Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 29, Issue 6

Issues

Amyloid toxicity in Alzheimer’s disease

Allison B. Reiss
  • Corresponding author
  • Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hirra A. Arain
  • Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mark M. Stecker
  • Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicolle M. Siegart
  • Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lora J. Kasselman
  • Winthrop Research Institute, NYU Winthrop Hospital, 101 Mineola Boulevard, Mineola, NY 11501, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-02-15 | DOI: https://doi.org/10.1515/revneuro-2017-0063

Abstract

A major feature of Alzheimer’s disease (AD) pathology is the plaque composed of aggregated amyloid-β (Aβ) peptide. Although these plaques may have harmful properties, there is much evidence to implicate soluble oligomeric Aβ as the primary noxious form. Aβ oligomers can be generated both extracellularly and intracellularly. Aβ is toxic to neurons in a myriad of ways. It can cause pore formation resulting in the leakage of ions, disruption of cellular calcium balance, and loss of membrane potential. It can promote apoptosis, cause synaptic loss, and disrupt the cytoskeleton. Current treatments for AD are limited and palliative. Much research and effort is being devoted to reducing Aβ production as an approach to slowing or preventing the development of AD. Aβ formation results from the amyloidogenic cleavage of human amyloid precursor protein (APP). Reconfiguring this process to disfavor amyloid generation might be possible through the reduction of APP or inhibition of enzymes that convert the precursor protein to amyloid.

Keywords: amyloid oligomers; apolipoprotein E; mitochondria; oxidative stress; synapse

References

  • Ahmad, S.S., Akhtar, S., Jamal, Q.M., Rizvi, S.M., Kamal, M.A., Khan, M.K., and Siddiqui, M.H. (2016). Multiple targets for the management of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 15, 1279–1289.PubMedCrossrefGoogle Scholar

  • Alvarez, V.A. and Sabatini, B.L. (2007). Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97.CrossrefPubMedGoogle Scholar

  • Arimon, M., Takeda, S., Post, K.L., Svirsky, S., Hyman, B.T., and Berezovska, O. (2015). Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis. 84, 109–119.CrossrefPubMedGoogle Scholar

  • Arispe, N., Diaz, J., Durell, S.R., Shafrir, Y., and Guy, H.R. (2010). Polyhistidine peptide inhibitor of the Abeta calcium channel potently blocks the Abeta-induced calcium response in cells. Theoretical modeling suggests a cooperative binding process. Biochemistry. 49, 7847–7853.Google Scholar

  • Babcock, A.A., Ilkjaer, L., Clausen, B.H., Villadsen, B., Dissing-Olesen, L., Bendixen, A.T., Lych, L., Lambertsen, K.L., and Finsen, B. (2015). Cytokine-producing microglia have an altered β-amyloid load in aged APP/PS1 Tg mice. Brain Behav. Immun. 48, 86–101.PubMedCrossrefGoogle Scholar

  • Bales, K.R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., Hansen, J.C., Sullivan, P.M., and Paul, S.M. (2009). Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J. Neurosci. 29, 6771–6779.PubMedCrossrefGoogle Scholar

  • Bao, F., Wicklund, L., Lacor, P.N., Klein, W.L., Nordberg, A., and Marutle, A. (2012). Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol. Aging 33, 825.e1–825.e13.CrossrefGoogle Scholar

  • Barnes, D.E. and Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828.PubMedCrossrefGoogle Scholar

  • Barry, A.E., Klyubin, I., Mc Donald, J.M., Mably, A.J., Farrell, M.A., Scott, M., Walsh, D.M., and Rowan, M.J. (2011). Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31, 7259–7263.PubMedCrossrefGoogle Scholar

  • Beffert, U., Nematollah Farsian, F., Masiulis, I., Hammer, R.E., Yoon, S.O., Giehl, K.M., and Herz, J. (2006). ApoE receptor 2 controls neuronal survival in the adult brain. Curr. Biol. 16, 2446–2452.PubMedCrossrefGoogle Scholar

  • Beisiegel, U., Weber, W., Ihrke, G., Herz, J., and Stanley, K.K. (1989). The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341, 162–164.PubMedCrossrefGoogle Scholar

  • Benilova, I., Karran, E., and De Strooper, B. (2012). The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357.CrossrefPubMedGoogle Scholar

  • Berger, Z., Roder, H., Hanna, A., Carlson, A., Rangachari, V., Yue, M., Wszolek, Z., Ashe, K., Knight, J., Dickson, D., et al. (2007). Accumulation of pathological τ species and memory loss in a conditional model of tauopathy. J. Neurosci. 27, 3650–3662.CrossrefGoogle Scholar

  • Bi, X., Gall, C.M., Zhou, J., and Lynch, G. (2002). Uptake and pathogenic effects of amyloid β peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 112, 827–840.CrossrefPubMedGoogle Scholar

  • Bibl, M., Mollenhauer, B., Esselmann, H., Lewczuk, P., Klafki, H.W., Sparbier, K., Smirnov, A., Cepek, L., Trenkwalder, C., Ruther, E., et al. (2006). CSF amyloid-β-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 129, 1177–1187.CrossrefPubMedGoogle Scholar

