Khuda, F., Iqbal, Z., Khan, A., Shah, Y., and Khan, A. (2014). Screening of selected medicinal plants for their enzyme inhibitory potential – a validation of their ethnopharmacological uses. Pak. J. Pharm. Sci. 27, 593–596.PubMedGoogle Scholar

  • Kim, H., Thuong, P.T., Ngoc, T.M., Lee, I., Hung, N.D., and Bae, K. (2009). Antioxidant and lipoxygenase inhibitory activity of oligostilbenes from the leaf and stem of Vitis amurensis. J. Ethnopharmacol. 125, 304–309.PubMedCrossrefGoogle Scholar

  • Kim, C.R., Choi, S.J., Oh, S.S., Kwon, Y.K., Lee, N.Y., Park, G.G., Kim, Y.J., Heo, H.J., Jun, W.J., and Park, C.S. (2013). Rubus coreanus Miquel inhibits acetylcholinesterase activity and prevents cognitive impairment in a mouse model of dementia. J. Med. Food 16, 785–792.CrossrefGoogle Scholar

  • Kim, W., Kim, D.W., Yoo, D.Y., Jung, H.Y., Nam, S.M., Kim, J.W., Hong, S.M., Kim, D.W., Choi, J.H., and Moon, S.M. (2014). Dendropanax morbifera Léveille extract facilitates cadmium excretion and prevents oxidative damage in the hippocampus by increasing antioxidant levels in cadmium-exposed rats. BMC Complement. Altern. Med. 14, 428.CrossrefPubMedGoogle Scholar

  • Kim, J., Shim, J., Lee, S., Cho, W.H., Hong, E., Lee, J.H., Han, J.S., Lee, H.J., and Lee, K.W. (2016a). Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice. BMC Complement. Altern. Med. 16, 66.CrossrefGoogle Scholar

  • Kim, J.M., Park, S.K., Guo, T.J., Kang, J.Y., Ha, J.S., Lee, U., and Heo, H.J. (2016b). Anti-amnesic effect of Dendropanax morbifera via JNK signaling pathway on cognitive dysfunction in high-fat diet-induced diabetic mice. Behav. Brain. Res. 312, 39–54.CrossrefGoogle Scholar

  • Kim, W., Yim, H.S., Yoo, D.Y., Jung, H.Y., Kim, J.W., Choi, J.H., Yoon, Y.S., Kim, D.W., and Hwang, I.K. (2016c). Dendropanax morbifera Léveille extract ameliorates cadmium-induced impairment in memory and hippocampal neurogenesis in rats. BMC Complement. Altern. Med. 16, 452.CrossrefGoogle Scholar

  • Klinthong, S., Khammanit, R., Phornchirasilp, S., Temsiririrkkul, R., and Siriwatanametanon, N. (2015). In vivo anti-inflammatory and in vitro antioxidant activities of a Thai traditional formula, Rid-si-duang-ma-ha-kan, for hemorrhoid treatment. Mahidol. Univ. J. Pharm. Sci. 42, 144–152.Google Scholar

  • Korkmaz, M. and Karakuş, S. (2015). Traditional uses of medicinal plants of Üzümlü District, Erzincan, Turkey. Pak. J. Bot. 47, 125–134.Google Scholar

  • Kračmarová, A., Drtinová, L., and Pohanka, M. (2015). Possibility of acetylcholinesterase overexpression in Alzheimer disease patients after therapy with acetylcholinesterase inhibitors. Acta Med. (Hradec Kralove) 58, 37–42.CrossrefGoogle Scholar

  • Kukkar, M.R., Saluja, A.K., Sachdeva, P.D., and Kukkar, R.R. (2014). In vivo investigation of the neuroprotective potential of Cardiospermum halicacabum Linn. Int. J. Pharm. Pharmaceut. Sci. 6, 64–66.Google Scholar

  • Kumar, D.S. and Prabhakar, Y.S. (1987). On the ethnomedical significance of the arjun tree, Terminalia arjuna (Roxb.) Wight and Arnot. J. Ethnopharmacol. 20, 173–190.PubMedCrossrefGoogle Scholar

  • Kumar, K.S. and Bhowmik, D. (2012). Traditional and medicinal uses of banana. J. Pharmacogn. Phytochem. 1, 51–63.Google Scholar

  • Kumar, A., Dogra, S., and Prakash, A. (2009). Neuroprotective effects of Centella asiatica against intracerebroventricular colchicine-induced cognitive impairment and oxidative stress. Int. J. Alzheimer’s Dis. 2009, 1–8.CrossrefGoogle Scholar

  • Kumar, M., Shete, A., and Zafar, A. (2010a). A review on analgesic: from natural sources. Int. J. Pharmaceut. Biol. Arch. 1, 95–100.Google Scholar

  • Kumar, S., Malhotra, R., and Kumar, D. (2010b). Euphorbia hirta: its chemistry, traditional and medicinal uses, and pharmacological activities. Pharmacogn. Rev. 4, 58–61.CrossrefGoogle Scholar

  • Kumar, V., Thakur, A.K., Barothia, N.D., and Chatterjee, S.S. (2011). Therapeutic potentials of Brassica juncea: an overview. TANG 1, 2.1–2.17.Google Scholar

  • Kumar, K., Bhowmik, D., Dutta, A., PdYadav, A., Paswan, S., Srivastava, S., and Deb, L. (2012). Recent trends in potential traditional Indian herbs Emblica officinalis and its medicinal importance. J. Pharmacogn. Phytochem. 1, 24–32.Google Scholar

  • Kumar, P., Taha, A., Kumar, N., Kumar, V., and Baquer, N.Z. (2015). Sodium orthovanadate and Trigonella foenum graecum prevents neuronal parameters decline and impaired glucose homeostasis in alloxan diabetic rats. Prague Med. Rep. 116, 122–138.PubMedCrossrefGoogle Scholar

  • Kundu, A. and Mitra, A. (2013). Flavoring extracts of Hemidesmus indicus roots and Vanilla planifolia pods exhibit in vitro acetylcholinesterase inhibitory activities. Plant Foods Hum. Nutr. 68, 247–253.CrossrefPubMedGoogle Scholar

  • Kurapati, K.R., Samikkannu, T., Atluri, V.S., Kaftanovskaya, E., Yndart, A., and Nair, M.P. (2014). β-amyloid 1-42, hiv-1 ba-l (clade b) infection and drugs of abuse induced degeneration in human neuronal cells and protective effects of ashwagandha (Withania somnifera) and its constituent withanolide a. PLoS One 9, e112818.CrossrefPubMedGoogle Scholar

  • Kwon, S.H., Lee, H.K., Kim, J.A., Hong, S.I., Kim, S.Y., Jo, T.H., Park, Y.I., Lee, C.K., Kim, Y.B., and Lee, S.Y. (2011). Neuroprotective effects of Eucommia ulmoides Oliv. Bark on amyloid β25–35-induced learning and memory impairments in mice. Neurosci. Lett. 487, 123–127.CrossrefGoogle Scholar

  • Kwon, S.H., Ma, S.X., Joo, H.J., Lee, S.Y., and Jang, C.G. (2013). Inhibitory effects of Eucommia ulmoides Oliv. Bark on scopolamine-induced learning and memory deficits in mice. Biomol. Ther. (Seoul). 21, 462–469.CrossrefPubMedGoogle Scholar

  • Lakshmi, B., Sudhakar, M., and Anisha, M. (2014). Neuroprotective role of hydroalcoholic extract of Vitis vinifera against aluminium-induced oxidative stress in rat brain. Neurotoxicology 41, 73–79.CrossrefPubMedGoogle Scholar

  • Lau, C.B., Ho, T.C., Chan, T.W., and Kim, S.C. (2005). Use of dong quai (Angelica sinensis) to treat peri-or postmenopausal symptoms in women with breast cancer: is it appropriate? Menopause 12, 734–740.CrossrefPubMedGoogle Scholar

