Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 29, Issue 5

Issues

Gliotransmitters and cytokines in the control of blood-brain barrier permeability

Elena D. Osipova
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Humans and Animals, Saratov State University named after N.G. Chernyshevsky, Saratov 410012, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Oxana V. Semyachkina-Glushkovskaya
  • Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Humans and Animals, Saratov State University named after N.G. Chernyshevsky, Saratov 410012, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrey V. Morgun
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Humans and Animals, Saratov State University named after N.G. Chernyshevsky, Saratov 410012, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia V. Pisareva
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Natalia A. Malinovskaya
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elizaveta B. Boitsova
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elena A. Pozhilenkova
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Olga A. Belova
  • Department of Traumatology, Orthopedics and Neurosurgery, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir V. Salmin
  • Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Humans and Animals, Saratov State University named after N.G. Chernyshevsky, Saratov 410012, Russia
  • Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tatiana E. Taranushenko
  • Department of Pediatrics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mami Noda
  • Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 8128582, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alla B. Salmina
  • Corresponding author
  • Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
  • Interdisciplinary Center of Critical Technologies in Medicine, Department of Physiology of Humans and Animals, Saratov State University named after N.G. Chernyshevsky, Saratov 410012, Russia
  • Department of Biochemistry, Medical, Pharmaceutical and Toxicological Chemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk 660022, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-08 | DOI: https://doi.org/10.1515/revneuro-2017-0092

Abstract

The contribution of astrocytes and microglia to the regulation of neuroplasticity or neurovascular unit (NVU) is based on the coordinated secretion of gliotransmitters and cytokines and the release and uptake of metabolites. Blood-brain barrier (BBB) integrity and angiogenesis are influenced by perivascular cells contacting with the abluminal side of brain microvessel endothelial cells (pericytes, astrocytes) or by immune cells existing (microglia) or invading the NVU (macrophages) under pathologic conditions. The release of gliotransmitters or cytokines by activated astroglial and microglial cells is provided by distinct mechanisms, affects intercellular communication, and results in the establishment of microenvironment controlling BBB permeability and neuroinflammation. Glial glutamate transporters and connexin and pannexin hemichannels working in the tight functional coupling with the purinergic system serve as promising molecular targets for manipulating the intercellular communications that control BBB permeability in brain pathologies associated with excessive angiogenesis, cerebrovascular remodeling, and BBB-mediated neuroinflammation. Substantial progress in deciphering the molecular mechanisms underlying the (patho)physiology of perivascular glia provides promising approaches to novel clinically relevant therapies for brain disorders. The present review summarizes the current understandings on the secretory machinery expressed in glial cells (glutamate transporters, connexin and pannexin hemichannels, exocytosis mechanisms, membrane-derived microvesicles, and inflammasomes) and the role of secreted gliotransmitters and cytokines in the regulation of NVU and BBB permeability in (patho)physiologic conditions.

Keywords: astrocyte; ATP; blood-brain barrier; cytokines; endothelium; glutamate; microglia; pericyte

References

  • Agulhon, C., Sun, M.-Y., Murphy, T., Myers, T., Lauderdale, K., and Fiacco, T.A. (2012). Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Front. Pharmacol. 3, 139.PubMedGoogle Scholar

  • Ahn, H., Kim, J., Jeung, E.-B., and Lee, G.-S. (2014). Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219, 315–322.CrossrefPubMedGoogle Scholar

  • Albert, J.L., Boyle, J.P., Roberts, J.A., John Challiss, R., Gubby, S.E., and Boarder, M.R. (1997). Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. Br. J. Pharmacol. 122, 935–941.PubMedCrossrefGoogle Scholar

  • Alfonso-Loeches, S., Ureña-Peralta, J.R., Morillo-Bargues, M.J., and Guerri, C. (2014). Role of mitochondria ROS generation in ethanol-induced NLRP3 inflammasome activation and cell death in astroglial cells. Front. Cell. Neurosci. 8, 216.PubMedGoogle Scholar

  • Alvarez-Maubecin, V., García-Hernández, F., Williams, J.T., and Van Bockstaele, E.J. (2000). Functional coupling between neurons and glia. J. Neurosci. 20, 4091–4098.PubMedCrossrefGoogle Scholar

  • Álvarez, S. and Muñoz-Fernández, M.Á. (2013). TNF-α may mediate inflammasome activation in the absence of bacterial infection in more than one way. PLoS One 8, e71477.PubMedCrossrefGoogle Scholar

  • Amoroso, F., Falzoni, S., Adinolfi, E., Ferrari, D., and Di Virgilio, F. (2012). The P2X7 receptor is a key modulator of aerobic glycolysis. Cell Death Dis. 3, e370.CrossrefPubMedGoogle Scholar

  • Anderson, C.M., Bergher, J.P., and Swanson, R.A. (2004). ATP-induced ATP release from astrocytes. J. Neurochem. 88, 246–256.PubMedGoogle Scholar

  • Anderson, M.A., Ao, Y., and Sofroniew, M.V. (2014). Heterogeneity of reactive astrocytes. Neurosci. Lett. 565, 23–29.CrossrefPubMedGoogle Scholar

  • András, I.E., Deli, M.A., Veszelka, S., Hayashi, K., Hennig, B., and Toborek, M. (2007). The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J. Cereb. Blood Flow Metab. 27, 1431–1443.CrossrefPubMedGoogle Scholar

  • Antonucci, F., Turola, E., Riganti, L., Caleo, M., Gabrielli, M., Perrotta, C., Novellino, L., Clementi, E., Giussani, P., and Viani, P. (2012). Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 31, 1231–1240.PubMedCrossrefGoogle Scholar

  • Argaw, A.T., Zhang, Y., Snyder, B.J., Zhao, M.-L., Kopp, N., Lee, S.C., Raine, C.S., Brosnan, C.F., and John, G.R. (2006). IL-1β regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J. Immunol. 177, 5574–5584.PubMedCrossrefGoogle Scholar

  • Armulik, A., Genové, G., Mäe, M., Nisancioglu, M.H., Wallgard, E., Niaudet, C., He, L., Norlin, J., Lindblom, P., and Strittmatter, K. (2010). Pericytes regulate the blood-brain barrier. Nature 468, 557–561.CrossrefPubMedGoogle Scholar

  • Arnò, B., Grassivaro, F., Rossi, C., Bergamaschi, A., Castiglioni, V., Furlan, R., Greter, M., Favaro, R., Comi, G., and Becher, B. (2014). Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611.CrossrefPubMedGoogle Scholar

  • Attwell, D., Buchan, A.M., Charpak, S., Lauritzen, M., MacVicar, B.A., and Newman, E.A. (2010). Glial and neuronal control of brain blood flow. Nature 468, 232–243.PubMedCrossrefGoogle Scholar

  • Azarias, G., Perreten, H., Lengacher, S., Poburko, D., Demaurex, N., Magistretti, P.J., and Chatton, J.-Y. (2011). Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J. Neurosci. 31, 3550–3559.PubMedCrossrefGoogle Scholar

  • Bajetto, A., Barbieri, F., Dorcaratto, A., Barbero, S., Daga, A., Porcile, C., Ravetti, J.L., Zona, G., Spaziante, R., and Corte, G. (2006). Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem. Int. 49, 423–432.PubMedCrossrefGoogle Scholar

  • Bal-Price, A., Moneer, Z., and Brown, G.C. (2002). Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia 40, 312–323.CrossrefPubMedGoogle Scholar

  • Banisadr, G., Fontanges, P., Haour, F., Kitabgi, P., Rostène, W., and Mélik Parsadaniantz, S. (2002). Neuroanatomical distribution of CXCR4 in adult rat brain and its localization in cholinergic and dopaminergic neurons. Eur. J. Neurosci. 16, 1661–1671.PubMedCrossrefGoogle Scholar

  • Basuroy, S., Leffler, C.W., and Parfenova, H. (2013). CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis. Am. J. Physiol. Cell. Physiol. 304, C1105–C1115.Google Scholar

  • Beard, R.S., Reynolds, J.J., and Bearden, S.E. (2011). Hyperhomocysteinemia increases permeability of the blood-brain barrier by NMDA receptor-dependent regulation of adherens and tight junctions. Blood 118, 2007–2014.CrossrefPubMedGoogle Scholar

  • Beard, R.S., Reynolds, J.J., and Bearden, S.E. (2012). Metabotropic glutamate receptor 5 mediates phosphorylation of vascular endothelial cadherin and nuclear localization of β-catenin in response to homocysteine. Vasc. Pharmacol. 56, 159–167.CrossrefGoogle Scholar

  • Bélanger, M., Yang, J., Petit, J.-M., Laroche, T., Magistretti, P.J., and Allaman, I. (2011). Role of the glyoxalase system in astrocyte-mediated neuroprotection. J. Neurosci. 31, 18338–18352.CrossrefPubMedGoogle Scholar

  • Bennett, M.V., Garré, J.M., Orellana, J.A., Bukauskas, F.F., Nedergaard, M., Giaume, C., and Saez, J.C. (2012). Connexin and pannexin hemichannels in inflammatory responses of glia and neurons. Brain Res. 1487, 3–15.CrossrefPubMedGoogle Scholar

  • Bergersen, L., Morland, C., Ormel, L., Rinholm, J., Larsson, M., Wold, J., Røe, Å., Stranna, A., Santello, M., and Bouvier, D. (2011). Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697.PubMedGoogle Scholar

  • Bezzi, P. and Volterra, A. (2014). Identification and staining of distinct populations of secretory organelles in astrocytes. Cold Spring Harbor Prot. 2014, pdb. prot081703.Google Scholar

  • Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., and Meldolesi, J. (2001). CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710.CrossrefPubMedGoogle Scholar

  • Bezzi, P., Gundersen, V., Galbete, J.L., Seifert, G., Steinhäuser, C., Pilati, E., and Volterra, A. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat. Neurosci. 7, 613–620.CrossrefPubMedGoogle Scholar

  • Bhalala, U.S., Koehler, R.C., and Kannan, S. (2015). Neuroinflammation and neuroimmune dysregulation after acute hypoxic-ischemic injury of developing brain. Front. Pediatr. 2, 144.PubMedGoogle Scholar

  • Bianco, F., Pravettoni, E., Colombo, A., Schenk, U., Möller, T., Matteoli, M., and Verderio, C. (2005). Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. J. Immunol. 174, 7268–7277.PubMedCrossrefGoogle Scholar