  • Billups, B. and Forsythe, I.D. (2002). Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22, 5840–5847.CrossrefPubMedGoogle Scholar

  • Bobba, A., Amadoro, G., Valenti, D., Corsetti, V., Lassandro, R., and Atlante, A. (2013). Mitochondrial respiratory chain complexes I and IV are impaired by β-amyloid via direct interaction and through complex I-dependent ROS production, respectively. Mitochondrion 13, 298–311.CrossrefPubMedGoogle Scholar

  • Boehm-Cagan, A. and Michaelson, D.M. (2014). Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J. Neurosci. 34, 7293–7301.CrossrefPubMedGoogle Scholar

  • Bossy, B., Petrilli, A., Klinglmayr, E., Chen, J., Lütz-Meindl, U., Knott, A.B., Masliah, E., Schwarzenbacher, R., and Bossy-Wetzel, E. (2010). S-nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J. Alzheimers Dis. 20, S513–S526.Google Scholar

  • Brown, D.A. and London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224.PubMedCrossrefGoogle Scholar

  • Bu, Z., Shi, Y., Callaway, D.J., and Tycko, R. (2007). Molecular alignment within β-sheets in Aβ(14–23) fibrils: solid-state NMR experiments and theoretical predictions. Biophys. J. 92, 594–602.PubMedCrossrefGoogle Scholar

  • Butterfield, S.M. and Lashuel, H.A. (2010). Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem. Int. Ed. 49, 5628–5654.CrossrefGoogle Scholar

  • Casley, C.S., Canevari, L., Land, J.M., Clark, J.B., and Sharpe, M.A. (2002). β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100.PubMedGoogle Scholar

  • Caspersen, C., Wang, N., Yao, J., Sosunov, A., Chen, X., Lustbader, J.W., Xu, H.W., Stern, D., McKhann, G., and Yan, S.D. (2005). Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 19, 2040–2041.CrossrefPubMedGoogle Scholar

  • Castellano, J.M., Kim, J., Stewart, F.R., Jiang, H., DeMattos, R.B., Patterson, B.W., Fagan, A.M., Morris, J.C., Mawuenyega, K.G., Cruchaga, C., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57.PubMedGoogle Scholar

  • Caughey, B. and Lansbury, P.T. (2003). Protofibrils, pores, fibrils, and neurodegeneration. Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.CrossrefPubMedGoogle Scholar

  • Cenini, G., Rüb, C., Bruderek, M., and Voos, W. (2016). Amyloid β-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol. Biol. Cell 27, 3257–3272.CrossrefPubMedGoogle Scholar

  • Cerpa, W., Dinamarca, M.C., and Inestrosa, N.C. (2008). Structure-function implications in Alzheimer’s disease: effect of Aβ oligomers at central synapses. Curr. Alzheimer Res. 5, 233–243.PubMedCrossrefGoogle Scholar

  • Chan, R.B., Oliveira, T.G., Cortes, E.P., Honig, L.S., Duff, K.E., Small, S.A., Wenk, M.R., Shui, G., and Di Paolo, G. (2012). Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J. Biol. Chem. 287, 2678–2688.PubMedCrossrefGoogle Scholar

  • Chang, E.H., Savage, M.J., Flood, D.G., Thomas, J.M., Levy, R.B., Mahadomrongkul, V., Shirao, T., Aoki, C., and Huerta, P.T. (2006). AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc. Natl. Acad. Sci. USA. 203, 3410–3415.Google Scholar

  • Cho, D.H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S.A. (2009). S-nitrosylation of DRP1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105.PubMedCrossrefGoogle Scholar

  • Cleary, J.P., Walsh, D.M., Hofmeister, J.J., Shankar, G.M., Kuskowski, M.A., Selkoe, D.J., and Ashe, K.H. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84.CrossrefPubMedGoogle Scholar

  • Coleman, P.D. and Yao, P.J. (2003). Synaptic slaughter in Alzheimer’s disease. Neurobiol. Aging 24, 1023–1027.PubMedCrossrefGoogle Scholar

  • Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.PubMedCrossrefGoogle Scholar

  • Daria, A., Colombo, A., Llovera, G., Hampel, H., Willem, M., Liesz, A., Haass, C., and Tahirovic, S. (2017). Young microglia restore amyloid plaque clearance of aged microglia. EMBO J. 36, 583–603.CrossrefPubMedGoogle Scholar

  • Dean, D.C. 3rd, Jerskey, B.A., Chen, K., Protas, H., Thiyyagura, P., Roontiva, A., O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., et al. (2014). Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. J. Am. Med. Assoc. Neurol. 71, 11–22.Google Scholar

  • Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M.B., Holtzman, D.M., and Zlokovic, B.V. (2008). apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013.PubMedCrossrefGoogle Scholar

  • Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G., and Anandatheerthavarada, H.K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057–9068.CrossrefPubMedGoogle Scholar

  • Di Domenico, F., Pupo, G., Giraldo, E., Badìa, M.C., Monllor, P., Lloret, A., Eugenia Schininà, M., Giorgi, A., Cini, C., Tramutola, A., et al. (2015). Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radic. Biol. Med. 91, 1–9.PubMedGoogle Scholar