  • Le, X.T., Pham, H.T., Do, P.T., Fujiwara, H., Tanaka, K., Li, F., Van Nguyen, T., Nguyen, K.M., and Matsumoto, K. (2013). Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems. Neurochem. Res. 38, 2201–2215.CrossrefPubMedGoogle Scholar

  • Lee, J.M., Kwon, H., Jeong, H., Lee, J.W., Lee, S.Y., Baek, S.J., and Surh, Y.J. (2001). Inhibition of lipid peroxidation and oxidative DNA damage by Ganoderma lucidum. Phytother. Res. 15, 245–249.PubMedCrossrefGoogle Scholar

  • Lee, B., Park, J., Kwon, S., Park, M.W., Oh, S.M., Yeom, M.J., Shim, I., Lee, H.J., and Hahm, D.H. (2010). Effect of wild ginseng on scopolamine-induced acetylcholine depletion in the rat hippocampus. J. Pharm. Pharmacol. 62, 263–271.CrossrefPubMedGoogle Scholar

  • Lee, B.H., Lee, C.C., and Wu, S.C. (2014). Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes. J. Sci. Food Agric. 94, 2266–2273.CrossrefGoogle Scholar

  • Li, M., Wang, Y., Ma, B., Liu, G., and Zhang, J. (2009). Effect and mechanism of Coeloglossum viride var. bracteatum extract on scopolamine-induced deficits of learning and memory behavior of rodents. Yao Xue Xue Bao 44, 468–472.PubMedGoogle Scholar

  • Li, Z., Lin, H., Gu, L., Gao, J., and Tzeng, C.M. (2016). Herba Cistanche (Rou Cong-Rong): one of the best pharmaceutical gifts of traditional Chinese medicine. Front. Pharmacol. 7, 41.PubMedGoogle Scholar

  • Limpeanchob, N., Jaipan, S., Rattanakaruna, S., Phrompittayarat, W., and Ingkaninan, K. (2008). Neuroprotective effect of Bacopa monnieri on β-amyloid-induced cell death in primary cortical culture. J. Ethnopharmacol. 120, 112–117.PubMedCrossrefGoogle Scholar

  • Lin, C.C., Ng, L.T., Hsu, F.F., Shieh, D.E., and Chiang, L.C. (2004). Cytotoxic effects of Coptis chinensis and Epimedium sagittatum extracts and their major constituents (berberine, coptisine and icariin) on hepatoma and leukaemia cell growth. Clin. Exp. Pharmacol. Physiol. 31, 65–69.PubMedCrossrefGoogle Scholar

  • Linardaki, Z.I., Orkoula, M.G., Kokkosis, A.G., Lamari, F.N., and Margarity, M. (2013). Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem. Toxicol. 52, 163–170.CrossrefPubMedGoogle Scholar

  • Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E., and Schettino, T. (2013). Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed. Res. Int. 2013, 321213.PubMedGoogle Scholar

  • Liu, J. and Mori, A. (1992). Antioxidant and free radical scavenging activities of Gastrodia elata Bl. and Uncaria rhynchophylla (Miq.) Jacks. Neuropharmacology 31, 1287–1298.PubMedCrossrefGoogle Scholar

  • Mabberley, D. (2004). Citrus (Rutaceae): a review of recent advances in etymology, systematics and medical applications. BLUMEA 49, 481–498.CrossrefGoogle Scholar

  • Mahajan, K., Kumar, D., and Kumar, S. (2015). Antiamnesic activity of extracts and fraction of desmodium gangeticum. J. Pharmaceut. Technol. Res. Management 3, 67–77.CrossrefGoogle Scholar

  • Mahboubi, M. (2016). Rosa damascena as holy ancient herb with novel applications. J. Tradit. Compl. Med. 6, 10–16.CrossrefGoogle Scholar

  • Mahmood, K.T., Mugal, T., and Haq, I.U. (2010). Moringa oleifera: a natural gift – a review. J. Pharm. Sci. Res. 2, 775–781.Google Scholar

  • Maithani, A., Parcha, V., Pant, G., Dhulia, I., and Kumar, D. (2011). Azadirachta indica (neem) leaf: a review. J. Pharm. Res. 4, 1824–1827.Google Scholar

  • Malabade, R. and Taranalli, A.D. (2015). Calotropis procera: a potential cognition enhancer in scopolamine and electroconvulsive shock-induced amnesia in rats. Indian J. Pharmacol. 47, 419–424.CrossrefPubMedGoogle Scholar

  • Mali, R.G. and Mehta, A.A. (2008). A review on anthelmintic plants. Nat. Prod. Radiance 7, 466–475.Google Scholar

  • Malik, J., Kumar, M., Deshmukh, R., and Kumar, P. (2013). Ameliorating effect of lyophilized extract of Butea frondosa leaves on scopolamine-induced amnesia in rats. Pharm. Biol. 51, 233–239.CrossrefPubMedGoogle Scholar

  • Malik, J., Munjal, K., and Deshmukh, R. (2015). Attenuating effect of standardized lyophilized Cinnamomum zeylanicum bark extract against streptozotocin-induced experimental dementia of Alzheimer’s type. J. Basic Clin. Physiol. Pharmacol. 26, 275–285.PubMedGoogle Scholar

  • Maneenoon, K., Khuniad, C., Teanuan, Y., Saedan, N., Prom-in, S., Rukleng, N., Kongpool, W., Pinsook, P., and Wongwiwat, W. (2015). Ethnomedicinal plants used by traditional healers in Phatthalung Province, Peninsular Thailand. J. Ethnobiol. Ethnomed. 11, 43.CrossrefPubMedGoogle Scholar

  • Mangal, A., Jain, V., Jat, R., Bharadwaj, S., and Jain, S. (2010). Neuro pharmacological study of leaves of Camellia sinensis. Int. J. Pharm. Pharm. Sci. 2, 132–134.Google Scholar

  • Mani, V., Ramasamy, K., Ahmad, A., Wahab, S.N., Jaafar, S.M., Kek, T.L., Salleh, M.Z., and Majeed, A.B. (2013). Effects of the total alkaloidal extract of Murraya koenigii leaf on oxidative stress and cholinergic transmission in aged mice. Phytother. Res. 27, 46–53.PubMedCrossrefGoogle Scholar

  • Manosi, D., Suvra, M., Budhimanta, M., and Jayram, H. (2013). Ethnobotany, phytochemical and pharmacological aspects of Cinnamomum zeylanicum blume. Int. Res. J. Pharm. 4, 58–63.Google Scholar

  • Maroyi, A. (2016). From traditional usage to pharmacological evidence: systematic review of Gunnera perpensa L. Evid. Based Complement. Alternat. Med. 2016, 1720123.Google Scholar

  • Mathew, M. and Subramanian, S. (2014). In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS One 9, e86804.PubMedCrossrefGoogle Scholar

  • Mathews, J.N., Flatt, P.R., and Abdel-Wahab, Y.H. (2006). Asparagus adscendens (Shweta musali) stimulates insulin secretion, insulin action and inhibits starch digestion. Br. J. Nutr. 95, 576–581.PubMedCrossrefGoogle Scholar

  • Mawa, S., Husain, K., and Jantan, I. (2013). Ficus carica L. (Moraceae): phytochemistry, traditional uses and biological activities. Evid. Based Complement. Alternat. Med. 2013, 974256.PubMedGoogle Scholar

  • Mediratta, P., Sharma, K., and Singh, S. (2002). Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J. Ethnopharmacol. 80, 15–20.CrossrefPubMedGoogle Scholar

  • Meena, A.K., Yadav, A.K., Niranjan, U.S., Singh, B., Nagariya, A.K., Sharma, K., Gaurav, A., Sharma, S., and Rao, M. (2010). A review on Calotropis procera Linn and its ethnobotany, phytochemical, pharmacological profile. Drug Invent. Today 2, 185–190.Google Scholar

  • Meena, J., Ojha, R., Muruganandam, A., and Krishnamurthy, S. (2011). Asparagus racemosus competitively inhibits in vitro the acetylcholine and monoamine metabolizing enzymes. Neurosci. Lett. 503, 6–9.CrossrefPubMedGoogle Scholar