  • Bintig, W., Begandt, D., Schlingmann, B., Gerhard, L., Pangalos, M., Dreyer, L., Hohnjec, N., Couraud, P.-O., Romero, I.A., and Weksler, B.B. (2012). Purine receptors and Ca2+ signalling in the human blood-brain barrier endothelial cell line hCMEC/D3. Purinergic Signal. 8, 71–80.CrossrefGoogle Scholar

  • Blamire, A., Anthony, D., Rajagopalan, B., Sibson, N., Perry, V., and Styles, P. (2000). Interleukin-1β-induced changes in blood-brain barrier permeability, apparent diffusion coefficient, and cerebral blood volume in the rat brain: a magnetic resonance study. J. Neurosci. 20, 8153–8159.CrossrefGoogle Scholar

  • Bridges, R., Lutgen, V., Lobner, D., and Baker, D.A. (2012). Thinking outside the cleft to understand synaptic activity: contribution of the cystine-glutamate antiporter (system xc) to normal and pathological glutamatergic signaling. Pharmacol. Rev. 64, 780–802.CrossrefPubMedGoogle Scholar

  • Brose, S.A., Marquardt, A.L., and Golovko, M.Y. (2014). Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J. Neurochem. 129, 400–412.PubMedCrossrefGoogle Scholar

  • Buckingham, S.C. and Robel, S. (2013). Glutamate and tumor-associated epilepsy: glial cell dysfunction in the peritumoral environment. Neurochem. Int. 63, 696–701.PubMedCrossrefGoogle Scholar

  • Burkert, K., Moodley, K., Angel, C.E., Brooks, A., and Graham, E.S. (2012). Detailed analysis of inflammatory and neuromodulatory cytokine secretion from human NT2 astrocytes using multiplex bead array. Neurochem. Int. 60, 573–580.PubMedCrossrefGoogle Scholar

  • Burnstock, G. (2002). Purinergic signaling and vascular cell proliferation and death. Arterioscler. Thromb. Vasc. Biol. 22, 364–373.CrossrefPubMedGoogle Scholar

  • Burnstock, G. (2009). Purinergic regulation of vascular tone and remodelling. Auton. Autacoid Pharmacol. 29, 63–72.CrossrefPubMedGoogle Scholar

  • Butt, A.M. (2011). ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin. Cell Dev. Biol. 22, 205–13.CrossrefPubMedGoogle Scholar

  • Bynoe, M.S., Viret, C., Yan, A., and Kim, D.-G. (2015). Adenosine receptor signaling: a key to opening the blood-brain door. Fluids Barriers CNS 12, 20.PubMedCrossrefGoogle Scholar

  • Cabezas, R., Ávila, M., Gonzalez, J., El-Bachá, R.S., Báez, E., García-Segura, L.M., Coronel, J.C.J., Capani, F., Cardona-Gomez, G.P., and Barreto, G.E. (2014). Astrocytic modulation of blood brain barrier: perspectives on Parkinson’s disease. Front. Cell. Neurosci. 8, 211.PubMedGoogle Scholar

  • Calì, C. and Bezzi, P. (2010). CXCR4-mediated glutamate exocytosis from astrocytes. J. Neuroimmunol. 224, 13–21.CrossrefPubMedGoogle Scholar

  • Calì, C., Marchaland, J., Regazzi, R., and Bezzi, P. (2008). SDF 1-alpha (CXCL12) triggers glutamate exocytosis from astrocytes on a millisecond time scale: imaging analysis at the single- vesicle level with TIRF microscopy. J. Neuroimmunol. 198, 82–91.CrossrefPubMedGoogle Scholar

  • Cali, C., Lopatar, J., Petrelli, F., Pucci, L., and Bezzi, P. (2014). G-Protein coupled receptor-evoked glutamate exocytosis from astrocytes: role of prostaglandins. Neural Plast. 2014, 254574.PubMedGoogle Scholar

  • Carman, A.J., Mills, J.H., Krenz, A., Kim, D.-G., and Bynoe, M.S. (2011). Adenosine receptor signaling modulates permeability of the blood-brain barrier. J. Neurosci. 31, 13272–13280.CrossrefPubMedGoogle Scholar

  • Chan, T.J., Her, L.S., Liaw, H.J., Chen, M.C., and Tzeng, S.F. (2012). Retinoic acid mediates the expression of glutamate transporter-1 in rat astrocytes through genomic RXR action and non-genomic protein kinase C signaling pathway. J. Neurochem. 121, 537–550.CrossrefPubMedGoogle Scholar

  • Chiu, C.-T., Liao, C.-K., Shen, C.-C., Tang, T.-K., Jow, G.-M., Wang, H.-S., and Wu, J.-C. (2015). HYS-32-induced microtubule catastrophes in rat astrocytes involves the PI3K-GSK3β signaling pathway. PLoS One 10, e0126217.CrossrefPubMedGoogle Scholar

  • Choi, S.-K., Kim, J.-H., Park, J.-K., Lee, K.-M., Kim, E., and Jeon, W.B. (2013). Cytotoxicity and inhibition of intercellular interaction in N2a neurospheroids by perfluorooctanoic acid and perfluorooctanesulfonic acid. Food Chem. Toxicol. 60, 520–529.CrossrefPubMedGoogle Scholar

  • Choi, S.S., Lee, H.J., Lim, I., Satoh, J., and Kim, S.U. (2014). Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9, e92325.CrossrefPubMedGoogle Scholar

  • Choi, J., Stradmann-Bellinghausen, B., Yakubov, E., Savaskan, N.E., and Régnier-Vigouroux, A. (2015). Glioblastoma cells induce differential glutamatergic gene expressions in human tumor-associated microglia/macrophages and monocyte-derived macrophages. Cancer Biol. Ther. 16, 1205–1213.CrossrefPubMedGoogle Scholar

  • Contreras, J.E., Sánchez, H.A., Eugenín, E.A., Speidel, D., Theis, M., Willecke, K., Bukauskas, F.F., Bennett, M.V., and Sáez, J.C. (2002). Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture. Proc. Natl. Acad. Sci. USA. 99, 495–500.CrossrefGoogle Scholar

  • Cui, J.G., Li, Y.Y., Zhao, Y., Bhattacharjee, S., and Lukiw, W.J. (2010). Differential regulation of interleukin-1 receptor-associated kinase-1 (IRAK-1) and IRAK-2 by microRNA-146a and NF-κB in stressed human astroglial cells and in Alzheimer disease. J. Biol. Chem. 285, 38951–38960.PubMedCrossrefGoogle Scholar

  • Curran, B. and O’Connor, J. (2001). The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Neuroscience 108, 83–90.PubMedCrossrefGoogle Scholar

  • D’hondt, C., Iyyathurai, J., Himpens, B., Leybaert, L., and Bultynck, G. (2014). Cx43-hemichannel function and regulation in physiology and pathophysiology: insights from the bovine corneal endothelial cell system and beyond. Front. Physiol. 5, 348–348.PubMedGoogle Scholar

  • da Fonseca, A.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., Freitas, C., and Lima, F.R. (2014). The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 8, 362.PubMedGoogle Scholar

  • Davidson, J.O., Green, C.R., Nicholson, B., Louise, F., O’Carroll, S.J., Fraser, M., Bennet, L., and Jan Gunn, A. (2012). Connexin hemichannel blockade improves outcomes in a model of fetal ischemia. Ann. Neurol. 71, 121–132.CrossrefGoogle Scholar

  • Davidson, J., Green, C., Bennet, L., Nicholson, L., Danesh-Meyer, H., O’Carroll, S.J., and Gunn, A. (2013). A key role for connexin hemichannels in spreading ischemic brain injury. Curr. Drug Targets 14, 36–46.PubMedCrossrefGoogle Scholar

  • de Rivero Vaccari, J.P., Dietrich, W.D., and Keane, R.W. (2014). Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J. Cereb. Blood Flow Metab. 34, 369–375.CrossrefPubMedGoogle Scholar

  • del Rey, A., Balschun, D., Wetzel, W., Randolf, A., and Besedovsky, H.O. (2013). A cytokine network involving brain-borne IL-1β, IL-1ra, IL-18, IL-6, and TNFα operates during long-term potentiation and learning. Brain Behav. Immunity 33, 15–23.CrossrefGoogle Scholar

  • Deng, Y., Xu, Z., Xu, B., Xu, D., Tian, Y., and Feng, W. (2012). The protective effects of riluzole on manganese-induced disruption of glutamate transporters and glutamine synthetase in the cultured astrocytes. Biol. Trace Element Res. 148, 242–249.CrossrefGoogle Scholar

  • Deng, Y., Xie, D., Fang, M., Zhu, G., Chen, C., Zeng, H., Lu, J., and Charanjit, K. (2014). Astrocyte-derived proinflammatory cytokines induce hypomyelination in the periventricular white matter in the hypoxic neonatal brain. PLoS One 9, e87420.PubMedCrossrefGoogle Scholar

  • Domercq, M., Brambilla, L., Pilati, E., Marchaland, J., Volterra, A., and Bezzi, P. (2006). P2Y1 Receptor-evoked glutamate exocytosis from astrocytes control by tumor necrosis factor-α and prostaglandins. J. Biol. Chem. 281, 30684–30696.CrossrefPubMedGoogle Scholar

  • Domoki, F., Kis, B., Gáspár, T., Bari, F., and Busija, D.W. (2008). Cerebromicrovascular endothelial cells are resistant to L-glutamate. Am. J. Physiol. Regul. Integ. Comp. Physiol. 295, R1099–R1108.Google Scholar

  • Dou, Y., Wu, H.J., Li, H.Q., Qin, S., Wang, Y.E., Li, J., Lou, H.F., Chen, Z., Li, X.M., and Luo, Q.M. (2012). Microglial migration mediated by ATP-induced ATP release from lysosomes. Cell Res. 22, 1022–1033.CrossrefPubMedGoogle Scholar

  • Dubois, L.G., Campanati, L., Righy, C., D’Andrea-Meira, I., Spohr, T.C., Porto-Carreiro, I., Pereira, C.M., Balça-Silva, J., Kahn, S.A., and DosSantos, M.F. (2014). Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci. 8, 418.PubMedGoogle Scholar

  • Dubyak, G.R. (2012). P2X7 receptor regulation of non-classical secretion from immune effector cells. Cell. Microbiol. 14, 1697–1706.CrossrefPubMedGoogle Scholar

  • Duitman, E.H., Orinska, Z., and Bulfone-Paus, S. (2011). Mechanisms of cytokine secretion: a portfolio of distinct pathways allows flexibility in cytokine activity. Eur. J. Cell Biol. 90, 476–483.CrossrefPubMedGoogle Scholar