  • Dickson, D.W., Farlo, J., Davies, P., Crystal, H., Fuld, P., and Yen, S.H. (1988). Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am. J. Pathol. 132, 86–101.PubMedGoogle Scholar

  • Dragicevic, N., Mamcarz, M., Zhu, Y., Buzzeo, R., Tan, J., Arendash, G.W., and Bradshaw, P.C. (2010). Mitochondrial amyloid-β levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J. Alzheimers Dis. 20, S535–S550.CrossrefGoogle Scholar

  • Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M., and Yan, S.S. (2010). Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA. 107, 18670–18675.CrossrefGoogle Scholar

  • Dykens, J.A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J. Neurochem. 63, 584–591.PubMedGoogle Scholar

  • Eckert, A., Schmitt, K., and Götz, J. (2011). Mitochondrial dysfunction – the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of τ and amyloid-β toxicity. Alzheimers Res. Ther. 3, 15.CrossrefPubMedGoogle Scholar

  • Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell. Biol. 160, 113–123.CrossrefPubMedGoogle Scholar

  • Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., and van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. J. Am. Med. Assoc. 278, 1349–1356.CrossrefGoogle Scholar

  • Fernández-Morales, J.C., Arranz-Tagarro, J.A., Calvo-Gallardo, E., Maroto, M., Padín, J.F., and García, A.G. (2012). Stabilizers of neuronal and mitochondrial calcium cycling as a strategy for developing a medicine for Alzheimer’s disease. ACS Chem. Neurosci. 3, 873–883.CrossrefPubMedGoogle Scholar

  • Ferreira, I.L., Ferreiro, E., Schmidt, J., Cardoso, J.M., Pereira, C.M., Carvalho, A.L., Oliveira, C.R., and Rego, A.C. (2015). Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol. Aging 36, 680–692.CrossrefPubMedGoogle Scholar

  • Ferreiro, E., Oliveira, C.R., and Pereira, C.M. (2008). The release of calcium from the endoplasmic reticulum induced by amyloid-β and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol. Dis. 30, 331–342.PubMedCrossrefGoogle Scholar

  • Floden, A.M. and Combs, C.K. (2011). Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J. Alzheimers Dis. 25, 279–293.PubMedCrossrefGoogle Scholar

  • Forny-Germano, L., Lyra e Silva, N.M., Batista, A.F., Brito-Moreira, J., Gralle, M., Boehnke, S.E., Coe, B.C., Lablans, A., Marques, S.A., Martinez, A.M., et al. (2014). Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 34, 13629–13643.CrossrefPubMedGoogle Scholar

  • Garcia-Alloza, M., Dodwell, S.A., Meyer-Luehmann, M., Hyman, B.T., and Bacskai, B.J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J. Neuropathol. Exp. Neurol. 65, 1082–1089.CrossrefPubMedGoogle Scholar

  • Geula, C., Wu, C.-K., Saroff, D., Lorenzo, A., Yuan, M., and Yankner, B.A. (1998). Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat. Med. 4, 827–831.CrossrefPubMedGoogle Scholar

  • Gibson, G.E., Blass, J.P., Beal, M.F., and Bunik, V. (2005). The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol. Neurobiol. 31, 43–63.PubMedCrossrefGoogle Scholar

  • Giuffrida, M.L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Pappalardo, G., Messina, A., Palmigiano, A., et al. (2009). β-Amyloid monomers are neuroprotective. J. Neurosci. 29, 10582–10587.PubMedCrossrefGoogle Scholar

  • Glabe, C.G. (2008). Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639–29643.PubMedCrossrefGoogle Scholar

  • Gomes, G.M., Dalmolin, G.D., Bär, J., Karpova, A., Mello, C.F., Kreutz, M.R., and Rubin, M.A. (2014). Inhibition of the polyamine system counteracts β-amyloid peptide-induced memory impairment in mice: involvement of extrasynaptic NMDA receptors. PLoS One 9, e99184.PubMedCrossrefGoogle Scholar

  • Grathwohl, S.A., Kälin, R.E., Bolmont, T., Prokop, S., Winkelmann, G., Kaeser, S.A., Odenthal, J., Radde, R., Eldh, T., Gandy, S., et al. (2016). Amyloid-β peptide Aβ 3pE-42 induces lipid peroxidation, membrane permeabilization, and calcium influx in neurons. J. Biol. Chem. 291, 6134–6145.CrossrefGoogle Scholar

  • Gunn, A.P., Wong, B.X., Johanssen, T., Griffith, J.C., Masters, C.L., Bush, A.I., Barnham, K.J., Duce, J.A., and Cherny, R.A. (2016). Amyloid-β peptide Aβ3pE-42 induces lipid peroxidation, membrane permeabilization, and calcium influx in neurons. J. Biol. Chem. 291, 6134–6145.CrossrefPubMedGoogle Scholar

  • Hansson Petersen, C.A., Alikhani, N., Behbahani, H., Wiehager, B., Pavlov, P.F., Alafuzoff, I., Leinonen, V., Ito, A., Winblad, B., Glaser, E., et al. (2008). The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 105, 13145–13150.CrossrefGoogle Scholar