  • Mehla, J., Pahuja, M., Dethe, S.M., Agarwal, A., and Gupta, Y.K. (2012). Amelioration of intracerebroventricular streptozotocin induced cognitive impairment by Evolvulus alsinoides in rats: in vitro and in vivo evidence. Neurochem. Int. 61, 1052–1064.CrossrefPubMedGoogle Scholar

  • Mengi, S. and Deshpande, S. (1999). Anti-inflammatory activity of Butea frondosa leaves. Fitoterapia 70, 521–522.CrossrefGoogle Scholar

  • Menon, S. and Nayeem, N. (2013). Vanilla planifolia: a review of a plant commonly used as flavouring agent. Int. J. Pharm. Sci. Rev. Res. 20, 225–228.Google Scholar

  • Mhatre, S.V., Bhagit, A.A., and Yadav, R.P. (2016). Pancreatic lipase inhibitor from food plant: potential molecule for development of safe anti-obesity drug. MGM J. Med. Sci. 3, 34–41.Google Scholar

  • Mills, S. and Bone, K. (1999). Principles and Practice of Phytotherapy: Modern Herbal Medicine (Churchill: Livingstone).Google Scholar

  • Mishra, S. and Sethiya, N.K. (2010). Review on ethnomedicinal uses and phytopharmacology of memory boosting herb “Convolvulus pluricaulis” Choisy. Austral. J. Med. Herbalism 22, 19–25.Google Scholar

  • Mishra, K., Dash, A.P., Swain, B.K., and Dey, N. (2009). Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar. J. 8, 26.PubMedCrossrefGoogle Scholar

  • Mnif, S. and Aifa, S. (2015). Cumin (Cuminum cyminum L.) from traditional uses to potential biomedical applications. Chem. Biodivers. 12, 733–742.CrossrefPubMedGoogle Scholar

  • Modi, C., Mody, S., Patel, H., Dudhatra, G., Kumar, A., and Awale, M. (2012). Herbal antibacterials: a review. J. Intercult. Ethnopharmacol. 1, 52–61.CrossrefGoogle Scholar

  • Mohamadi, N., Sharififar, F., Koohpayeh, A., and Daneshpajouh, M. (2015). Traditional and ethnobotanical uses of medicinal plants by ancient populations in Khabr and Rouchon of Iran. J. App. Pharm. Sci. 5, 101–107.Google Scholar

  • Mokgolodi, N.C., Hu, Y., Shi, L., and Liu, Y. (2011). Ziziphus mucronata: an underutilized traditional medicinal plant in Africa. Forestry Stud. China 13, 163.CrossrefGoogle Scholar

  • Monji, F., Tehrani, H.H., Halvaei, Z., and Bidgoli, S.A. (2011). Acute and subchronic toxicity assessment of the hydroalcoholic extract of Stachys lavandulifolia in mice. Acta Med. Iran. 49, 769–775.PubMedGoogle Scholar

  • Moon, M.K., Ahn, J.Y., Kim, S., Ryu, S.Y., Kim, Y.S., and Ha, T.Y. (2010). Ethanol extract and saponin of Platycodon grandiflorum ameliorate scopolamine-induced amnesia in mice. J. Med. Food. 13, 584–588.CrossrefPubMedGoogle Scholar

  • Moreira, D.L., Teixeira, S.S., Monteiro, M.H.D., De-Oliveira, A.C.A., and Paumgartten, F.J. (2014). Traditional use and safety of herbal medicines. Rev. Bras. Farmacogn. 24, 248–257.CrossrefGoogle Scholar

  • Motamarri, S., Karthikeyan, M., Kannan, M., and Rajasekar, S. (2012). Terminalia bellerica Roxb – a phytopharmacological review. Int. J. Res. Pharma. 3, 96–99.Google Scholar

  • Mukherjee, D. and Banerjee, S. (2013). Learning and memory promoting effects of crude garlic extract. Indian J. Exp. Biol. 51, 1094–100.PubMedGoogle Scholar

  • Mukherjee, P.K., Kumar, V., and Houghton, P.J. (2007a). Screening of Indian medicinal plants for acetylcholinesterase inhibitory activity. Phytother. Res. 21, 1142–1145.CrossrefGoogle Scholar

  • Mukherjee, P.K., Kumar, V., Mal, M., and Houghton, P.J. (2007b). Acetylcholinesterase inhibitors from plants. Phytomedicine 14, 289–300.CrossrefGoogle Scholar

  • Munoz-Muriedas, J., Lopez, J., Orozco, M., and Luque, F.J. (2004). Molecular modelling approaches to the design of acetylcholinesterase inhibitors: new challenges for the treatment of Alzheimer’s disease. Curr. Pharm. Des. 10, 3131–3140.PubMedCrossrefGoogle Scholar

  • Muralidharan, P., Kumar, V.R., and Balamurugan, G. (2010). Protective effect of Morinda citrifolia fruits on β-amyloid (25-35) induced cognitive dysfunction in mice: an experimental and biochemical study. Phytother. Res. 24, 252–258.PubMedGoogle Scholar

  • Murthy, K.S.R. (2013). A review on Decalepis hamiltonii Wight Arn. J. Medicinal Plants Res. 7, 3014–3029.Google Scholar

  • Naghibi, F., Mosaddegh, M., Mohammadi Motamed, M., and Ghorbani, A. (2010). Labiatae family in folk medicine in Iran: from ethnobotany to pharmacology. Iran. J. Pharmaceut. Res. 4, 63–79.Google Scholar

  • Nakdook, W., Khongsombat, O., Taepavarapruk, P., Taepavarapruk, N., and Ingkaninan, K. (2010). The effects of Tabernaemontana divaricata root extract on amyloid β-peptide 25–35 peptides induced cognitive deficits in mice. J. Ethnopharmacol. 130, 122–126.PubMedCrossrefGoogle Scholar

  • Natarajan, S., Shunmugiah, K.P., and Kasi, P.D. (2013). Plants traditionally used in age-related brain disorders (dementia): an ethanopharmacological survey. Pharm. Biol. 51, 492–523.PubMedCrossrefGoogle Scholar

  • Nayeem, K., Godad, A., Hashilkar, N., and Joshi, R. (2010). Gastroprotective activity of the aqueous extract from the roots of Daucus carota L in rats. Int. J. Res. Ayurveda Pharm. 1, 112–119.Google Scholar

  • Nimsoongnern, S., Pinthong, D., Plasen, S., Wilairat, P., Kusamran, T., and Anukarahanonta, T. (2008). The effect of Butea superba roxb.: a Thai traditional medicine, on endogenous steroid levels in males. In W. Schänzer, H. Geyer, A. Götzmann and U. Mareck (Eds.), Recent Advances in Doping Analysis (16) (Köln, Germany: Sport und Buch Strauß), pp. 383–386.Google Scholar

  • Noorbala, A., Akhondzadeh, S., Tahmacebi-Pour, N., and Jamshidi, A. (2005). Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: a double-blind, randomized pilot trial. J. Ethnopharmacol. 97, 281–284.CrossrefPubMedGoogle Scholar

  • Oboh, G., Ademiluyi, A.O., and Akinyemi, A.J. (2012). Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp. Toxicol. Pathol. 64, 315–319.CrossrefPubMedGoogle Scholar

  • Oboh, G., Odubanjo, V.O., Bello, F., Ademosun, A.O., Oyeleye, S.I., Nwanna, E.E., and Ademiluyi, A.O. (2016). Aqueous extracts of avocado pear (Persea americana Mill.) leaves and seeds exhibit anti-cholinesterases and antioxidant activities in vitro. J. Basic Clin. Physiol. Pharmacol. 27, 131–140.PubMedGoogle Scholar

  • Ogundare, A. and Akinyemi, A. (2011). Phytochemical and antibacterial properties of Combretum mucronatum (Schumach) leaf extract. Afr. J. Microbiol. Res. 5, 2632–2637.CrossrefGoogle Scholar