  • Dunlop, J., Eliasof, S., Stack, G., McIlvain, H.B., Greenfield, A., Kowal, D., Petroski, R., and Carrick, T. (2003). WAY-855 (3-amino-tricyclo[2.2.1.02.6]heptane-1,3-dicarboxylic acid): a novel, EAAT2-preferring, nonsubstrate inhibitor of high-affinity glutamate uptake. Br. J. Pharmacol. 140, 839–846.CrossrefPubMedGoogle Scholar

  • Ebong, E.E. and DePaola, N. (2013). Specificity in the participation of connexin proteins in flow-induced endothelial gap junction communication. Eur. J. Physiol. 465, 1293–1302.CrossrefGoogle Scholar

  • Evans, W.H., Bultynck, G., and Leybaert, L. (2012). Manipulating connexin communication channels: use of peptidomimetics and the translational outputs. J. Membr. Biol. 245, 437–449.CrossrefPubMedGoogle Scholar

  • Falchi, A.M., Sogos, V., Saba, F., Piras, M., Congiu, T., and Piludu, M. (2013). Astrocytes shed large membrane vesicles that contain mitochondria, lipid droplets and ATP. Histochem. Cell Biol. 139, 221–231.CrossrefPubMedGoogle Scholar

  • Fan, S.H., Wang, Y.Y., Lu, J., Zheng, Y.L., Wu, D.M., Li, M.Q., Hu, B., Zhang, Z.F., Cheng, W., and Shan, Q. (2014). Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One 9, e89961.PubMedCrossrefGoogle Scholar

  • Fellin, T., Pozzan, T., and Carmignoto, G. (2006). Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J. Biol. Chem. 281, 4274–4284.PubMedCrossrefGoogle Scholar

  • Feng, L., Chen, Y., Ding, R., Fu, Z., Yang, S., Deng, X., and Zeng, J. (2015). P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J. Neuroinflamm. 12, 190.CrossrefGoogle Scholar

  • Ferrari, C.C., Depino, A.M., Prada, F., Muraro, N., Campbell, S., Podhajcer, O., Perry, V.H., Anthony, D.C., and Pitossi, F.J. (2004). Reversible demyelination, blood-brain barrier breakdown, and pronounced neutrophil recruitment induced by chronic IL-1 expression in the brain. Am. J. Pathol. 165, 1827–1837.CrossrefPubMedGoogle Scholar

  • Frühbeis, C., Fröhlich, D., and Krämer-Albers, E.-M. (2012a). Emerging roles of exosomes in neuron-glia communication. Front. Physiol. 3, 119.Google Scholar

  • Frühbeis, C., Fröhlich, D., Kuo, W., and Krämer-Albers, E. (2012b). Extracellular vesicles as mediators of neuron-glia communication. Front. Cell. Neurosci. 7, 182–182.Google Scholar

  • Fu, Y., Wang, Y., Du, L., Xu, C., Cao, J., Fan, T., Liu, J., Su, X., Fan, S., and Liu, Q. (2013). Resveratrol inhibits ionising irradiation-induced inflammation in MSCs by activating SIRT1 and limiting NLRP-3 inflammasome activation. Int. J. Mol. Sci. 14, 14105–14118.CrossrefPubMedGoogle Scholar

  • Gajardo-Gómez, R., Labra, V.C., and Orellana, J.A. (2016). Connexins and pannexins: new insights into microglial functions and dysfunctions. Front. Mol. Neurosci. 9, 86.PubMedGoogle Scholar

  • Galvão, R.P. and Zong, H. (2013). Inflammation and gliomagenesis: bi-directional communication at early and late stages of tumor progression. Curr. Pathobiol. Rep. 1, 19–28.PubMedCrossrefGoogle Scholar

  • Genda, E.N., Jackson, J.G., Sheldon, A.L., Locke, S.F., Greco, T.M., O’Donnell, J.C., Spruce, L.A., Xiao, R., Guo, W., and Putt, M. (2011). Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J. Neurosci. 31, 18275–18288.PubMedCrossrefGoogle Scholar

  • Gérard, F. and Hansson, E. (2012). Inflammatory activation enhances NMDA-triggered Ca2+ signalling and IL-1β secretion in primary cultures of rat astrocytes. Brain Res. 1473, 1–8.CrossrefPubMedGoogle Scholar

  • Giaume, C., Koulakoff, A., Roux, L., Holcman, D., and Rouach, N. (2010). Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat. Rev. Neurosci. 11, 87–99.PubMedCrossrefGoogle Scholar

  • Goepfert, C., Sundberg, C., Sévigny, J., Enjyoji, K., Hoshi, T., Csizmadia, E., and Robson, S. (2001). Disordered cellular migration and angiogenesis in cd39-null mice. Circulation 104, 3109–3115.CrossrefPubMedGoogle Scholar

  • González, M.I., Krizman-Genda, E., and Robinson, M.B. (2007). Caveolin-1 regulates the delivery and endocytosis of the glutamate transporter, excitatory amino acid carrier 1. J. Biol. Chem. 282, 29855–29865.PubMedCrossrefGoogle Scholar

  • Görg, B., Morwinsky, A., Keitel, V., Qvartskhava, N., Schrör, K., and Häussinger, D. (2010). Ammonia triggers exocytotic release of L-glutamate from cultured rat astrocytes. Glia 58, 691–705.PubMedGoogle Scholar

  • Gosselin, R.-D., Meylan, P., and Decosterd, I. (2013). Extracellular microvesicles from astrocytes contain functional glutamate transporters: regulation by protein kinase C and cell activation. Front. Cell. Neurosci. 7, 251.PubMedGoogle Scholar

  • Goubard, V., Fino, E., and Venance, L. (2011). Contribution of astrocytic glutamate and GABA uptake to corticostriatal information processing. J. Physiol. 589, 2301–2319.PubMedCrossrefGoogle Scholar

  • Green, H.F. and Nolan, Y.M. (2012). GSK-3 mediates the release of IL-1β, TNF-α and IL-10 from cortical glia. Neurochem. Int. 61, 666–671.PubMedCrossrefGoogle Scholar

  • Grewer, C., Gameiro, A., and Rauen, T. (2014). SLC1 glutamate transporters. Eur. J. Physiol. 466, 3–24.CrossrefGoogle Scholar

  • Guarda, G. and So, A. (2010). Regulation of inflammasome activity. Immunology 130, 329–336.CrossrefPubMedGoogle Scholar

  • Gustin, A., Kirchmeyer, M., Koncina, E., Felten, P., Losciuto, S., Heurtaux, T., Tardivel, A., Heuschling, P., and Dostert, C. (2015). NLRP3 inflammasome is expressed and functional in mouse brain microglia but not in astrocytes. PLoS One 10, e0130624.PubMedCrossrefGoogle Scholar

  • Guyon, A. (2014). CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell. Neurosci. 8, 65.PubMedGoogle Scholar

  • Haddad, N.F., Teodoro, A.J., de Oliveira, F.L., Soares, N., de Mattos, R.M., Hecht, F., Dezonne, R.S., Vairo, L., dos Santos Goldenberg, R.C., and Gomes, F.C.A. (2013). Lycopene and β-carotene induce growth inhibition and proapoptotic effects on ACTH-secreting pituitary adenoma cells. PLoS One 8, e62773.CrossrefPubMedGoogle Scholar

  • Hagino, Y., Kariura, Y., Manago, Y., Amano, T., Wang, B., Sekiguchi, M., Nishikawa, K., Aoki, S., Wada, K., and Noda, M. (2004). Heterogeneity and potentiation of AMPA type of glutamate receptors in rat cultured microglia. Glia 47, 68–77.PubMedCrossrefGoogle Scholar

  • Hamby, M.E. and Sofroniew, M.V. (2010). Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7, 494–506.PubMedCrossrefGoogle Scholar

  • Han, K.-S., Woo, J., Park, H., Yoon, B.-J., Choi, S., and Lee, C.J. (2013). Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs. Mol. Brain 6, 4.CrossrefPubMedGoogle Scholar

  • Hanamsagar, R., Aldrich, A., and Kielian, T. (2014). Critical role for the AIM2 inflammasome during acute CNS bacterial infection. J. Neurochem. 129, 704–711.CrossrefPubMedGoogle Scholar

  • Hanisch, U.-K. and Kettenmann, H. (2007). Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394.CrossrefPubMedGoogle Scholar

  • Hansen, D.B., Ye, Z.-C., Calloe, K., Braunstein, T.H., Hofgaard, J.P., Ransom, B.R., Nielsen, M.S., and MacAulay, N. (2014). Activation, permeability, and inhibition of astrocytic and neuronal large pore (hemi) channels. J. Biol. Chem. 289, 26058–26073.PubMedCrossrefGoogle Scholar

  • Heid, M.E., Keyel, P.A., Kamga, C., Shiva, S., Watkins, S.C., and Salter, R.D. (2013). Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J. Immunol. 191, 5230–5238.PubMedCrossrefGoogle Scholar

  • Helms, H.C., Abbott, N.J., Burek, M., Cecchelli, R., Couraud, P.-O., Deli, M.A., Förster, C., Galla, H.J., Romero, I.A., and Shusta, E.V. (2016). In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 36, 862–890.CrossrefPubMedGoogle Scholar

  • Henn, A., Kirner, S., and Leist, M. (2011). TLR2 hypersensitivity of astrocytes as functional consequence of previous inflammatory episodes. J. Immunol. 186, 3237–3247.PubMedCrossrefGoogle Scholar

  • Hinojosa, A.E., Garcia-Bueno, B., Leza, J.C., and Madrigal, J.L. (2011). CCL2/MCP-1 modulation of microglial activation and proliferation. J. Neuroinflamm. 8, 77.CrossrefGoogle Scholar

  • Hirayama, Y., Ikeda-Matsuo, Y., Notomi, S., Enaida, H., Kinouchi, H., and Koizumi, S. (2015). Astrocyte-mediated ischemic tolerance. J. Neurosci. 35, 3794–3805.CrossrefPubMedGoogle Scholar

  • Hoffmann, A., Gloe, T., Pohl, U., and Zahler, S. (2003). Nitric oxide enhances de novo formation of endothelial gap junctions. Cardiovasc. Res. 60, 421–430.CrossrefPubMedGoogle Scholar

  • Hoogland, I.C., Houbolt, C., Westerloo, D.J., Gool, W.A., and Beek, D. (2015). Systemic inflammation and microglial activation: systematic review of animal experiments. J. Neuroinflamm. 12, 114.CrossrefGoogle Scholar