  • Hattori, C., Asai, M., Onishi, H., Sasagawa, N., Hashimoto, Y., Saido, T.C., Maruyama, K., Mizutani, S., and Ishiura, S. (2006). BACE1 interacts with lipid raft proteins. J. Neurosci. Res. 84, 912–917.PubMedCrossrefGoogle Scholar

  • Hauptmann, S., Scherping, I., Dröse, S., Brandt, U., Schulz, K.L., Jendrach, M., Leuner, K., Eckert, A., and Müller, W.E. (2008). Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol. Aging 30, 1574–1586.PubMedGoogle Scholar

  • He, Y., Zheng, M.M., Ma, Y., Han, X.J., Ma, X.Q., Qu, C.Q., and Du, Y.F. (2012). Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem. Biophys. Res. Commun. 429, 125–130.CrossrefPubMedGoogle Scholar

  • Hensely, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Gabbita, S.P., Wu, J.F., Carney, J.M., Lovell, M., et al. (1995). Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.PubMedGoogle Scholar

  • Heppner, F.L. and Jucker, M. (2009). Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363.PubMedCrossrefGoogle Scholar

  • Hernandez-Zimbron, L.F., Luna-Muñoz, J., Mena, R., Vazquez-Ramirez, R., Kubli-Garfias, C., Cribbs, D.H., Manoutcharian, K., and Gevorkian, G. (2012). Amyloid-β peptide binds to cytochrome c oxidase subunit 1. PLoS One 7, e42344.PubMedCrossrefGoogle Scholar

  • Hickman, S.E., Allison, E.K., and El Khoury, J. (2008). Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28, 8354–8360.CrossrefPubMedGoogle Scholar

  • Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R.C., Nicoll, R.A., and Mucke, L. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA. 96, 3228–3233.CrossrefGoogle Scholar

  • Hudry, E., Dashkoff, J., Roe, A.D., Takeda, S., Koffie, R.M., Hashimoto, T., Scheel, M., Spires-Jones, T., Arbel-Ornath, M., Betensky, R., et al. (2013). Gene transfer of human apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 5, 212ra161.CrossrefPubMedGoogle Scholar

  • Inoue, S. (2008). In situ Abeta pores in AD brain are cylindrical assembly of Abeta protofilaments. Amyloid. 15, 223–233.CrossrefPubMedGoogle Scholar

  • Irizarry, M.C., Deng, A., Lleo, A., Berezovska, O., Von Arnim, C.A., Martin-Rehrmann, M., Manelli, A., LaDu, M.J., Hyman, B.T., and Rebeck, G.W. (2004). Apolipoprotein E modulates g-secretase cleavage of the amyloid precursor protein. J. Neurochem. 90, 1132–1143.CrossrefGoogle Scholar

  • Jaeger, S. and Pietrzik, C.U. (2008). Functional role of lipoprotein receptors in Alzheimer’s disease. Curr. Alzheimer Res. 5, 15–25.CrossrefPubMedGoogle Scholar

  • Jan, A., Gokce, O., Luthi-Carter, R., and Lashuel, H.A. (2008). The ratio of monomeric to aggregated forms of Aβ40 and Aβ42 is an important determinant of amyloid-β aggregation, fibrillogenesis, and toxicity J. Biol. Chem. 283, 28176–28189.PubMedCrossrefGoogle Scholar

  • Jang, H., Zheng, J., and Nussinov, R. (2007). Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys. J. 93, 1938–1949.CrossrefPubMedGoogle Scholar

  • Jang, H., Arce, F.T., Ramachandra, S., Capone, R., Lal, R., and Nussinov, R. (2010). Barrel topology of Alzheimer’s β-amyloid ion channels. J. Mol. Biol. 404, 917–934.PubMedCrossrefGoogle Scholar

  • Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489.PubMedCrossrefGoogle Scholar

  • Kim, J., Basak, J.M., and Holtzman, D.M. (2009). The role of apolipoprotein E in Alzheimer’s disease. Neuron. 63, 287–303.CrossrefPubMedGoogle Scholar

  • Kim, J., Jiang, H., Park, S., Eltorai, A.E., Stewart, F.R., Yoon, H., Basak, J.M., Finn, M.B., and Holtzman, D.M. (2011). Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci. 31, 18007–18012.CrossrefGoogle Scholar

  • Koenigsknecht, J. and Landreth, G. (2004). Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci. 24, 9838–9846.CrossrefPubMedGoogle Scholar

  • Koenigsknecht-Talboo, J. and Landreth, G.E. (2005). Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 25, 8240–8249.CrossrefPubMedGoogle Scholar

  • Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., Viola, K.L., and Klein, W.L. (2007). Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 27, 796–807.PubMedCrossrefGoogle Scholar

  • Lal, R., Lin, H., and Quist, A.P. (2007). Amyloid β ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim. Biophys. Acta 1768, 1966–1975.PubMedCrossrefGoogle Scholar

  • Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., et al. (1999). Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.Google Scholar

  • Lazzari, C., Kipanyula, M.J., Agostini, M., Pozzan, T., and Fasolato, C. (2015). Aβ42 oligomers selectively disrupt neuronal calcium release. Neurobiol. Aging. 36, 877–885.PubMedCrossrefGoogle Scholar