  • Oh, M., Houghton, P., Whang, W., and Cho, J. (2004). Screening of Korean herbal medicines used to improve cognitive function for anti-cholinesterase activity. Phytomedicine 11, 544–548.CrossrefPubMedGoogle Scholar

  • Ojha, R., Sahu, A.N., Muruganandam, A., Singh, G.K., and Krishnamurthy, S. (2010). Asparagus recemosus enhances memory and protects against amnesia in rodent models. Brain Cogn. 74, 1–9.CrossrefPubMedGoogle Scholar

  • Orhan, I., Şener, B., Choudhary, M., and Khalid, A. (2004). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J. Ethnopharmacol. 91, 57–60.PubMedCrossrefGoogle Scholar

  • Orhan, I., Küpeli, E., Aslan, M., Kartal, M., and Yesilada, E. (2006). Bioassay-guided evaluation of anti-inflammatory and antinociceptive activities of pistachio, Pistacia vera L. J. Ethnopharmacol. 105, 235–240.PubMedCrossrefGoogle Scholar

  • Orhan, I.E., Şener, B., and Musharraf, S.G. (2012). Antioxidant and hepatoprotective activity appraisal of four selected Fumaria species and their total phenol and flavonoid quantities. Exp. Toxicol. Pathol. 64, 205–209.CrossrefPubMedGoogle Scholar

  • Orhan, I.E., Ozturk, N., and Sener, B. (2015). Antiprotozoal assessment and phenolic acid profiling of five Fumaria (fumitory) species. Asian Pac. J. Trop. Med. 8, 283–286.PubMedCrossrefGoogle Scholar

  • Pachauri, S.D., Tota, S., Khandelwal, K., Verma, P., Nath, C., Hanif, K., Shukla, R., Saxena, J., and Dwivedi, A.K. (2012). Protective effect of fruits of Morinda citrifolia L. on scopolamine induced memory impairment in mice: a behavioral, biochemical and cerebral blood flow study. J. Ethnopharmacol. 139, 34–41.PubMedCrossrefGoogle Scholar

  • Pahuja, M., Mehla, J., and Gupta, Y.K. (2012a). Anticonvulsant and antioxidative activity of hydroalcoholic extract of tuber of Orchis mascula in pentylenetetrazole and maximal electroshock induced seizures in rats. J. Ethnopharmacol. 142, 23–27.CrossrefGoogle Scholar

  • Pahuja, M., Mehla, J., Reeta, K., Joshi, S., and Gupta, Y.K. (2012b). Root extract of Anacyclus pyrethrum ameliorates seizures, seizure-induced oxidative stress and cognitive impairment in experimental animals. Epilepsy Res. 98, 157–165.CrossrefGoogle Scholar

  • Pahwa, P. and Goel, R.K. (2016). Asparagus adscendens root extract enhances cognition and protects against scopolamine induced amnesia: an in-silico and in-vivo study. Chem. Biol. Interact. 260, 208–218.PubMedCrossrefGoogle Scholar

  • Palit, P., Mukherjee, D., and Mandal, S.C. (2015). Reconstituted mother tinctures of Gelsemium sempervirens L. improve memory and cognitive impairment in mice scopolamine-induced dementia model. J. Ethnopharmacol. 159, 274–284.PubMedCrossrefGoogle Scholar

  • Pandey, M.M., Katara, A., Pandey, G., Rastogi, S., and Rawat, A. (2013). An important Indian traditional drug of ayurveda jatamansi and its substitute bhootkeshi: chemical profiling and antioxidant activity. Evid. Based Complement. Alternat. Med. 2013, 142517.PubMedGoogle Scholar

  • Pandeya, K.B., Tripathi, I.P., Mishra, M.K., Dwivedi, N., Pardhi, Y., Kamal, A., Gupta, P., Dwivedi, N., and Mishra, C. (2013). A critical review on traditional herbal drugs: an emerging alternative drug for diabetes. Int. J. Org. Chem. 3, 1–22.CrossrefGoogle Scholar

  • Park, Y.M., Won, J.H., Kim, Y.H., Choi, J.W., Park, H.J., and Lee, K.T. (2005). In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. J. Ethnopharmacol. 101, 120–128.CrossrefPubMedGoogle Scholar

  • Park, S.J., Kim, D.H., Lee, I.K., Jung, W.Y., Park, D.H., Kim, J.M., Lee, K.R., Lee, K.T., Shin, C.Y., and Cheong, J.H. (2010). The ameliorating effect of the extract of the flower of Prunella vulgaris var. lilacina on drug-induced memory impairments in mice. Food Chem. Toxicol. 48, 1671–1676.CrossrefPubMedGoogle Scholar

  • Park, N.I., Tuan, P.A., Xu, H., and Park, S.U. (2011). Isolation and characterization of the PgDOF transcription factor in “Platycodon grandiflorum”. Plant Omics J. 4, 149–153.Google Scholar

  • Park, C.H., Park, S.K., Seung, T.W., Jin, D.E., Guo, T., and Heo, H.J. (2015). Effect of ginseng (Panax ginseng) berry EtOAc fraction on cognitive impairment in c57bl/6 mice under high-fat diet inducement. Evid. Based Complement. Alternat. Med. 2015, 316527.PubMedGoogle Scholar

  • Patel, M.K. and Rajput, A.P. (2013). Therapeutic significance of Abutilon indicum: an overview. Am. J. Pharm. Tech. Res. 3, 20–35.Google Scholar

  • Patel, S.S. and Udayabanu, M. (2017). Effect of natural products on diabetes associated neurological disorders. Rev. Neurosci. 28, 271–293.PubMedGoogle Scholar

  • Patel, S.B., Naikwade, N.S., and Magdum, C.S. (2009). Review on phytochemistry and pharmacological aspects of Euphorbia hirta linn. Asian J. Pharmaceut. Res. Health Care 1, 113–133.Google Scholar

  • Patel, S.S., Parashar, A., and Udayabanu, M. (2015). Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice. Metab. Brain Dis. 30, 803–811.CrossrefPubMedGoogle Scholar

  • Patil, S., Jolly, C., and Narayanan, S. (2003). Free radical scavenging activity of Acacia catechu and Rotula aquatica: implications in cancer therapy. Indian Drugs 40, 328–332.Google Scholar

  • Paul, A. and Cox, P.A. (1995). An ethnobotanical survey of the uses for Citrus aurantium (Rutaceae) in Haiti. Econom. Bot. 49, 249–256.CrossrefGoogle Scholar

  • Peerzada, A.M., Ali, H.H., Naeem, M., Latif, M., Bukhari, A.H., and Tanveer, A. (2015). Cyperus rotundus L.: traditional uses, phytochemistry, and pharmacological activities. J. Ethnopharmacol. 174, 540–560.CrossrefPubMedGoogle Scholar

  • Pohanka, M. (2011). Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech. Repub. 155, 219–229.PubMedCrossrefGoogle Scholar

  • Popescu, R. and Kopp, B. (2013). The genus Rhododendron: an ethnopharmacological and toxicological review. J. Ethnopharmacol. 147, 42–62.CrossrefPubMedGoogle Scholar

  • Prabuseenivasan, S., Jayakumar, M., and Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC Complement. Altern. Med. 6, 39.CrossrefPubMedGoogle Scholar

  • Prakash, P. and Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J. Physiol. Pharmacol. 49, 125–131.Google Scholar

  • Pratchayasakul, W., Pongchaidecha, A., Chattipakorn, N., and Chattipakorn, S. (2008). Ethnobotany and ethnopharmacology of Tabernaemontana divaricata. Indian J. Med. Res. 127, 317–335.PubMedGoogle Scholar

  • Pratchayasakul, W., Pongchaidecha, A., Chattipakorn, N., and Chattipakorn, S.C. (2010). Reversible acetylcholinesterase inhibitory effect of Tabernaemontana divaricata extract on synaptic transmission in rat CA1 hippocampus. Indian J. Med. Res. 131, 411–417.PubMedGoogle Scholar