  • Horenstein, A.L., Chillemi, A., Zaccarello, G., Bruzzone, S., Quarona, V., Zito, A., Serra, S., and Malavasi, F. (2013). A CD38/CD203a/CD73 ectoenzymatic pathway independent of CD39 drives a novel adenosinergic loop in human T lymphocytes. Oncoimmunology 2, e26246.CrossrefGoogle Scholar

  • Hosoi, T., Noguchi, J., Takakuwa, M., Honda, M., Okuma, Y., Nomura, Y., and Ozawa, K. (2014). Inhibition of inducible nitric oxide synthase and interleukin-1β expression by tunicamycin in cultured glial cells exposed to lipopolysaccharide. Brain Res. 1558, 11–17.CrossrefPubMedGoogle Scholar

  • Hsiao, P.-J., Jao, J.-C., Tsai, J.-L., Chang, W.-T., Jeng, K.-S., and Kuo, K.-K. (2014). Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic “stem-like” cells. Kaohsiung J. Med. Sci. 30, 57–67.CrossrefPubMedGoogle Scholar

  • Hua, K.F., Chou, J.C., Ka, S.M., Tasi, Y.L., Chen, A., Wu, S.H., Chiu, H.W., Wong, W.T., Wang, Y.F., and Tsai, C.L. (2015). Cyclooxygenase-2 regulates NLRP3 inflammasome-derived IL-1β production. J. Cell. Physiol. 230, 863–874.CrossrefPubMedGoogle Scholar

  • Huang, J., Li, Y., Tang, Y., Tang, G., Yang, G.-Y., and Wang, Y. (2013). CXCR4 antagonist AMD3100 protects blood-brain barrier integrity and reduces inflammatory response after focal ischemia in mice. Stroke 44, 190–197.PubMedCrossrefGoogle Scholar

  • Hulsmans, M. and Holvoet, P. (2013). MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc. Res. 100, 7–18.PubMedCrossrefGoogle Scholar

  • Iglesias, R., Locovei, S., Roque, A., Alberto, A., Dahl, G., Spray, D.C., and Scemes, E. (2008). P2X7 receptor-pannexin1 complex: pharmacology and signaling. Am. J. Physiol. Cell. Physiol. 295, C752–C760.Google Scholar

  • Iglesias, R., Dahl, G., Qiu, F., Spray, D.C., and Scemes, E. (2009). Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J. Neurosci. 29, 7092–7097.PubMedCrossrefGoogle Scholar

  • Inzhutova, A., Larionov, A., and Lopatina, O. (2011). Modulation of membrane blebbing and microparticle shedding as a target of cardiovascular prophylaxis. Vestn. Ross. Akad. Med. Nauk 11, 23–28.Google Scholar

  • Inzhutova, A., Larionov, A., Petrova, M., and Salmina, A. (2012). Theory of intercellular communication in the development of endothelial dysfunction. Bull. Exp. Biol. Med. 153, 201–205.PubMedCrossrefGoogle Scholar

  • Isakov, E., Weisman-Shomer, P., and Benhar, M. (2014). Suppression of the pro-inflammatory NLRP3/interleukin-1β pathway in macrophages by the thioredoxin reductase inhibitor auranofin. Biochim. Biophys. Acta Gen. Subj. 1840, 3153–3161.CrossrefGoogle Scholar

  • Ishrat, T., Mohamed, I.N., Pillai, B., Soliman, S., Fouda, A.Y., Ergul, A., El-Remessy, A.B., and Fagan, S.C. (2015). Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol. Neurobiol. 51, 766–778.CrossrefPubMedGoogle Scholar

  • Iyer, A., Zurolo, E., Prabowo, A., Fluiter, K., Spliet, W.G., van Rijen, P.C., Gorter, J.A., and Aronica, E. (2012). MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One 7, e44789.PubMedCrossrefGoogle Scholar

  • Jackson, D.G., Wang, J., Keane, R.W., Scemes, E., and Dahl, G. (2014). ATP and potassium ions: a deadly combination for astrocytes. Sci. Rep. 4, 4576.PubMedGoogle Scholar

  • Jansson, L.C. and Åkerman, K.E. (2014). The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J. Neural Transm. 121, 819–836.CrossrefGoogle Scholar

  • Jeremic, A., Jeftinija, K., Stevanovic, J., Glavaski, A., and Jeftinija, S. (2001). ATP stimulates calcium-dependent glutamate release from cultured astrocytes. J. Neurochem. 77, 664–675.CrossrefPubMedGoogle Scholar

  • Jiang, S., Yuan, H., Duan, L., Cao, R., Gao, B., Xiong, Y.-F., and Rao, Z.-R. (2011). Glutamate release through connexin 43 by cultured astrocytes in a stimulated hypertonicity model. Brain Res. 1392, 8–15.CrossrefGoogle Scholar

  • Johnson, E.A., Guignet, M.A., Dao, T.L., Hamilton, T.A., and Kan, R.K. (2015). Interleukin-18 expression increases in response to neurovascular damage following soman-induced status epilepticus in rats. J. Inflamm. 12, 43.CrossrefGoogle Scholar

  • Jolivet, R., Coggan, J.S., Allaman, I., and Magistretti, P.J. (2015). Multi-timescale modeling of activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PLoS Comput. Biol. 11, e1004036.PubMedCrossrefGoogle Scholar

  • Jung, H.K., Ryu, H.J., Kim, M.-J., Kim, W.I., Choi, H.K., Choi, H.-C., Song, H.-K., Jo, S.-M., and Kang, T.-C. (2012). Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res. 1447, 126–134.CrossrefPubMedGoogle Scholar

  • Kabátková, M., Svobodová, J., Pěnčíková, K., Mohatad, D.S., Šmerdová, L., Kozubík, A., Machala, M., and Vondráček, J. (2015). Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription. Toxicol. Lett. 232, 113–121.CrossrefPubMedGoogle Scholar

  • Kahlenberg, J.M., Thacker, S.G., Berthier, C.C., Cohen, C.D., Kretzler, M., and Kaplan, M.J. (2011). Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J. Immunol. 187, 6143–6156.CrossrefPubMedGoogle Scholar

  • Kamatsuka, Y., Fukagawa, M., Furuta, T., Ohishi, A., Nishida, K., and Nagasawa, K. (2014). Astrocytes, but not neurons, exhibit constitutive activation of P2X7 receptors in mouse acute cortical slices under non-stimulated resting conditions. Biol. Pharm. Bull. 37, 1958–1962.PubMedCrossrefGoogle Scholar

  • Karagiannis, A., Sylantyev, S., Hadjihambi, A., Hosford, P.S., Kasparov, S., and Gourine, A.V. (2016). Hemichannel-mediated release of lactate. J. Cereb. Blood Flow Metab. 36, 1202–1211.CrossrefPubMedGoogle Scholar

  • Karki, P., Smith, K., Johnson, J., Aschner, M., and Lee, E. (2015). Role of transcription factor yin yang 1 in manganese-induced reduction of astrocytic glutamate transporters: putative mechanism for manganese-induced neurotoxicity. Neurochem. Int. 88, 53–59.PubMedCrossrefGoogle Scholar

  • Kaufman, J., Gordon, C., Bergamaschi, R., Wang, H.Z., Cohen, I.S., Valiunas, V., and Brink, P.R. (2013). The effects of the histone deacetylase inhibitor 4-phenylbutyrate on gap junction conductance and permeability. Front. Pharmacol. 4, 111.PubMedGoogle Scholar

  • Kettenmann, H., Hanisch, U.-K., Noda, M., and Verkhratsky, A. (2011). Physiology of microglia. Physiol. Rev. 91, 461–553.PubMedCrossrefGoogle Scholar

  • Kigerl, K.A., Ankeny, D.P., Garg, S.K., Wei, P., Guan, Z., Lai, W., McTigue, D.M., Banerjee, R., and Popovich, P.G. (2012). System xc regulates microglia and macrophage glutamate excitotoxicity in vivo. Exp. Neurol. 233, 333–341.CrossrefGoogle Scholar

  • Kim, R.-K., Kim, M.-J., Yoon, C.-H., Lim, E.-J., Yoo, K.-C., Lee, G.-H., Kim, Y.-H., Kim, H., Jin, Y.B., and Lee, Y.-J. (2012). A new 2-pyrone derivative, 5-bromo-3-(3-hydroxyprop-1-ynyl)-2H-pyran-2-one, suppresses stemness in glioma stem-like cells. Mol. Pharmacol. 82, 400–407.PubMedCrossrefGoogle Scholar

  • Kong, Q., Chang, L.-C., Takahashi, K., Liu, Q., Schulte, D.A., Lai, L., Ibabao, B., Lin, Y., Stouffer, N., and Mukhopadhyay, C.D. (2014). Small-molecule activator of glutamate transporter EAAT2 translation provides neuroprotection. J. Clin. Invest. 124, 1255–1267.CrossrefPubMedGoogle Scholar

  • Kovac, A., Erickson, M.A., and Banks, W.A. (2011). Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J. Neuroinflamm. 8, 139.CrossrefGoogle Scholar

  • Krasnow, S.M., Knoll, J.G., Verghese, S.C., Levasseur, P.R., and Marks, D.L. (2017). Amplification and propagation of interleukin-1β signaling by murine brain endothelial and glial cells. J. Neuroinflamm. 14, 133.CrossrefGoogle Scholar

  • Krizbai, I.A., Deli, M.A., Pestenácz, A., Siklós, L., Szabó, C.A., András, I., and Joó, F. (1998). Expression of glutamate receptors on cultured cerebral endothelial cells. J. Neurosci. Res. 54, 814–819.CrossrefPubMedGoogle Scholar

  • Kuzumaki, N., Ikegami, D., Imai, S., Narita, M., Tamura, R., Yajima, M., Suzuki, A., Miyashita, K., Niikura, K., and Takeshima, H. (2010). Enhanced IL-1β production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice. Synapse 64, 721–728.PubMedGoogle Scholar

  • Lalo, U., Rasooli-Nejad, S., and Pankratov, Y. (2014). Exocytosis of gliotransmitters from cortical astrocytes: implications for synaptic plasticity and aging. Biochem. Soc. Trans. 42, 1275–1281.PubMedCrossrefGoogle Scholar

  • Lalo, U., Palygin, O., Verkhratsky, A., Grant, S., and Pankratov, Y. (2016). ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci. Rep. 6, 33609.PubMedCrossrefGoogle Scholar

  • Lau, L.T. and Yu, A.C.-H. (2001). Astrocytes produce and release interleukin-1, interleukin-6, tumor necrosis factor alpha and interferon-γ following traumatic and metabolic injury. J. Neurotrauma 18, 351–359.CrossrefPubMedGoogle Scholar