  • Lee, S.H., Kim, K.R., Ryu, S.Y., Son, S., Hong, H.S., Mook-Jung, I., Lee, S.H., and Ho, W.K. (2012). Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J. Neurosci. 32, 5953–5963.CrossrefGoogle Scholar

  • Leuner, K., Schütt, T., Kurz, C., Eckert, S.H., Schiller, C., Occhipinti, A., Mai, S., Jendrach, M., Eckert, G.P., Kruse, S.E., et al. (2012). Mitochondrion-derived reactive oxygen species lead to enhanced amyloid β formation. Antioxid. Redox Signal. 16, 1421–1433.PubMedCrossrefGoogle Scholar

  • Liraz, O., Boehm-Cagan, A., and Michaelson, D.M. (2013). ApoE4 induces Aβ42, τ, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol. Neurodegener. 8, 16.PubMedCrossrefGoogle Scholar

  • Lovell, M.A., Ehmann, W.D., Butler, S.M., and Markesbery, W.R. (1995). Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45, 1594–1601.CrossrefPubMedGoogle Scholar

  • Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452.CrossrefPubMedGoogle Scholar

  • Maddock J., Cavadino A., Power C., and Hyppönen, E. (2015). 25-Hydroxyvitamin D, APOE ε4 genotype and cognitive function: findings from the 1958 British birth cohort. Eur. J. Clin. Nutr. 69, 505–508.CrossrefGoogle Scholar

  • Magdesian, M.H., Carvalho, M.M., Mendes, F.A., Saraiva, L.M., Juliano, M.A., Juliano, L., Garcia-Abreu, J., and Ferreira, S.T. (2008). Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. J. Biol. Chem. 283, 9359–9368.PubMedCrossrefGoogle Scholar

  • Mahley, R.W. (2016a). Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J. Mol. Med. (Berl.) 94, 739–746.CrossrefGoogle Scholar

  • Mahley, R.W. (2016b). Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler. Thromb. Vasc. Biol. 36, 1305–1315.CrossrefGoogle Scholar

  • Malenka, R.C. and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21.PubMedCrossrefGoogle Scholar

  • Manczak, M., Anekonda, T.S., Henson, E., Park, B.S., Quinn, J., and Reddy, P.H. (2006). Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 15, 1437–1449.CrossrefPubMedGoogle Scholar

  • Manczak, M., Mao, P., Calkins, M.J., Cornea, A., Reddy, A.P., Murphy, M.P., Seto, H.H., Park, B., and Reddy, P.H. (2010). Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis. 20, S609–S631.CrossrefGoogle Scholar

  • Mandrekar, S., Jiang, Q., Lee, C.Y., Koenigsknecht-Talboo, J., Holtzman, D.M., and Landreth, G.E. (2009). Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J. Neurosci. 29, 4252–4262.CrossrefPubMedGoogle Scholar

  • Mark, R.J., Pang, Z., Geddes, J.W., Uchida, K., and Mattson, M.P. (1997). Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 14, 1046–1054.Google Scholar

  • Markesbery, W.R. and Carney, J.M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9, 133–146.PubMedGoogle Scholar

  • Mastrogiacoma, F., Lindsay, J.G., Bettendorff, L., Rice, J., and Kish, S.J. (1996). Brain protein and α ketoglutarate dehydrogenase activity in Alzheimer’s disease. Ann. Neurol. 39, 592–598.PubMedCrossrefGoogle Scholar

  • Matsuzaki, K. (2007). Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim. Biophys. Acta 1768, 1935–1942.CrossrefPubMedGoogle Scholar

  • Mattsson, N., Insel, P.S., Palmqvist, S., Stomrud, E., van Westen, D., Minthon, L., Zetterberg, H., Blennow, K., and Hansson, O. (2016). Increased amyloidogenic APP processing in APOE ε4-negative individuals with cerebral β-amyloidosis. Nat. Commun. 7, 10918.CrossrefGoogle Scholar

  • Maurer, I., Zierz, S., and Moller, H.J. (2000). A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging 21, 455–462.PubMedCrossrefGoogle Scholar

  • Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., Yarasheski, K.E., and Bateman, R.J. (2010). Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330, 1774.CrossrefPubMedGoogle Scholar

  • McLean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I., and Masters, C.L. (1999). Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866.PubMedCrossrefGoogle Scholar

  • Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Baron, P. Jr., Villalba, M., Ferrari, D., and Rossi, F. (1995). Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650.CrossrefPubMedGoogle Scholar

  • Mendis, L.H., Grey, A.C., Faull, R.L., and Curtis, M.A. (2016). Hippocampal lipid differences in Alzheimer’s disease: a human brain study using matrix-assisted laser desorption/ionization-imaging mass spectrometry. Brain Behav. 6, e00517.CrossrefPubMedGoogle Scholar

  • Mesulam, M.M. (2013). Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 521, 4124–4144.PubMedCrossrefGoogle Scholar

  • Meyer-Luehmann, M., Spires-Jones, T.L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D.M., Bacskai, B.J., and Hyman, B.T. (2008). Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451, 720–724.CrossrefGoogle Scholar

  • Moreira, P.I., Harris, P.L.R., Zhu, X., Santos, M.S., Oliveira, C.R., Smith, M.A., and Perry, G. (2007). Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J. Alzheimer Dis. 12, 195–206.CrossrefGoogle Scholar