  • Puttalingamma, V. (2015). Ginkgo biloba “living fossil”, wonderful medicinal plant – a review. Int. J. of Adv. Res. 3, 506–511.Google Scholar

  • Qin, X.Y., Cui, J., and Zhang, Y. (2010). Coeloglossum viride var. bracteatum extract protects against amyloid toxicity in rat prefrontal cortex neurons. Int. J. Clin. Exp. Med. 3, 88–94.PubMedGoogle Scholar

  • Qu, Z., Zhang, J., Yang, H., Gao, J., Chen, H., Liu, C., and Gao, W. (2017). Prunella vulgaris L., an edible and medicinal plant, attenuates scopolamine induced memory impairment in rats. J. Agric. Food Chem. 65, 291–300.PubMedCrossrefGoogle Scholar

  • Rabiei, Z., Mokhtari, S., Asgharzade, S., Gholami, M., Rahnama, S., and Rafieian-kopaei, M. (2015). Inhibitory effect of Thymus vulgaris extract on memory impairment induced by scopolamine in rat. Asian Pacific J. Trop. Biomed. 5, 845–851.CrossrefGoogle Scholar

  • Rahaman, A., Hossain, S., Rahman, M., Hossain, I., Nahar, T., Uddin, B., and Khalil, I. (2013). Syzygium cumini (L.) seed extract improves memory related learning ability of old rats in eight arm radial maze. J. Pharmacogn. Phytochem. 1, 85–94.Google Scholar

  • Rahimi, H.R., Arastoo, M., and Ostad, S.N. (2012). A comprehensive review of Punica granatum (pomegranate) properties in toxicological, pharmacological, cellular and molecular biology researches. Iran. J. Pharm. Res. 11, 385–400.PubMedGoogle Scholar

  • Rahnama, S., Rabiei, Z., Alibabaei, Z., Mokhtari, S., Rafieian-kopaei, M., and Deris, F. (2015). Anti-amnesic activity of Citrus aurantium flowers extract against scopolamine-induced memory impairments in rats. Neurol. Sci. 36, 553–560.CrossrefPubMedGoogle Scholar

  • Rai, M.K. (1987). Ethnomedicinal studies of Patalkot and Tamiya (Chhindwara): plants used as tonic. Anc. Sci. Life 7, 119–121.Google Scholar

  • Rai, D., Sharma, R., Rai, P., Watal, G., and Sharma, B. (2010). Role of aqueous extract of Cynodon dactylon in prevention of carbofuran-induced oxidative stress and acetylcholinesterase inhibition in rat brain. Cell. Mol. Biol. (Noisy-le-Grand). 57, 135–142.Google Scholar

  • Rai, R., Singh, H.K., and Prasad, S. (2015). A special extract of Bacopa monnieri (CDRI-08) restores learning and memory by upregulating expression of the NMDA receptor subunit GLUN2b in the brain of scopolamine-induced amnesic mice. Evid. Based Complement. Alternat. Med. 2015, 254303.PubMedGoogle Scholar

  • Rajaei, P. and Mohamadi, N. (2012). Ethnobotanical study of medicinal plants of Hezar mountain allocated in south east of Iran. Iran. J. Pharm. Res. 11, 1153–1167.Google Scholar

  • Ramkumar, K.M., Latha, M., Ashokkumar, N., Pari, L., and Ananthan, R. (2005). Modulation of impaired cholinesterase activity in experimental diabetes: effect of Gymnema montanum leaf extract. J. Basic Clin. Physiol. Pharmacol. 16, 17–36.PubMedGoogle Scholar

  • Rao, N.V., Prakash, K.C., and Kumar, S.S. (2006). Pharmacological investigation of Cardiospermum halicacabum (Linn) in different animal models of diarrhoea. Indian J. Pharmacol. 38, 346–349.CrossrefGoogle Scholar

  • Rastogi, S., Kulshreshtha, D.K., and Rawat, A.K.S. (2006). Streblus asper Lour. (Shakhotaka): a review of its chemical, pharmacological and ethnomedicinal properties. Evid. Based Complement. Alternat. Med. 3, 217–222.CrossrefPubMedGoogle Scholar

  • Rather, M.A., Dar, B.A., Sofi, S.N., Bhat, B.A., and Qurishi, M.A. (2016). Foeniculum vulgare: a comprehensive review of its traditional use, phytochemistry, pharmacology, and safety. Arab. J. Chem. 9, S1574–S1583.Google Scholar

  • Rathinamoorthy, R. and Thilagavathi, G. (2014). Terminalia chebula – review on pharmacological and biochemical studies. Int. J. Pharm. Tech. Res. 6, 97–116.Google Scholar

  • Ravikumar, S., Anburajan, L., and Meen, B. (2016). Antibacterial activity of Ulva reticulata from southwest coast of Kanyakumari, India. J. Coastal Life Med. 4, 246–247.CrossrefGoogle Scholar

  • Raza, S.A., Hussain, S., Riaz, H., and Mahmood, S. (2013). Review of beneficial and remedial aspects of Cardiospermum halicacabum L. Afr. J. Pharm. Pharmacol. 7, 3026–3033.CrossrefGoogle Scholar

  • Re, L., Corneli, C., Sturani, E., Paolucci, G., Rossini, F., León, O.S., Martı́nez, G., Bordicchia, M., and Tomassetti, Q. (2003). Effects of Hypericum extract on the acetylcholine release: a loose patch clamp approach. Pharmacol. Res. 48, 55–60.PubMedGoogle Scholar

  • Roh, J. and Shin, S. (2014). Antifungal and antioxidant activities of the essential oil from Angelica koreana Nakai. Evid. Based Complement. Alternat. Med. 2014, 398503.PubMedGoogle Scholar

  • Rubio, J., Dang, H., Gong, M., Liu, X., Chen, S.L., and Gonzales, G.F. (2007). Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem. Toxicol. 45, 1882–1890.PubMedCrossrefGoogle Scholar

  • Rubio, J., Qiong, W., Liu, X., Jiang, Z., Dang, H., Chen, S.L., and Gonzales, G.F. (2011). Aqueous extract of black maca (Lepidium meyenii) on memory impairment induced by ovariectomy in mice. Evid. Based Complement. Alternat. Med. 2011, 253958.PubMedGoogle Scholar

  • Ryu, J., Lee, H.J., Park, S.H., Kim, J., Lee, D., Lee, S.K., Kim, Y.S., Hong, J.H., Seok, J.H., and Lee, C.J. (2014). Effects of the root of Platycodon grandiflorum on airway mucin hypersecretion in vivo and platycodin D 3 and deapi-platycodin on production and secretion of airway mucin in vitro. Phytomedicine 21, 529–533.PubMedCrossrefGoogle Scholar

  • Sabahi, M., Mansouri, S., Ramezanian, M., and Gholam-Hoseinian, A. (1987). Screening of plants from the southeast of Iran for antimicrobial activity. Int. J. Crude Drug Res. 25, 72–76.CrossrefGoogle Scholar

  • Sadeghi, Z., Akaberi, M., and Valizadeh, J. (2014). Otostegia persica (Lamiaceae): a review on its ethnopharmacology, phytochemistry, and pharmacology. Avicenna J. Phytomed. 4, 79–88.PubMedGoogle Scholar

  • Saha, S. and Ghosh, S. (2012). Tinospora cordifolia: one plant, many roles. Anc. Sci. Life 31, 151–159.CrossrefPubMedGoogle Scholar

  • Saha, M.R., Dey, P., Begum, S., De, B., Chaudhuri, T.K., Sarker, D.D., Das, A.P., and Sen, A. (2016). Effect of Acacia catechu (Lf) Willd. on oxidative stress with possible implications in alleviating selected cognitive disorders. PLoS One 11, e0150574.CrossrefGoogle Scholar

  • Sahu, S., Dutta, G., Mandal, N., Goswami, A.R., and Ghosh, T. (2012). Anticonvulsant effect of Marsilea quadrifolia Linn. on pentylenetetrazole induced seizure: a behavioral and EEG study in rats. J. Ethnopharmacol. 141, 537–541.CrossrefPubMedGoogle Scholar