  • LeMaistre, J.L., Sanders, S.A., Stobart, M.J., Lu, L., Knox, J.D., Anderson, H.D., and Anderson, C.M. (2012). Coactivation of NMDA receptors by glutamate and D-serine induces dilation of isolated middle cerebral arteries. J. Cereb. Blood Flow Metab. 32, 537–547.CrossrefPubMedGoogle Scholar

  • Lewerenz, J., Hewett, S.J., Huang, Y., Lambros, M., Gout, P.W., Kalivas, P.W., Massie, A., Smolders, I., Methner, A., and Pergande, M. (2013). The cystine/glutamate antiporter system xc in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid. Redox Signal. 18, 522–555.CrossrefGoogle Scholar

  • Lezcano, V., Bellido, T., Plotkin, L., Boland, R., and Morelli, S. (2014). Osteoblastic protein tyrosine phosphatases inhibition and connexin 43 phosphorylation by alendronate. Exp. Cell Res. 324, 30–39.CrossrefPubMedGoogle Scholar

  • Li, J.-H., Zhao, S.-T., Wu, C.-Y., Cao, X., Peng, M.-R., Li, S.-J., Liu, X.-A., and Gao, T.-M. (2013). Store-operated Ca2+ channels blockers inhibit lipopolysaccharide induced astrocyte activation. Neurochem. Res. 38, 2216–2226.CrossrefPubMedGoogle Scholar

  • Li, G., Qin, Z., Chen, Z., Xie, L., Wang, R., and Zhao, H. (2017). Tumor microenvironment in treatment of glioma. Open Med. 12, 247–251.Google Scholar

  • Lin, H.-W., Basu, A., Druckman, C., Cicchese, M., Krady, J.K., and Levison, S.W. (2006). Astrogliosis is delayed in type 1 interleukin-1 receptor-null mice following a penetrating brain injury. J. Neuroinflamm. 3, 15.CrossrefGoogle Scholar

  • Liu, L. and Chan, C. (2014). IPAF inflammasome is involved in interleukin-1β production from astrocytes, induced by palmitate; implications for Alzheimer’s disease. Neurobiol. Aging 35, 309–321.PubMedCrossrefGoogle Scholar

  • Liu, G.J., Kalous, A., Werry, E.L., and Bennett, M.R. (2006). Purine release from spinal cord microglia after elevation of calcium by glutamate. Mol. Pharmacol. 70, 851–859.CrossrefPubMedGoogle Scholar

  • Liu, G.J., Nagarajah, R., Banati, R.B., and Bennett, M.R. (2009). Glutamate induces directed chemotaxis of microglia. Eur. J. Neurosci. 29, 1108–1118.PubMedCrossrefGoogle Scholar

  • Liu, Z., Zhao, F., and He, J.J. (2014a). Hepatitis C virus (HCV) interaction with astrocytes: nonproductive infection and induction of IL-18. J. Neurovirol. 20, 278–293.CrossrefGoogle Scholar

  • Liu, R.T., Wang, A., To, E., Gao, J., Cao, S., Cui, J.Z., and Matsubara, J.A. (2014b). Vinpocetine inhibits amyloid-β induced activation of NF-κB, NLRP3 inflammasome and cytokine production in retinal pigment epithelial cells. Exp. Eye Res. 127, 49–58.CrossrefGoogle Scholar

  • López-Colomé, A.M., Martínez-Lozada, Z., Guillem, A.M., López, E., and Ortega, A. (2012). Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells. Asn Neuro 4, AN20120022.CrossrefGoogle Scholar

  • López-Redondo, F., Nakajima, K., Honda, S., and Kohsaka, S. (2000). Glutamate transporter GLT-1 is highly expressed in activated microglia following facial nerve axotomy. Mol. Brain Res. 76, 429–435.CrossrefGoogle Scholar

  • Lou, N., Takano, T., Pei, Y., Xavier, A.L., Goldman, S.A., and Nedergaard, M. (2016). Purinergic receptor P2RY12-dependent microglial closure of the injured blood-brain barrier. Proc. Natl. Acad. Sci. USA. 113, 1074–1079.CrossrefGoogle Scholar

  • Lu, H., Burns, D., Garnier, P., Wei, G., Zhu, K., and Ying, W. (2007). P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem. Biophys. Res. Commun. 362, 946–950.CrossrefPubMedGoogle Scholar

  • Luo, X., Tai, W.L., Sun, L., Pan, Z., Xia, Z., Chung, S.K., and Cheung, C.W. (2016). Crosstalk between astrocytic CXCL12 and microglial CXCR4 contributes to the development of neuropathic pain. Mol. Pain 12, 1–15.Google Scholar

  • Ma, Y., Chen, H., Xia, W., and Ying, W. (2011). Oxidative stress and PARP activation mediate the NADH-induced decrease in glioma cell survival. Int. J. Physiol. Pathophysiol. Pharmacol. 3, 21–28.PubMedGoogle Scholar

  • Ma, Y., Cao, W., Wang, L., Jiang, J., Nie, H., Wang, B., Wei, X., and Ying, W. (2014). Basal CD38/cyclic ADP-ribose-dependent signaling mediates ATP release and survival of microglia by modulating connexin 43 hemichannels. Glia 62, 943–955.PubMedCrossrefGoogle Scholar

  • Maier, N.K., Crown, D., Liu, J., Leppla, S.H., and Moayeri, M. (2014). Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. J. Immunol. 192, 763–770.CrossrefPubMedGoogle Scholar

  • Malarkey, E.B. and Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochem. Int. 52, 142–154.CrossrefPubMedGoogle Scholar

  • Mamik, M.K., Banerjee, S., Walseth, T.F., Hirte, R., Tang, L., Borgmann, K., and Ghorpade, A. (2011). HIV-1 and IL-1β regulate astrocytic CD38 through mitogen-activated protein kinases and nuclear factor-κ B signaling mechanisms. J. Neuroinflamm. 8, 145.CrossrefGoogle Scholar

  • Martineau, M. (2013). Gliotransmission: Focus on Exocytotic Release of L-Glutamate and D-Serine From Astrocytes. Biochem. Soc. Trans. 41, 1557–1561.CrossrefPubMedGoogle Scholar

  • Martinez-Outschoorn, U., Sotgia, F., and Lisanti, M.P. (2014). Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function. Semin. Oncol. 41, 195–216.CrossrefPubMedGoogle Scholar

  • Martı́nez, A.D. and Sáez, J.C. (2000). Regulation of astrocyte gap junctions by hypoxia-reoxygenation. Brain Res. Rev. 32, 250–258.CrossrefGoogle Scholar

  • Marty, V., Médina, C., Combe, C., Parnet, P., and Amédée, T. (2005). ATP binding cassette transporter ABC1 is required for the release of interleukin-1β by P2X7-stimulated and lipopolysaccharide-primed mouse Schwann cells. Glia 49, 511–519.PubMedCrossrefGoogle Scholar

  • Masamoto, K., Unekawa, M., Watanabe, T., Toriumi, H., Takuwa, H., Kawaguchi, H., Kanno, I., Matsui, K., Tanaka, K.F., and Tomita, Y. (2015). Unveiling astrocytic control of cerebral blood flow with optogenetics. Sci. Rep. 5, 11455.CrossrefPubMedGoogle Scholar

  • Matyash, M., Zabiegalov, O., Wendt, S., Matyash, V., and Kettenmann, H. (2017). The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain. PLoS One 12, e0175012.PubMedCrossrefGoogle Scholar

  • Mause, S.F. and Weber, C. (2010). Microparticles. Circ. Res. 107, 1047–1057.CrossrefPubMedGoogle Scholar

  • McCandless, E.E., Piccio, L., Woerner, B.M., Schmidt, R.E., Rubin, J.B., Cross, A.H., and Klein, R.S. (2008). Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am. J. Pathol. 172, 799–808.PubMedCrossrefGoogle Scholar

  • McMullan, S.M., Phanavanh, B., Li, G.G., and Barger, S.W. (2012). Metabotropic glutamate receptors inhibit microglial glutamate release. Asn Neuro 4, AN20120044.CrossrefGoogle Scholar

  • Mingam, R., De Smedt, V., Amédée, T., Bluthé, R.-M., Kelley, K.W., Dantzer, R., and Layé, S. (2008). In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1β in the murine brain. Brain Behav. Immunity 22, 234–244.CrossrefGoogle Scholar

  • Minkiewicz, J., Rivero Vaccari, J.P., and Keane, R.W. (2013). Human astrocytes express a novel NLRP2 inflammasome. Glia 61, 1113–1121.PubMedCrossrefGoogle Scholar

  • Montana, V., Ni, Y., Hua, X., and Parpura, V. (2004). Vesicular glutamate transporter-dependent glutamate release from astrocytes. J. Neurosci. 24, 2633–2642.CrossrefPubMedGoogle Scholar

  • Morandi, F., Morandi, B., Horenstein, A., Chillemi, A., Quarona, V., Zaccarello, G., Carrega, P., Ferlazzo, G., Mingari, M., and Moretta, L. (2015). A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation. Oncotarget 6, 25602–25618.PubMedGoogle Scholar

  • Morley, P., Small, D.L., Murray, C.L., Mealing, G.A., Poulter, M.O., Durkin, J.P., and Stanimirovic, D.B. (1998). Evidence that functional glutamate receptors are not expressed on rat or human cerebromicrovascular endothelial cells. J. Cereb. Blood Flow Metab. 18, 396–406.PubMedCrossrefGoogle Scholar

  • Moynagh, P.N. (2005). The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J. Anat. 207, 265–269.CrossrefPubMedGoogle Scholar

  • Murana, E., Pagani, F., Basilico, B., Sundukova, M., Batti, L., Di Angelantonio, S., Cortese, B., Grimaldi, A., Francioso, A., and Heppenstall, P. (2017). ATP release during cell swelling activates a Ca2+-dependent Cl current by autocrine mechanism in mouse hippocampal microglia. Sci. Rep. 7, 4184.CrossrefPubMedGoogle Scholar

  • Murphy, S.F., Varghese, R.T., Lamouille, S., Guo, S., Pridham, K.J., Kanabur, P., Osimani, A.M., Sharma, S., Jourdan, J., and Rodgers, C.M. (2015). Connexin 43 inhibition sensitizes chemoresistant glioblastoma cells to temozolomide. Cancer Res. 76, 139–149.PubMedGoogle Scholar