  • Mossmann, D., Vögtle, F.N., Taskin, A.A., Teixeira, P.F., Ring, J., Burkhart, J.M., Burger, N., Pinho, C.M., Tadic, J., Loreth, D., et al. (2014). Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab. 20, 662–669.PubMedCrossrefGoogle Scholar

  • Murakami, Y., Ohsawa, I., Kasahara, T., and Ohta, S. (2009). Cytoprotective role of mitochondrial amyloid β peptide-binding alcohol dehydrogenase against a cytotoxic aldehyde. Neurobiol. Aging 30, 325–329.PubMedCrossrefGoogle Scholar

  • Nakamura, T. and Lipton, S.A. (2011). Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ. 18, 1478–1486.CrossrefPubMedGoogle Scholar

  • Näslund, J., Haroutunian, V., Mohs, R., Davis, K.L., Davies, P., Greengard, P., and Buxbaum, J.D. (2000). Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. J. Am. Med. Assoc. 283, 1571–1577.CrossrefGoogle Scholar

  • Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.H., and Wurtman, R.J. (1992). Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA. 89, 1671–1675.CrossrefGoogle Scholar

  • Njie, E.G., Boelen, E., Stassen, F.R., Steinbusch, H.W., Borchelt, D.R., and Streit, W.J. (2012). Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging. 33, e1–e12.Google Scholar

  • Origlia, N., Capsoni, S., Cattaneo, A., Fang, F., Arancio, O., Yan, S.D., and Domenici, L. (2009). Aβ-dependent inhibition of LTP in different intracortical circuits of the visual cortex: the role of RAGE. J. Alzheimers Dis. 17, 59–68.CrossrefPubMedGoogle Scholar

  • Origlia, N., Righi, M., Capsoni, S., Cattaneo, A., Fang, F., Stern, D.M., Chen, J.X., Schmidt, A.M., Arancio, O., Yan, S.D., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β-mediated cortical synaptic dysfunction. J. Neurosci. 28, 3521–3530.CrossrefPubMedGoogle Scholar

  • Oz, M., Lorke, D.E., Yang, K.H., and Petroianu, G. (2013). On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr. Alzheimer Res. 10, 618–630.PubMedCrossrefGoogle Scholar

  • Park, J., Jang, M., and Chang, S. (2013). Deleterious effects of soluble amyloid-β oligomers on multiple steps of synaptic vesicle trafficking. Neurobiol. Dis. 55, 129–139.PubMedCrossrefGoogle Scholar

  • Parker, W.D. Jr., Filley, C.M., and Parks, J.K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40, 1302–1303.CrossrefPubMedGoogle Scholar

  • Parodi, J., Sepulveda, F.J., Roa, J., Opazo, C., Inestrosa, N.C., and Aguayo, L.G. (2010). Amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J. Biol. Chem. 285, 2506–2514.CrossrefPubMedGoogle Scholar

  • Practicò, D., Uryu, K., Leight, S., Trojanoswki, J.Q., and Lee, V.M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187.CrossrefGoogle Scholar

  • Renner, M., Lacor, P.N., Velasco, P.T., Xu, J., Contractor, A., Klein, W.L., and Triller, A. (2010). Deleterious effects of amyloid-β oligomers acting as an extracellular scaffold for mGluR5. Neuron 66, 739–754.CrossrefPubMedGoogle Scholar

  • Rhein, V., Baysang, G., Rao, S., Meier, F., Bonert, A., Müller-Spahn, F., and Eckert, A. (2009). Amyloid-β leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol. Neurobiol. 29, 1063–1071.CrossrefPubMedGoogle Scholar

  • Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., Yu, G.Q., and Mucke, L. (2007). Reducing endogenous τ ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754.CrossrefGoogle Scholar

  • Rossner, S., Sastre, M., Bourne, K., and Lichtenthaler, S.F. (2006). Transcriptional and translational regulation of BACE1 expression – implications for Alzheimer’s disease. Prog. Neurobiol. 79, 95–111.PubMedCrossrefGoogle Scholar

  • Sakono, M. and Zako, T. (2010). Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 277, 1348–1358.CrossrefPubMedGoogle Scholar

  • Scheff, S.W., Price, D.A., Schmitt, F.A., and Mufson, E.J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384.CrossrefPubMedGoogle Scholar

  • Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D., and Roses, A.D. (1993). Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 9649–9653.CrossrefGoogle Scholar

  • Sepúlveda, F.J., Fierro, H., Fernandez, E., Castillo, C., Peoples, R.W., Opazo, C., and Aguayo, L.G. (2014). Nature of the neurotoxic membrane actions of amyloid-β on hippocampal neurons in Alzheimer’s disease. Neurobiol. Aging 35, 472–481.PubMedCrossrefGoogle Scholar

  • Serrano-Pozo, A., Qian, J., Monsell, S.E., Betensky, R.A., and Hyman, B.T. (2015). APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann. Neurol. 77, 917–929.CrossrefPubMedGoogle Scholar