  • Saini, S.C. and Reddy, G.B.S. (2015). A review on curry leaves (Murraya koenigii): versatile multi-potential medicinal plant. Am. J. Phytomed. Clin. Ther. 3, 363–368.Google Scholar

  • Saini, N., Singh, D., and Sandhir, R. (2012). Neuroprotective effects of Bacopa monnieri in experimental model of dementia. Neurochem. Res. 37, 1928–1937.PubMedCrossrefGoogle Scholar

  • Sajed, H., Sahebkar, A., and Iranshahi, M. (2013). Zataria multiflora Boiss. (Shirazi thyme) – an ancient condiment with modern pharmaceutical uses. J. Ethnopharmacol. 145, 686–698.CrossrefPubMedGoogle Scholar

  • Santos, E., Bicca, M., Blum-Silva, C., Costa, A., Dos Santos, A., Schenkel, E., Farina, M., Reginatto, F., and De Lima, T. (2015). Anxiolytic-like, stimulant and neuroprotective effects of Ilex paraguariensis extracts in mice. Neuroscience 292, 13–21.PubMedCrossrefGoogle Scholar

  • Sarangzai, A.M., Ahmed, A., and Laghari, S.K. (2013). Traditional uses of some useful medicinal plants of Ziarat district Balochistan, Pakistan. FUUAST J. Biol. 3, 101–107.Google Scholar

  • Satheeshkumar, N., Mukherjee, P.K., Bhadra, S., and Saha, B. (2010). Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomedicine 17, 292–295.CrossrefPubMedGoogle Scholar

  • Saxena, M., Saxena, J., and Khare, S. (2012). A brief review on: therapeutical values of Lantana camara plant. Int. J. Pharm. Life Sci. 3, 1551–1554.Google Scholar

  • Schinkovitz, A., Stavri, M., Gibbons, S., and Bucar, F. (2008). Antimycobacterial polyacetylenes from Levisticum officinale. Phytother. Res. 22, 681–684.CrossrefPubMedGoogle Scholar

  • Sembulingam, K., Sembulingam, P., and Namasivayam, A. (2005). Effect of Ocimum sanctum Linn on the changes in central cholinergic system induced by acute noise stress. J. Ethnopharmacol. 96, 477–482.CrossrefPubMedGoogle Scholar

  • Semwal, D.K., Badoni, R., Semwal, R., Kothiyal, S.K., Singh, G.J.P., and Rawat, U. (2010). The genus Stephania (Menispermaceae): chemical and pharmacological perspectives. J. Ethnopharmacol. 132, 369–383.PubMedCrossrefGoogle Scholar

  • Sethiya, N.K., Nahata, A., and Dixit, V.K. (2010a). Anxiolytic activity of Canscora decussata in albino rats. J. Complement. Integr. Med. 7, 1–12.Google Scholar

  • Sethiya, N.K., Patel, M., and Mishra, S. (2010b). Phytopharmacologic aspects of Canscora decussata Roem and Schult. Pharmacogn. Rev. 4, 49–57.CrossrefGoogle Scholar

  • Sethiya, N.K., Nahata, A., Dixit, V., and Mishra, S. (2012). Cognition boosting effect of Canscora decussata (a South Indian Shankhpushpi). Eur. J. Integr. Med. 4, e113–e121.Google Scholar

  • Shah, A.J., Ahmad, M., and Shaheen, F. (2006). Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytother. Res. 20, 1080–1084.PubMedCrossrefGoogle Scholar

  • Sharififar, F., Khazaeli, P., Alli, N., Talebian, E., Zarehshahi, R., and Amiri, S. (2012). Study of antinociceptive and anti-inflammatory activities of certain Iranian medicinal plants. J. Intercult. Ethnopharmacol. 1, 19–24.CrossrefGoogle Scholar

  • Sharma, V., Thakur, M., Chauhan, N.S., and Dixit, V.K. (2008). Evaluation of the anabolic, aphrodisiac and reproductive activity of Anacyclus pyrethrum DC in male rats. Scientia Pharmaceut. 77, 97–110.Google Scholar

  • Sharma, A., Sharma, A.K., Chand, T., Khardiya, M., and Yadav, K.C. (2013). Preliminary phytochemical evaluation of seed extracts of Cucurbita maxima duchense. J. Pharmacogn. Phytochem. 2, 62–65.Google Scholar

  • Sheikh, S.A. (2014). Ethno-medicinal uses and pharmacological activities of lotus (Nelumbo nucifera). J. Med. Plants Res. 2, 42–46.Google Scholar

  • Sher, H. and Alyemeni, M.N. (2010). Ethnobotanical and pharmaceutical evaluation of Capparis spinosa L, validity of local folk and Unani system of medicine. J. Medicinal Plants Res. 4, 1751–1756.Google Scholar

  • Shi, J.S., Yu, J.X., Chen, X.P., and Xu, R.X. (2003). Pharmacological actions of Uncaria alkaloids, rhynchophylline and isorhynchophylline. Acta Pharmacol. Sin. 24, 97–101.PubMedGoogle Scholar

  • Shikha, S., Nidhi, M., and Upama, M. (2009). Bacopa monniera – a future perspective. IJPSDR 1, 154–157.Google Scholar

  • Shinomol, G.K. and Bharath, M.S. (2012). Neuromodulatory propensity of Bacopa monnieri leaf extract against 3-nitropropionic acid-induced oxidative stress: in vitro and in vivo evidences. Neurotox. Res. 22, 102–114.PubMedCrossrefGoogle Scholar

  • Shrestha, H. (2007). A plant monograph on onion (Allium cepa L.). The School of Pharmaceutical and Biomedical Sciences Pokhara University, Simalchaur, Pokara 7, 33–57.Google Scholar

  • Shrivastava, M. and Dwivedi, L. (2015). Therapeutic potential of Hypericum Perforatum: a review. Int. J. Pharmaceut. Sci. Res. 6, 4982–4988.Google Scholar

  • Simplice, F.H., Abdou, B.A., Abaissou, N., Hervé, H., Lucy, M.F., Annabel, M.N., Nyenti, S., Neh, P., and Acha, A.E. (2014). Neuroprotective and memory improvement effects of a standardized extract of Emilia coccinea (SIMS) G. on animal models of anxiety and depression. J. Pharmacogn. Phytochem. 3, 146–154.Google Scholar

  • Singh, K. and Lal, B. (2006). Notes on traditional uses of khair (Acacia catechu Willd.) by inhabitants of shivalik range in Western Himalaya. Ethnobot. Leaflets 10, 109–112.Google Scholar

  • Singh, T. and Goel, R.K. (2015). Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity. Neurotoxicology 49, 1–7.PubMedCrossrefGoogle Scholar

  • Singh, R., Khan, N., and Singhal, K. (1997). Potential antifilarial activity of roots of Asparagus adscendens Roxb, against Setaria cervi in vitro. Indian J. Exp. Biol. 35, 168–172.PubMedGoogle Scholar

  • Singh, A., Duggal, S., and Suttee, A. (2009). Acanthus ilicifolius linn. – lesser known medicinal plants with significant pharmacological activities. Int. J. Phytomed. 1, 1–3.CrossrefGoogle Scholar

  • Singh, J.H., Alagarsamy, V., Diwan, P.V., Kumar, S.S., Nisha, J., and Reddy, Y.N. (2011a). Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ (25–35) induced amnesia in mice. J. Ethnopharmacol. 138, 85–91.CrossrefGoogle Scholar

  • Singh, N., Bhalla, M., de Jager, P., and Gilca, M. (2011b). An overview on ashwagandha: a rasayana (rejuvenator) of ayurveda. Afr. J. Tradit. Complement. Altern. Med. 8, 208–213.Google Scholar

  • Singh, P., Singh, D., and Goel, R.K. (2014). Ficus religiosa L. figs – a potential herbal adjuvant to phenytoin for improved management of epilepsy and associated behavioral comorbidities. Epilepsy Behav. 41, 171–178.PubMedCrossrefGoogle Scholar