  • Murugan, M., Ling, E.-A., and Kaur, C. (2013). Glutamate receptors in microglia. CNS Neurol. Disord. Drug Targets 12, 773–784.PubMedCrossrefGoogle Scholar

  • Nakagawa, T., Otsubo, Y., Yatani, Y., Shirakawa, H., and Kaneko, S. (2008). Mechanisms of substrate transport-induced clustering of a glial glutamate transporter GLT-1 in astroglial-neuronal cultures. Eur. J. Neurosci. 28, 1719–1730.PubMedCrossrefGoogle Scholar

  • Nakajima, K., Yamamoto, S., Kohsaka, S., and Kurihara, T. (2008). Neuronal stimulation leading to upregulation of glutamate transporter-1 (GLT-1) in rat microglia in vitro. Neurosci. Lett. 436, 331–334.PubMedCrossrefGoogle Scholar

  • Nash, B. and Meucci, O. (2014). Functions of the chemokine receptor CXCR4 in the central nervous system and its regulation by μ-opioid receptors. Int. Rev. Neurobiol. 118, 105–128.PubMedCrossrefGoogle Scholar

  • Nicholson, K., Gilliland, T., and Winkelstein, B. (2014). Upregulation of GLT-1 by treatment with ceftriaxone alleviates radicular pain by reducing spinal astrocyte activation and neuronal hyperexcitability. J. Neurosci. Res. 92, 116–129.CrossrefPubMedGoogle Scholar

  • Noda, M. and Beppu, K. (2013). Possible contribution of microglial glutamate receptors to inflammatory response upon neurodegenerative diseases. J. Neurol. Disord. 1, 131.Google Scholar

  • Noda, M., Nakanishi, H., and Akaike, N. (1999). Glutamate release from microglia via glutamate transporter is enhanced by amyloid-β peptide. Neuroscience 92, 1465–1474.PubMedCrossrefGoogle Scholar

  • Noda, M., Nakanishi, H., Nabekura, J., and Akaike, N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J. Neurosci. 20, 251–258.PubMedCrossrefGoogle Scholar

  • Nurmi, K., Virkanen, J., Rajamäki, K., Niemi, K., Kovanen, P.T., and Eklund, K.K. (2013). Ethanol inhibits activation of NLRP3 and AIM2 inflammasomes in human macrophages – a novel anti-inflammatory action of alcohol. PLoS One 8, e78537.CrossrefPubMedGoogle Scholar

  • Oh, S.-J., Han, K.-S., Park, H., Woo, D.H., Kim, H.Y., Traynelis, S.F., and Lee, C.J. (2012). Protease activated receptor 1-induced glutamate release in cultured astrocytes is mediated by Bestrophin-1 channel but not by vesicular exocytosis. Mol. Brain 5, 38.PubMedCrossrefGoogle Scholar

  • Okada, K., Yamashita, U., and Tsuji, S. (2005). Modulation of Na+-dependent glutamate transporter of murine astrocytes by inflammatory mediators. J. UOEH 27, 161–170.CrossrefPubMedGoogle Scholar

  • Okuda, H., Nishida, K., Higashi, Y., and Nagasawa, K. (2013). NAD+ influx through connexin hemichannels prevents poly(ADP-ribose) polymerase-mediated astrocyte death. Life Sci. 92, 808–814.CrossrefPubMedGoogle Scholar

  • Omran, A., Peng, J., Zhang, C., Xiang, Q.L., Xue, J., Gan, N., Kong, H., and Yin, F. (2012). Interleukin-1β and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53, 1215–1224.CrossrefGoogle Scholar

  • Orellana, J.A. and Stehberg, J. (2014). Hemichannels: new roles in astroglial function. Front. Physiol. 5, 193.PubMedGoogle Scholar

  • Orellana, J.A., Shoji, K.F., Abudara, V., Ezan, P., Amigou, E., Sáez, P.J., Jiang, J.X., Naus, C.C., Sáez, J.C., and Giaume, C. (2011a). Amyloid β-induced death in neurons involves glial and neuronal hemichannels. J. Neurosci. 31, 4962–4977.CrossrefGoogle Scholar

  • Orellana, J.A., Froger, N., Ezan, P., Jiang, J.X., Bennett, M.V., Naus, C.C., Giaume, C., and Sáez, J.C. (2011b). ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J. Neurochem. 118, 826–840.CrossrefGoogle Scholar

  • Orihuela, R., McPherson, C.A., and Harry, G.J. (2016). Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol. 173, 649–665.CrossrefPubMedGoogle Scholar

  • Ormel, L., Stensrud, M.J., Chaudhry, F.A., and Gundersen, V. (2012). A distinct set of synaptic-like microvesicles in atroglial cells contain VGLUT3. Glia 60, 1289–1300.CrossrefPubMedGoogle Scholar

  • Ortinau, S., Laube, B., and Zimmermann, H. (2003). ATP inhibits NMDA receptors after heterologous expression and in cultured hippocampal neurons and attenuates NMDA-mediated neurotoxicity. J. Neurosci. 23, 4996–5003.CrossrefPubMedGoogle Scholar

  • Pan, W., Stone, K.P., Hsuchou, H., Manda, V.K., Zhang, Y., and Kastin, A.J. (2011). Cytokine signaling modulates blood-brain barrier function. Curr. Pharm. Des. 17, 3729–3740.PubMedCrossrefGoogle Scholar

  • Parfenova, H., Tcheranova, D., Basuroy, S., Fedinec, A.L., Liu, J., and Leffler, C.W. (2012). Functional role of astrocyte glutamate receptors and carbon monoxide in cerebral vasodilation response to glutamate. Am. J. Physiol. Heart Circ. Physiol. 302, H2257–H2266.Google Scholar

  • Park, H., Han, K.-S., Oh, S.-J., Jo, S., Woo, J., Yoon, B.-E., and Lee, C.J. (2013). High glutamate permeability and distal localization of Best1 channel in CA1 hippocampal astrocyte. Mol. Brain 6, 54.CrossrefPubMedGoogle Scholar

  • Park, H., Han, K.-S., Seo, J., Lee, J., Dravid, S.M., Woo, J., Chun, H., Cho, S., Bae, J.Y., and An, H. (2015). Channel-mediated astrocytic glutamate modulates hippocampal synaptic plasticity by activating postsynaptic NMDA receptors. Mol. Brain 8, 7.PubMedCrossrefGoogle Scholar

  • Parpura, V., Grubišić, V., and Verkhratsky, A. (2011). Ca2+ sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta Mol. Cell. Res. 1813, 984–991.CrossrefGoogle Scholar

  • Pascual, O., Achour, S.B., Rostaing, P., Triller, A., and Bessis, A. (2012). Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc. Natl. Acad. Sci. USA. 109, E197–E205.Google Scholar

  • Pelegrin, P. and Surprenant, A. (2006). Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J. 25, 5071–5082.CrossrefPubMedGoogle Scholar

  • Persson, M. and Rönnbäck, L. (2012). Microglial self-defence mediated through GLT-1 and glutathione. Amino Acids 42, 207–219.CrossrefPubMedGoogle Scholar

  • Peters, O., Schipke, C.G., Hashimoto, Y., and Kettenmann, H. (2003). Different mechanisms promote astrocyte Ca2+ waves and spreading depression in the mouse neocortex. J. Neurosci. 23, 9888–9896.CrossrefPubMedGoogle Scholar

  • Piccioli, P. and Rubartelli, A. (2013). The secretion of IL-1β and options for release. Semin. Immunol. 25, 425–429.PubMedCrossrefGoogle Scholar

  • Poornima, V., Madhupriya, M., Kootar, S., Sujatha, G., Kumar, A., and Bera, A.K. (2012). P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization. J. Mol. Neurosci. 46, 585–594.PubMedCrossrefGoogle Scholar

  • Proia, P., Schiera, G., Mineo, M., Ingrassia, A.M.R., Santoro, G., Savettieri, G., and Di Liegro, I. (2008). Astrocytes shed extracellular vesicles that contain fibroblast growth factor-2 and vascular endothelial growth factor. Int. J. Mol. Med. 21, 63–67.PubMedGoogle Scholar

  • Prow, N.A. and Irani, D.N. (2008). The inflammatory cytokine, interleukin-1β, mediates loss of astroglial glutamate transport and drives excitotoxic motor neuron injury in the spinal cord during acute viral encephalomyelitis. J. Neurochem. 105, 1276–1286.CrossrefPubMedGoogle Scholar

  • Qu, Y., Ramachandra, L., Mohr, S., Franchi, L., Harding, C.V., Nunez, G., and Dubyak, G.R. (2009). P2X7 receptor-stimulated secretion of MHC class II-containing exosomes requires the ASC/NLRP3 inflammasome but is independent of caspase-1. J. Immunol. 182, 5052–5062.PubMedCrossrefGoogle Scholar

  • Quail, D.F. and Joyce, J.A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437.PubMedCrossrefGoogle Scholar

  • Ransohoff, R.M. (2016). A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci. 19, 987–991.Google Scholar

  • Raposo, G. and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell. Biol. 200, 373–383.CrossrefPubMedGoogle Scholar

  • Raunser, S., Haase, W., Franke, C., Eckert, G.P., Müller, W.E., and Kühlbrandt, W. (2006). Heterologously expressed GLT-1 associates in ~200-nm protein-lipid islands. Biophys. J. 91, 3718–3726.CrossrefPubMedGoogle Scholar

  • Retamal, M.A. (2014). Connexin and pannexin hemichannels are regulated by redox potential. Front. Physiol. 5, 80.PubMedGoogle Scholar

  • Robert, S.M. and Sontheimer, H. (2014). Glutamate transporters in the biology of malignant gliomas. Cell Mol. Life Sci. 71, 1839–1854.CrossrefPubMedGoogle Scholar

  • Rustenhoven, J., Jansson, D., Smyth, L.C., and Dragunow, M. (2017). Brain pericytes as mediators of neuroinflammation. Trends Pharmacol. Sci. 38, 291–304.PubMedCrossrefGoogle Scholar

  • Ryu, H., Kim, J.-E., Kim, M.-J., Kwon, H.-J., Suh, S., Song, H.-K., and Kang, T.-C. (2010). The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 170, 711–721.PubMedCrossrefGoogle Scholar

  • Sahlender, D.A., Savtchouk, I., and Volterra, A. (2014). What do we know about gliotransmitter release from astrocytes? Philos. Trans. R. Soc. B 369, 20130592.CrossrefGoogle Scholar