  • Shah, P., Lal, N., Leung, E., Traul, D.E., Gonzalo-Ruiz, A., and Geula, C. (2010). Neuronal and axonal loss are selectively linked to fibrillar amyloid-β within plaques of the aged primate cerebral cortex. Am. J. Pathol. 177, 325–333.PubMedCrossrefGoogle Scholar

  • Shahnawaz, M. and Soto, C. (2012). Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J. Biol. Chem. 287, 11665–11676.PubMedCrossrefGoogle Scholar

  • Sheehan, J.P., Swerdlow, R.H., Miller, S.W., Davis, R.E., Parks, J.K., Parker, W.D., and Tuttle, J.B. (1997). Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci. 17, 4612–4622.CrossrefPubMedGoogle Scholar

  • Sheikh, K., Giordani, C., McManus, J.J., Hovgaard, M.B., and Jarvis, S.P. (2012). Differing modes of interaction between monomeric Aβ (1-40) peptides and model lipid membranes: an AFM study. Chem. Phys. Lipids 165, 142–150.PubMedCrossrefGoogle Scholar

  • Shibata, M., Yamada, S., Kumar, S.R., Calero, M., Bading, J., Frangione, B., Holtzman, D.M., Miller, C.A., Strickland, D.K., Ghiso, J., et al. (2000). Clearance of Alzheimer’s amyloid-β(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489–1499.CrossrefPubMedGoogle Scholar

  • Shinoda, K., Sohma, Y., and Kanai, M. (2015). Synthesis of chemically-tethered amyloid-β segment trimer possessing amyloidogenic properties. Bioorg. Med. Chem. Lett. 25, 2976–2979.PubMedCrossrefGoogle Scholar

  • Snyder, E.M., Nong, Y., Almeida, C.G., Paul, S., Moran, T., Choi, E.Y., Nairn, A.C., Salter, M.W., Lombroso, P.J., Gouras, G.K., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 8, 1051–1058.CrossrefPubMedGoogle Scholar

  • Sondag, C.M., Dhawan, G., and Combs, C.K. (2009). β Amyloid oligomers and fibrils stimulate differential activation of primary microglia. J. Neuroinflamm. 6, 1.CrossrefGoogle Scholar

  • Spuch, C., Ortolano, S., and Navarro, C. (2012). New insights in the amyloid-β interaction with mitochondria. J. Aging Res. 2012, 324968.PubMedGoogle Scholar

  • Stefani, M. (2010). Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J. 277, 4602–4613.PubMedCrossrefGoogle Scholar

  • Stéphan, A., Laroche, S., and Davis, S. (2001). Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21, 5703–5714.CrossrefPubMedGoogle Scholar

  • Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak Vance, M., Enghild, J., Salvesen, G.S., and Roses, A.D. (1993). Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA. 90, 1977–1981.CrossrefGoogle Scholar

  • Swomley, A.M. and Butterfield, D.A. (2015). Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch. Toxicol. 89, 1669–1680.CrossrefPubMedGoogle Scholar

  • Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.CrossrefPubMedGoogle Scholar

  • Tillement, L., Lecanu, L., Yao, W., Greeson, J., and Papadopoulos, V. (2006). The spirostenol (22R, 25R)-20a-spirost-5-en-3b-yl hexanoate blocks mitochondrial uptake of Aβ in neuronal cells and prevents Aβ-induced impairment of mitochondrial function. Steroids 71, 725–735.PubMedCrossrefGoogle Scholar

  • Tillement, L., Lecanu, L., and Papadopoulos, V. (2011). Alzheimer’s disease: effects of β-amyloid on mitochondria. Mitochondrion 11, 13–21.CrossrefPubMedGoogle Scholar

  • Tipping, K.W., Karamanos, T.K., Jakhria, T., Iadanza, M.G., Goodchild, S.C., Tuma, R., Ranson, N.A., Hewitt, E.W., and Radford, S.E. (2015). pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proc. Natl. Acad. Sci. USA. 112, 5691–5696.CrossrefGoogle Scholar

  • Tjernberg, L.O., Callaway, D.J., Tjernberg, A., Hahne, S., Lilliehook, C., Terenius, L., Thyberg, J., and Nordstedt, C. (1999). A molecular model of Alzheimer amyloid β-peptide fibril formation. J. Biol. Chem. 274, 12619–12625.PubMedCrossrefGoogle Scholar

  • Tokuda, T., Calero, M., Matsubara, E., Vidal, R., Kumar, A., Permanne, B., Zlokovic, B., Smith, J.D., Ladu, M.J., Rostagno, A., et al. (2000). Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348, 359–365.PubMedGoogle Scholar

  • Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M., and Selkoe, D.J. (2006). Effects of secreted oligomers of amyloid-β protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. (Lond.) 572, 477–492.CrossrefPubMedGoogle Scholar

  • Vasalani, K.R., Sun, Q., Hu, G., Li, J., Du, F., Guo, Y., Carlson, E.A., Gan, X., and Yan S. (2014). Identification of human ABAD inhibitors for rescuing Aβ-mediated mitochondrial dysfunction. Curr. Alzheimers Res. 11, 128–136.CrossrefGoogle Scholar

  • Verghese, P.B., Castellano, J.M., Garai, K., Wang, Y., Jiang, H., Shah, A., Bu, G., Frieden, C., and Holtzman, D.M. (2013). ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl. Acad. Sci. USA. 110, E1807–E1816.Google Scholar