  • Sivakumar, A., Manikandan, A., Rajini Raja, M., and Jayaraman, G. (2015). Andrographis paniculata leaf extracts as potential naja naja anti-snake venom. World J. Pharm. Pharmaceut. Sci. 4, 1036–1050.Google Scholar

  • Sodimbaku, V., Pujari, L., Mullangi, R., and Marri, S. (2016). Carrot (Daucus carota L.): nephroprotective against gentamicin-induced nephrotoxicity in rats. Indian J. Pharmacol. 48, 122–127.PubMedCrossrefGoogle Scholar

  • Somani, R., Karve, S., Jain, D., Jain, K., and Singhai, A. (2008). Phytochemical and pharmacological potential of Myristica fragrans Houtt: a comprehensive review. Pharmacogn. Rev. 2, 68–76.Google Scholar

  • Sood, A., Kumar, A., Dhawan, D.K., and Sandhir, R. (2016). Propensity of Withania somnifera to attenuate behavioural, biochemical, and histological alterations in experimental model of stroke. Cell. Mol. Neurobiol. 36, 1123–1138.CrossrefPubMedGoogle Scholar

  • Soodi, M., Saeidnia, S., Sharifzadeh, M., Hajimehdipoor, H., Dashti, A., Sepand, M.R., and Moradi, S. (2016). Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer’s disease. Metab. Brain Dis. 31, 395–404.CrossrefPubMedGoogle Scholar

  • Souravi, K. and Rajasekharan, P. (2014). Ethnopharmacological uses of Embelia ribes Burm. F. – a review. IOSR-JPBS 9, 23–30.CrossrefGoogle Scholar

  • Spiegler, V., Sendker, J., Petereit, F., Liebau, E., and Hensel, A. (2015). Bioassay-guided fractionation of a leaf extract from Combretum mucronatum with anthelmintic activity: oligomeric procyanidins as the active principle. Molecules 20, 14810–14832.CrossrefPubMedGoogle Scholar

  • Srivastav, S., Singh, P., Mishra, G., Jha, K., and Khosa, R. (2011). Achyranthes aspera – an important medicinal plant: a review. J. Nat. Prod. Plant Resour. 1, 1–14.Google Scholar

  • Srivastava, A. and Shivanandappa, T. (2011). Differential cholinesterase inhibition in the rat brain regions by dichlorvos and protective effect of Decalepis hamiltonii roots. Neurotoxicology 32, 931–934.PubMedCrossrefGoogle Scholar

  • Srivatsan, M. (2006). An analysis of acetylcholinesterase sequence for predicting mechanisms of its non-catalytic actions. Bioinformation 1, 281–284.CrossrefPubMedGoogle Scholar

  • Steenkamp, V. (2003). Traditional herbal remedies used by South African women for gynaecological complaints. J. Ethnopharmacol. 86, 97–108.PubMedCrossrefGoogle Scholar

  • Suganthy, N., Pandian, S.K., and Devi, K.P. (2009a). Cholinesterase inhibitors from plants: possible treatment strategy for neurological disorders – a review. Int. J. Biomed. Pharm. Sci. 3, 87–103.Google Scholar

  • Suganthy, N., Pandian, S.K., and Devi, K.P. (2009b). Cholinesterase inhibitory effects of Rhizophora lamarckii, Avicennia officinalis, Sesuvium portulacastrum and Suaeda monica: mangroves inhabiting an Indian coastal area (Vellar Estuary). J. Enzyme Inhib. Med. Chem. 24, 702–707.CrossrefGoogle Scholar

  • Suganthy, N., Pandian, S.K., and Devi, K.P. (2010). Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci. Lett. 468, 216–219.PubMedCrossrefGoogle Scholar

  • Sujith, K., Darwin, C.R., and Suba, V. (2012a). Memory-enhancing activity of Anacyclus pyrethrum in albino Wistar rats. Asian Pacific J. Trop. Dis. 2, 307–311.CrossrefGoogle Scholar

  • Sujith, K., Ronald, D.C., and Suba, V. (2012b). Inhibitory effect of Anacyclus pyrethrum extract on acetylcholinesterase enzyme by in vitro methods. Pharmacogn. J. 4, 48–51.CrossrefGoogle Scholar

  • Sumbul, S., Ahmad, M.A., Asif, M., and Akhtar, M. (2011). Myrtus communis Linn. – a review. Indian J. Nat. Prod. Resources 2, 395–402.Google Scholar

  • Suryawanshi, J.A.S. (2011). An overview of Citrus aurantium used in treatment of various diseases. Afr. J. Plant Sci. 5, 390–395.Google Scholar

  • Sutalangka, C., Wattanathorn, J., Muchimapura, S., and Thukham-mee, W. (2013). Moringa oleifera mitigates memory impairment and neurodegeneration in animal model of age-related dementia. Oxidat. Med. Cell. Longevity 2013, 695936.Google Scholar

  • Suthar, P., Mathur, K., Goyal, M., and Yadav, S.K. (2016). Traditional uses, phytochemistry, pharmacological properties of plant Alhagi maurorum (medik.): a review. World J. Pharm. Pharmaceut. Sci. 5, 682–692.Google Scholar

  • Swami, S.B., Thakor, N.S.J., Patil, M.M., and Haldankar, P.M. (2012). Jamun (Syzygium cumini (L.)): a review of its food and medicinal uses. Food Nutrit. Sci. 3, 1100–1117.Google Scholar

  • Tahvilian, R., Shahriari, S., Faramarzi, A., and Komasi, A. (2014). Ethno-pharmaceutical formulations in Kurdish ethno medicine. Iran. J. Pharm. Res. 13, 1029–1039.PubMedGoogle Scholar

  • Tariq, M. (2008). Nigella sativa seeds: folklore treatment in modern day medicine. Saudi. J. Gastroenterol. 14, 105–106.CrossrefPubMedGoogle Scholar

  • Tembhurne, S.V. and Sakarkar, D.M. (2011). Antiamnesic effect of petroleum ether extract of Murraya koenigii (Linn) leaves involving possible anticholinesterase and cholesterol lowering mechanism. Asian J. Pharm. Clin. Res. 4, 155–160.Google Scholar

  • Thakur, A.K., Chatterjee, S.S., and Kumar, V. (2013). Beneficial effects of Brassica juncea on cognitive functions in rats. Pharm. Biol. 51, 1304–1310.PubMedCrossrefGoogle Scholar

  • Thakur, A.K., Rai, G., Chatterjee, S.S., and Kumar, V. (2016). Beneficial effects of an Andrographis paniculata extract and andrographolide on cognitive functions in streptozotocin-induced diabetic rats. Pharm. Biol. 54, 1528–1538.PubMedCrossrefGoogle Scholar

  • Thangavelu, L. and Ramasamy, R. (2015). In vitro acetyl cholinesterase inhibitory assay of acacia catechu willd ethanolic seed extract. Pharmacogn. J. 7, 1–1.Google Scholar

  • Thirumalai, T., Therasa, S.V., Elumalai, E., and David, E. (2011). Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac. J. Trop. Biomed. 1, 323–325.PubMedCrossrefGoogle Scholar

  • Thirunavukkarasu, P., Ramanathan, T., Ramkumar, L., and Shanmugapriya, R. (2010a). Anti ulcer effect of Avicennia officinalis leaves in Albino rats. World Applied Sci. J. 9, 55–58.Google Scholar

  • Thirunavukkarasu, S.V., Venkataraman, S., and Upadhyay, L. (2010b). In vitro antioxidant and antibacterial activity of polyherbal Manasamitra vatakam (MMV) drug. J. Pharm. Res. 3, 2042–2047.Google Scholar

  • Thirunavukkarasu, S.V., Venkataraman, S., Raja, S., and Upadhyay, L. (2012). Neuroprotective effect of Manasamitra vatakam against aluminium induced cognitive impairment and oxidative damage in the cortex and hippocampus of rat brain. Drug Chem. Toxicol. 35, 104–115.CrossrefPubMedGoogle Scholar