  • Sakuma, S., Tokuhara, D., Otsubo, H., Yamano, T., and Shintaku, H. (2014). Dynamic change in cells expressing IL-1b in rat hippocampus after status epilepticus. Jpn. Clin. Med. 5, 25–32.PubMedGoogle Scholar

  • Sakuma, R., Kawahara, M., Nakano-Doi, A., Takahashi, A., Tanaka, Y., Narita, A., Kuwahara-Otani, S., Hayakawa, T., Yagi, H., and Matsuyama, T. (2016). Brain pericytes serve as microglia-generating multipotent vascular stem cells following ischemic stroke. J. Neuroinflamm. 13, 57.CrossrefGoogle Scholar

  • Salmina, A.B. (2009). Neuron-glia interactions as therapeutic targets in neurodegeneration. J. Alzheimers Dis. 16, 485–502.PubMedCrossrefGoogle Scholar

  • Salmina, A.B., Kuvacheva, N.V., Morgun, A.V., Komleva, Y.K., Pozhilenkova, E.A., Lopatina, O.L., Gorina, Y.V., Taranushenko, T.E., and Petrova, L.L. (2015). Glycolysis-mediated control of blood-brain barrier development and function. Int. J. Biochem. Cell Biol. 64, 174–184.CrossrefPubMedGoogle Scholar

  • Salmina, A.B., Morgun, A.V., Kuvacheva, N.V., Lopatina, O.L., Komleva, Y.K., Malinovskaya, N.A., and Pozhilenkova, E.A. (2014). Establishment of neurogenic microenvironment in the neurovascular unit: the connexin 43 story. Rev. Neurosci. 25, 97–111.PubMedGoogle Scholar

  • Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M., and Soininen, H. (2011). Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3–11.PubMedCrossrefGoogle Scholar

  • Santiago, M.F., Veliskova, J., Patel, N.K., Lutz, S.E., Caille, D., Charollais, A., Meda, P., and Scemes, E. (2011). Targeting pannexin1 improves seizure outcome. PLoS One 6, e25178.CrossrefPubMedGoogle Scholar

  • Schmidt, M.M. and Dringen, R. (2009). Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes. Front. Neuroenerget. 1, 1.Google Scholar

  • Schnaars, M., Beckert, H., and Halle, A. (2013). Assessing β-amyloid-induced NLRP3 inflammasome activation in primary microglia. Inflamm. Methods Prot. 1040, 1–8.Google Scholar

  • Schreiner, A.E., Berlinger, E., Langer, J., Kafitz, K.W., and Rose, C.R. (2013). Lesion-induced alterations in astrocyte glutamate transporter expression and function in the hippocampus. ISRN Neurol. 2013, 893605.PubMedGoogle Scholar

  • Scott, G., Bowman, S., Smith, T., Flower, R.A., and Bolton, C. (2007). Glutamate-stimulated peroxynitrite production in a brain-derived endothelial cell line is dependent on N-methyl-D-aspartate (NMDA) receptor activation. Biochem. Pharmacol. 73, 228–236.CrossrefGoogle Scholar

  • Seidel, J.L., Escartin, C., Ayata, C., Bonvento, G., and Shuttleworth, C.W. (2016). Multifaceted roles for astrocytes in spreading depolarization: a target for limiting spreading depolarization in acute brain injury? Glia 64, 5–20.CrossrefPubMedGoogle Scholar

  • Seike, T., Fujita, K., Yamakawa, Y., Kido, M.A., Takiguchi, S., Teramoto, N., Iguchi, H., and Noda, M. (2011). Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metastasis 28, 13–25.CrossrefPubMedGoogle Scholar

  • Sharp, C.D., Hines, I., Houghton, J., Warren, A., Jackson, T., Jawahar, A., Nanda, A., Elrod, J., Long, A., and Chi, A. (2003). Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am. J. Physiol. Heart Circ. Physiol. 285, H2592–H2598.Google Scholar

  • Shigeri, Y., Seal, R.P., and Shimamoto, K. (2004). Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res. Rev. 45, 250–265.CrossrefGoogle Scholar

  • Sidoryk-Wegrzynowicz, M., Lee, E., and Aschner, M. (2012). Mechanism of Mn (II)-mediated dysregulation of glutamine-glutamate cycle: focus on glutamate turnover. J. Neurochem. 122, 856–867.PubMedCrossrefGoogle Scholar

  • Sierra, A., Price, J.E., Garcia-Ramirez, M., Méndez, O., López, L., and Fabra, A. (1997). Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab. Invest. 77, 357–368.PubMedGoogle Scholar

  • Silverman, W.R., de Rivero Vaccari, J.P., Locovei, S., Qiu, F., Carlsson, S.K., Scemes, E., Keane, R.W., and Dahl, G. (2009). The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J. Biol. Chem. 284, 18143–18151.PubMedCrossrefGoogle Scholar

  • Simard, J.-C., Cesaro, A., Chapeton-Montes, J., Tardif, M., Antoine, F., Girard, D., and Tessier, P.A. (2013). S100A8 and S100A9 induce cytokine expression and regulate the NLRP3 inflammasome via ROS-dependent activation of NF-κB1. PLoS One 8, e72138.CrossrefGoogle Scholar

  • Sipos, I., Dömötör, E., Abbott, N.J., and Adam-Vizi, V. (2000). The pharmacology of nucleotide receptors on primary rat brain endothelial cells grown on a biological extracellular matrix: effects on intracellular calcium concentration. Br. J. Pharmacol. 131, 1195–1203.CrossrefPubMedGoogle Scholar

  • Sivakumar, V., Ling, E.A., Lu, J., and Kaur, C. (2010). Role of glutamate and its receptors and insulin-like growth factors in hypoxia induced periventricular white matter injury. Glia 58, 507–523.CrossrefPubMedGoogle Scholar

  • Smith, D.E. (2011). The biological paths of IL-1 family members IL-18 and IL-33. J. Leuk. Biol. 89, 383–392.CrossrefGoogle Scholar

  • Sontheimer, H. and Bridges, R.J. (2012). Sulfasalazine for brain cancer fits. Expert Opin. Invest. Drugs 21, 575.CrossrefGoogle Scholar

  • Stack, J.H., Beaumont, K., Larsen, P.D., Straley, K.S., Henkel, G.W., Randle, J.C., and Hoffman, H.M. (2005). IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J. Immunol. 175, 2630–2634.CrossrefGoogle Scholar

  • Stamatovic, S.M., Shakui, P., Keep, R.F., Moore, B.B., Kunkel, S.L., Van Rooijen, N., and Andjelkovic, A.V. (2005). Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J. Cereb. Blood Flow Metab. 25, 593–606.PubMedCrossrefGoogle Scholar

  • Stamatovic, S.M., Keep, R.F., and Andjelkovic, A.V. (2008). Brain endothelial cell-cell junctions: how to “open” the blood brain barrier. Curr. Neuropharmacol. 6, 179–192.CrossrefGoogle Scholar

  • Stumm, R. and Höllt, V. (2007). CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration in the adult brain. J. Mol. Endocrinol. 38, 377–382.PubMedCrossrefGoogle Scholar

  • Sühs, K.-W., Gudi, V., Eckermann, N., Fairless, R., Pul, R., Skripuletz, T., and Stangel, M. (2016). Cytokine regulation by modulation of the NMDA receptor on astrocytes. Neurosci. Lett. 629, 227–233.CrossrefPubMedGoogle Scholar

  • Takaki, J., Fujimori, K., Miura, M., Suzuki, T., Sekino, Y., and Sato, K. (2012). L-glutamate released from activated microglia downregulates astrocytic L-glutamate transporter expression in neuroinflammation: the ‘collusion’ hypothesis for increased extracellular L-glutamate concentration in neuroinflammation. J. Neuroinflamm. 9, 275.Google Scholar

  • Takemiya, T. and Yamagata, K. (2013). Intercellular signaling pathway among endothelia, astrocytes and neurons in excitatory neuronal damage. Int. J. Mol. Sci. 14, 8345–8357.CrossrefPubMedGoogle Scholar

  • Takeuchi, H. and Suzumura, A. (2014). Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front. Cell. Neurosci. 8, 189.PubMedGoogle Scholar

  • Talantova, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M.W., Okamoto, S.I., Dziewczapolski, G., Nakamura, T., Cao, G., and Pratt, A.E. (2013). Aβ induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc. Natl. Acad. Sci. USA. 110, E2518–E2527.Google Scholar

  • Tang, Y. and Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194.PubMedCrossrefGoogle Scholar

  • Tang, W., Wang, X., Chen, Y., Zhang, J., and Lin, Z. (2015). CXCL12 and CXCR4 as predictive biomarkers of glioma recurrence pattern after total resection. Pathol. Biol. 63, 190–198.CrossrefPubMedGoogle Scholar

  • Théry, C., Ostrowski, M., and Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9, 581–593.CrossrefPubMedGoogle Scholar

  • Trudeau, K., Muto, T., and Roy, S. (2012). Downregulation of mitochondrial connexin 43 by high glucose triggers mitochondrial shape change and cytochrome c release in retinal endothelial cells high glucose decreases mitochondrial connexin 43. Invest. Ophthalmol. Vis. Sci. 53, 6675–6681.CrossrefGoogle Scholar

  • Tsang, H., Leiper, J., Lao, K.H., Dowsett, L., Delahaye, M.W., Barnes, G., Wharton, J., Howard, L., Iannone, L., and Lang, N.N. (2013). Role of asymmetric methylarginine and connexin 43 in the regulation of pulmonary endothelial function. Pulm. Circ. 3, 675–691.PubMedCrossrefGoogle Scholar

  • Turner, D.A. and Adamson, D.C. (2011). Neuronal-astrocyte metabolic interactions: understanding the transition into abnormal astrocytoma metabolism. J. Neuropathol. Exp. Neurol. 70, 167–176.PubMedCrossrefGoogle Scholar

  • Turola, E., Furlan, R., Bianco, F., Matteoli, M., and Verderio, C. (2012). Microglial microvesicle secretion and intercellular signaling. Front. Physiol. 3, 1–11.Google Scholar

  • Ullensvang, K., Lehre, K., Storm-Mathisen, J., and Danbolt, N. (1997). Differential developmental expression of the two rat brain glutamate transporter proteins GLAST and GLT. Eur. J. Neurosci. 9, 1646–1655.PubMedCrossrefGoogle Scholar

  • Underly, R.G., Levy, M., Hartmann, D.A., Grant, R.I., Watson, A.N., and Shih, A.Y. (2017). Pericytes as inducers of rapid, matrix metalloproteinase-9-dependent capillary damage during ischemia. J. Neurosci. 37, 129–140.PubMedCrossrefGoogle Scholar

  • Van Wagoner, N.J., Oh, J.-W., Repovic, P., and Benveniste, E.N. (1999). Interleukin-6 (IL-6) production by astrocytes: autocrine regulation by IL-6 and the soluble IL-6 receptor. J. Neurosci. 19, 5236–5244.PubMedCrossrefGoogle Scholar

  • Van Neerven, S., Regen, T., Wolf, D., Nemes, A., Johann, S., Beyer, C., Hanisch, U.K., and Mey, J. (2010). Inflammatory chemokine release of astrocytes in vitro is reduced by all-trans retinoic acid. J. Neurochem. 114, 1511–1526.PubMedGoogle Scholar

  • Vandamme, W., Braet, K., Cabooter, L., and Leybaert, L. (2004). Tumour necrosis factor alpha inhibits purinergic calcium signalling in blood-brain barrier endothelial cells. J. Neurochem. 88, 411–421.PubMedGoogle Scholar

  • Verkhratsky, A., Schousboe, A., and Parpura, V. (2014). Glutamate and ATP: the crossroads of signaling and metabolism in the brain. Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain (Springer), pp. 1–12.Google Scholar

  • Virgintino, D., Errede, M., Rizzi, M., Girolamo, F., Strippoli, M., Wälchli, T., Robertson, D., Frei, K., and Roncali, L. (2013). The CXCL12/CXCR4/CXCR7 ligand-receptor system regulates neuro-glio-vascular interactions and vessel growth during human brain development. J. Inherit. Metab. Dis. 36, 455–466.PubMedCrossrefGoogle Scholar

  • Wang, N., De Bock, M., Decrock, E., Bol, M., Gadicherla, A., Bultynck, G., and Leybaert, L. (2013a). Connexin targeting peptides as inhibitors of voltage-and intracellular Ca2+-triggered Cx43 hemichannel opening. Neuropharmacology 75, 506–516.CrossrefGoogle Scholar

  • Wang, L., Fu, Y., Peng, J., Wu, D., Yu, M., Xu, C., Wang, Q., and Tao, L. (2013b). Simvastatin-induced up-regulation of gap junctions composed of connexin 43 sensitize Leydig tumor cells to etoposide: An involvement of PKC pathway. Toxicology 312, 149–157.CrossrefGoogle Scholar

  • Wang, Y., Jin, S., Sonobe, Y., Cheng, Y., Horiuchi, H., Parajuli, B., Kawanokuchi, J., Mizuno, T., Takeuchi, H., and Suzumura, A. (2014). Interleukin-1β induces blood-brain barrier disruption by downregulating Sonic hedgehog in astrocytes. PLoS One 9, e110024.CrossrefPubMedGoogle Scholar

  • Wasseff, S.K. and Scherer, S.S. (2014). Activated microglia do not form functional gap junctions in vivo. J. Neuroimmunol. 269, 90–93.CrossrefPubMedGoogle Scholar

  • Wei, L., Sheng, H., Chen, L., Hao, B., Shi, X., and Chen, Y. (2016). Effect of pannexin-1 on the release of glutamate and cytokines in astrocytes. J. Clin. Neurosci. 23, 135–141.CrossrefPubMedGoogle Scholar

  • Weilinger, N.L., Tang, P.L., and Thompson, R.J. (2012). Anoxia-induced NMDA receptor activation opens pannexin channels via Src family kinases. J. Neurosci. 32, 12579–12588.PubMedCrossrefGoogle Scholar

  • Welser, J.V., Li, L., and Milner, R. (2010). Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J. Neuroinflamm. 7, 89.CrossrefGoogle Scholar

  • Weng, H.-R., Gao, M., and Maixner, D.W. (2014). Glycogen synthase kinase 3β regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain. Exp. Neurol. 252, 18–27.CrossrefGoogle Scholar

  • Woo, D.H., Han, K.-S., Shim, J.W., Yoon, B.-E., Kim, E., Bae, J.Y., Oh, S.-J., Hwang, E.M., Marmorstein, A.D., and Bae, Y.C. (2012). TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151, 25–40.CrossrefPubMedGoogle Scholar

  • Wu, J., Taylor, R.N., and Sidell, N. (2013). Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin 43. J. Cell. Physiol. 228, 903–910.PubMedCrossrefGoogle Scholar

  • Wu, D.C., Chen, R.Y.-T., Cheng, T.-C., Chiang, Y.-C., Shen, M.-L., Hsu, L.-L., and Zhou, N. (2017). Spreading depression promotes astrocytic calcium oscillations and enhances gliotransmission to hippocampal neurons. Cereb. Cortex 1, 1–13.Google Scholar

  • Würth, R., Bajetto, A., Harrison, J.K., Barbieri, F., and Florio, T. (2014). CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci. 8, 144.PubMedGoogle Scholar

  • Xia, M., Boini, K.M., Abais, J.M., Xu, M., Zhang, Y., and Li, P.-L. (2014). Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. Am. J. Pathol. 184, 1617–1628.PubMedCrossrefGoogle Scholar

  • Yan, X., Yadav, R., Gao, M., and Weng, H.R. (2014). Interleukin-1β enhances endocytosis of glial glutamate transporters in the spinal dorsal horn through activating protein kinase C. Glia 62, 1093–1109.CrossrefPubMedGoogle Scholar

  • Yang, G., Meng, Y., Li, W., Yong, Y., Fan, Z., Ding, H., Wei, Y., Luo, J., and Ke, Z.J. (2011). Neuronal MCP-1 mediates microglia recruitment and neurodegeneration induced by the mild impairment of oxidative metabolism. Brain Pathol. 21, 279–297.CrossrefPubMedGoogle Scholar

  • Yang, C.-M., Hsieh, H.-L., Yu, P.-H., Lin, C.-C., and Liu, S.-W. (2015). IL-1β induces MMP-9-dependent brain astrocytic migration via transactivation of PDGF receptor/NADPH oxidase 2-derived reactive oxygen species signals. Mol. Neurobiol. 52, 303–317.PubMedCrossrefGoogle Scholar

  • Yao, Y. and Tsirka, S.E. (2014). Monocyte chemoattractant protein-1 and the blood-brain barrier. Cell Mol. Life Sci. 71, 683–697.PubMedCrossrefGoogle Scholar

  • Ye, B., Shen, H., Zhang, J., Zhu, Y.G., Ransom, B.R., Chen, X.C., and Ye, Z.C. (2015). Dual pathways mediate β-amyloid stimulated glutathione release from astrocytes. Glia 63, 2208–2219.CrossrefPubMedGoogle Scholar

  • Ye, Z.-C., Wyeth, M.S., Baltan-Tekkok, S., and Ransom, B.R. (2003). Functional hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci. 23, 3588–3596.CrossrefPubMedGoogle Scholar

  • Yeung, Y., McDonald, K., Grewal, T., and Munoz, L. (2013). Interleukins in glioblastoma pathophysiology: implications for therapy. Br. J. Pharmacol. 168, 591–606.CrossrefPubMedGoogle Scholar

  • Yoon, B. and Lee, C. (2014). GABA as a rising gliotransmitter. Front. Neural Circ. 8, 141–141.Google Scholar

  • York, J.M., Castellanos, K.J., Cabay, R.J., and Fantuzzi, G. (2014). Inhibition of the nucleotide-binding domain, leucine-rich containing family, pyrin-domain containing 3 inflammasome reduces the severity of experimentally induced acute pancreatitis in obese mice. Transl. Res. 164, 259–269.CrossrefPubMedGoogle Scholar

  • Zeevi-Levin, N., Barac, Y.D., Reisner, Y., Reiter, I., Yaniv, G., Meiry, G., Abassi, Z., Kostin, S., Schaper, J., and Rosen, M.R. (2005). Gap junctional remodeling by hypoxia in cultured neonatal rat ventricular myocytes. Cardiovasc. Res. 66, 64–73.PubMedCrossrefGoogle Scholar

  • Zeng, L.-H., Bero, A.W., Zhang, B., Holtzman, D.M., and Wong, M. (2010). Modulation of astrocyte glutamate transporters decreases seizures in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 37, 764–771.CrossrefGoogle Scholar

  • Zhou, Y., Ling, E.-A., and Dheen, S.T. (2007). Dexamethasone suppresses monocyte chemoattractant protein-1 production via mitogen activated protein kinase phosphatase-1 dependent inhibition of Jun N-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J. Neurochem. 102, 667–678.CrossrefPubMedGoogle Scholar

  • Zhou, P., Zhang, S.-M., Wang, Q.-L., Wu, Q., Chen, M., and Pei, J.-M. (2013). Anti-arrhythmic effect of verapamil is accompanied by preservation of cx43 protein in rat heart. PLoS One 8, e71567.CrossrefPubMedGoogle Scholar

  • Zorec, R., Verkhratsky, A., Rodriguez, J., and Parpura, V. (2016). Astrocytic vesicles and gliotransmitters: slowness of vesicular release and synaptobrevin2-laden vesicle nanoarchitecture. Neuroscience 323, 67–75.CrossrefPubMedGoogle Scholar

  • Zschocke, J., Bayatti, N., and Behl, C. (2005). Caveolin and GLT-1 gene expression is reciprocally regulated in primary astrocytes: association of GLT-1 with non-caveolar lipid rafts. Glia 49, 275–287.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-11-02

Accepted: 2017-11-26

Published Online: 2018-01-08

Published in Print: 2018-07-26


Citation Information: Reviews in the Neurosciences, Volume 29, Issue 5, Pages 567–591, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0092.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maria de los Angeles Robinson-Agramonte, Carlos-Alberto Gonçalves, Roberto Farina de Almeida, Alina González Quevedo, Sandra Chow, Luis Velázquez Pérez, Amado Díaz de la Fé, Patricia Sesterheim, and Diogo Onofre Gomes de Souza
Behavioral Sciences, 2019, Volume 9, Number 9, Page 99
[3]
Ralf Fliegert, Jörg Heeren, Friedrich Koch-Nolte, Viacheslav O. Nikolaev, Christian Lohr, Chris Meier, and Andreas H. Guse
Biochemical Society Transactions, 2019, Volume 47, Number 1, Page 329
[4]
Elena D. Osipova, Yulia K. Komleva, Andrey V. Morgun, Olga L. Lopatina, Yulia A. Panina, Raissa Ya. Olovyannikova, Elizaveta F. Vais, Vladimir V. Salmin, and Alla B. Salmina
Frontiers in Aging Neuroscience, 2018, Volume 10

Comments (0)

Please log in or register to comment.
Log in