  • Trigui, M., Gasmi, L., Zouari, I., and Tounsi, S. (2013). Seasonal variation in phenolic composition, antibacterial and antioxidant activities of Ulva rigida (Chlorophyta) and assessment of antiacetylcholinesterase potential. J. Appl. Phycol. 25, 319–328.CrossrefGoogle Scholar

  • Tuo, K., Béourou, S., Touré, A.O., Ouattara, K., Meité, S., Ako A.A., Yao, S.S., Koffi, D., Coulibay, B., Coulibaly, B., et al. (2015). Antioxidant activities and estimation of the phenols and flavonoids content in the extracts of medicinal plants used to treat malaria in Ivory Coast. Int. J. Curr. Microbiol. Appl. Sci. 4, 862–874.Google Scholar

  • Tuszyńska, M. (2010). Pharmacological and therapeutic application of Asparagus racemosus Willd. Herba Polonica 56, 92–104.Google Scholar

  • Van, Q., Nayak, B., Reimer, M., Jones, P., Fulcher, R., and Rempel, C. (2009). Anti-inflammatory effect of Inonotus obliquus, Polygala senega L., and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 125, 487–493.CrossrefGoogle Scholar

  • Vasudeva, N. (2015). Origanum majorana L. – phyto-pharmacological review. Indian J. Nat. Prod. Resources 6, 261–267.Google Scholar

  • Vasudevan, M. and Parle, M. (2006). Pharmacological evidence for the potential of Daucus carota in the management of cognitive dysfunctions. Biol. Pharm. Bull. 29, 1154–1161.CrossrefPubMedGoogle Scholar

  • Verma, R.K., Mishra, G., Singh, P., Jha, K., and Khosa, R. (2011). Alpinia galanga – an important medicinal plant: a review. Der Pharmacia Sinica 2, 142–154.Google Scholar

  • Verma, S., Sharma, H., and Garg, M. (2014). Phyllanthus amarus: a review. J. Pharmacogn. Phytochem. 3, 18–22.Google Scholar

  • Vermaak, I., Enslin, G.M., Idowu, T.O., and Viljoen, A.M. (2014). Xysmalobium undulatum (uzara) – review of an antidiarrhoeal traditional medicine. J. Ethnopharmacol. 156, 135–146.CrossrefPubMedGoogle Scholar

  • Vinutha, B., Prashanth, D., Salma, K., Sreeja, S., Pratiti, D., Padmaja, R., Radhika, S., Amit, A., Venkateshwarlu, K., and Deepak, M. (2007). Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity. J. Ethnopharmacol. 109, 359–363.PubMedCrossrefGoogle Scholar

  • Visweswari, G., Prasad, K.S., Chetan, P.S., Lokanatha, V., and Rajendra, W. (2010). Evaluation of the anticonvulsant effect of Centella asiatica (gotu kola) in pentylenetetrazol-induced seizures with respect to cholinergic neurotransmission. Epilepsy Behav. 17, 332–335.PubMedCrossrefGoogle Scholar

  • Wang, Y.Y., Khoo, K.H., Chen, S.T., Lin, C.C., Wong, C.H., and Lin, C.H. (2002). Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg. Med. Chem. 10, 1057–1062.CrossrefPubMedGoogle Scholar

  • Wang, G.W., Hu, W.T., Huang, B.K., and Qin, L.P. (2011). Illicium verum: a review on its botany, traditional use, chemistry and pharmacology. J. Ethnopharmacol. 136, 10–20.PubMedCrossrefGoogle Scholar

  • Wang, Q., Wang, C., Shu, Z., Chan, K., Huang, S., Li, Y., Xiao, Y., Wu, L., Kuang, H., and Sun, X. (2014). Valeriana amurensis improves Amyloid-beta 1-42 induced cognitive deficit by enhancing cerebral cholinergic function and protecting the brain neurons from apoptosis in mice. J. Ethnopharmacol. 153, 318–325.PubMedCrossrefGoogle Scholar

  • Wauthoz, N., Balde, A., Balde, E.S., Van Damme, M., and Duez, P. (2007). Ethnopharmacology of Mangifera indica L. bark and pharmacological studies of its main C-glucosylxanthone, mangiferin. Int. J. Biomed. Pharmaceut. Sci. 1, 112–119.Google Scholar

  • Wu, C.R., Lin, H.C., and Su, M.H. (2014). Reversal by aqueous extracts of Cistanche tubulosa from behavioral deficits in Alzheimer’s disease-like rat model: relevance for amyloid deposition and central neurotransmitter function. BMC Complement. Altern. Med. 14, 202.PubMedCrossrefGoogle Scholar

  • Xian, Y.F., Lin, Z.X., Zhao, M., Mao, Q.Q., Ip, S.P., and Che, C.T. (2011). Uncaria rhynchophylla ameliorates cognitive deficits induced by d-galactose in mice. Planta Med. 77, 1977–1983.PubMedCrossrefGoogle Scholar

  • Xu, M.L., Province, H., Wang, L., and Wang, M.H. (2011). Antidiabetes and angiotensin converting enzyme inhibitory activity of Sonchus asper (L) Hill extract. Korean J. Pharmacogn. 42, 61–67.Google Scholar

  • Yadav, C., Kumar, V., Suke, S., Ahmed, R., Mediratta, P., and Banerjee, B. (2010). Propoxur-induced acetylcholine esterase inhibition and impairment of cognitive function: attenuation by Withania somnifera. Indian J. Biochem. Biophys. 47, 117–120.PubMedGoogle Scholar

  • Yashaswini, S., Venugopal, C., Hegde, R., and Mokashi, A. (2014). Noni: a new medicinal plant for the tropics. Afr. J. Plant Sci. 8, 243–247.CrossrefGoogle Scholar

  • Yogi, B., Gupta, S.K., and Mishra, A. (2016). Calotropis procera (Madar): a medicinal plant of various therapeutic uses – a review. Bull. Env. Pharmacol. Life Sci. 5, 74–81.Google Scholar

  • Yuri, K., Jina, K., Seung-Min, L., Lee, H.A., Seolhyun, P., Yesl, K., and Jung-Hyun, K. (2012). Chemopreventive effects of Rubus coreanus Miquel on prostate cancer. Biosci. Biotechnol. Biochem. 76, 737–744.PubMedCrossrefGoogle Scholar

  • Zamani-Moghaddam, E., Azami, K., Minaei-Zangi, B., Mousavi, S.Z., and Sabzevari, O. (2012). Protective activity of Fumaria vaillantii extract and monomethyl fumarate on acetaminophen induced hepatotoxicity in mice. Int. J. Pharmacol. 8, 177–184.CrossrefGoogle Scholar

  • Zaveri, M., Khandhar, A., Patel, S., and Patel, A. (2010). Chemistry and pharmacology of Piper longum L. Int. J. Pharm. Sci. Rev. Res. 5, 67–76.Google Scholar

  • Zhang, J., Yang, J.Q., He, B.C., Zhou, Q.X., Yu, H.R., Tang, Y., and Liu, B.Z. (2009). Berberine and total base from Rhizoma coptis chinensis attenuate brain injury in an aluminum-induced rat model of neurodegenerative disease. Saudi Med. J. 30, 760–766.Google Scholar

About the article

Received: 2017-07-13

Accepted: 2017-10-23

Published Online: 2018-01-05

Published in Print: 2018-07-26

Conflict of interest statement: The authors have no conflict of interest to declare.

Citation Information: Reviews in the Neurosciences, Volume 29, Issue 5, Pages 491–529, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0054.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jamie R. Friedman, Stephen D. Richbart, Justin C. Merritt, Kathleen C. Brown, Nicholas A. Nolan, Austin T. Akers, Jamie K. Lau, Zachary R. Robateau, Sarah L. Miles, and Piyali Dasgupta
Pharmacology & Therapeutics, 2018

Comments (0)

Please log in or register to comment.
Log in