  • Vincent, B. and Smith, J.D. (2001). Astrocytes down-regulate neuronal β-amyloid precursor protein expression and modify its processing in an apolipoprotein E isoform-specific manner. Eur. J. Neurosci. 14, 256–266.CrossrefGoogle Scholar

  • Walsh, D.M. and Selkoe, D.J. (2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44, 181–193.PubMedCrossrefGoogle Scholar

  • Walsh, D.M. and Selkoe, D.J. (2007). Aβ oligomers – a decade of discovery. Neurochemistry 101, 1172–1184.CrossrefGoogle Scholar

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. (2002). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.PubMedCrossrefGoogle Scholar

  • Walsh, D.M., Klyubin, I., Shankar, G.M., Townsend, M., Fadeeva, J.V., Betts, V., Podlisny, M.B., Cleary, J.P., Ashe, K.H., Rowan, M.J., et al. (2005). The role of cell-derived oligomers of Aβ in Alzheimer’s disease and avenues for therapeutic intervention. Biochem. Soc. Trans. 33, 1087–1090.PubMedGoogle Scholar

  • Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G., and Zhu, X. (2008). Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. USA. 105, 19318–19323.CrossrefGoogle Scholar

  • Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A., and Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 29, 9090–9103.CrossrefPubMedGoogle Scholar

  • Williams, S.E., Ashcom, J.D., Argraves, W.S., and Strickland, D.K. (1992). A novel mechanism for controlling the activity of α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J. Biol. Chem. 267, 9035–9040.Google Scholar

  • Xie, H., Guan, J., Borrelli, L.A., Xu, J., Serrano-Pozo, A., and Bacskai, B.J. (2013). Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J. Neurosci. 33, 17042–17051.CrossrefGoogle Scholar

  • Xue, W.F., Hellewell, A.L., Gosal, W.S., Homans, S.W., Hewitt, E.W., and Radford, S.E. (2009). Fibril fragmentation enhances amyloid cytotoxicity. J. Biol. Chem. 284, 34272–34282.PubMedCrossrefGoogle Scholar

  • Yan, S.D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collinson, K., Zhu, A., Stern, E., Saido, T., et al. (1997). An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389, 689–695.CrossrefPubMedGoogle Scholar

  • Yang, T., Li, S., Xu, H., Walsh, D.M., and Sekoe, D.J. (2017). Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci. 37, 152–163.CrossrefGoogle Scholar

  • Yao, J., Du, H., Yan, S., Fang, F., Wang, C., Lue, L.F., Guo, L., Chen, D., Stern, D.M., Gunn Moore, F.J., et al. (2011). Inhibition of amyloid-β (Aβ) peptide-binding alcohol dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 2313–2320.CrossrefGoogle Scholar

  • Yoshiike, Y., Akagi, T., and Takashima, A. (2007). Surface structure of amyloid-β fibrils contributes to cytotoxicity. Biochemistry 46, 9805–9812.PubMedCrossrefGoogle Scholar

  • Youle, R.J. and van der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062–1065.PubMedCrossrefGoogle Scholar

  • Youmans, K.L., Tai, L.M., Nwabuisi-Heath, E., Jungbauer, L., Kanekiyo, T., Gan, M., Kim, J., Eimer, W.A., Estus, S., Rebeck, G.W., et al. (2012). APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J. Biol. Chem. 287, 41774–41786.CrossrefGoogle Scholar

About the article

Received: 2017-08-08

Accepted: 2017-12-17

Published Online: 2018-02-15

Published in Print: 2018-08-28


Conflict of interest statement: The authors declare that they have no conflict of interests.


Citation Information: Reviews in the Neurosciences, Volume 29, Issue 6, Pages 613–627, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0063.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Maryam Doshmanziari, Arash Sarveazad, Fatemeh Moradi, Marjan Shariatpanahi, Esfandiar Doshmanziari, Sara Simorgh, and Mina Eftekharzadeh
Thrita, 2019, Volume In Press, Number In Press
[2]
Abdalla M. Albeely, Scott D. Ryan, and Melissa L. Perreault
Brain Plasticity, 2018, Page 1
[3]
Jamileth More, Nadia Galusso, Pablo Veloso, Luis Montecinos, José Pablo Finkelstein, Gina Sanchez, Ricardo Bull, José Luis Valdés, Cecilia Hidalgo, and Andrea Paula-Lima
Frontiers in Aging Neuroscience, 2018, Volume 10
[4]
Asma Derf, Ramesh Mudududdla, Sandip B. Bharate, and Bhabatosh Chaudhuri
European Journal of Pharmaceutical Sciences, 2018
[5]
Liying Lv, Jinping Liu, Zunshu Du, Yizhi Song, Hui Li, Xue Li, Lirong Chang, and Yan Wu
NeuroReport, 2019, Volume 30, Number 1, Page 1
[7]
Edwin E. Reza-Zaldivar, Mercedes A. Hernández-Sapiéns, Benito Minjarez, Yanet K. Gutiérrez-Mercado, Ana L. Márquez-Aguirre, and Alejandro A. Canales-Aguirre
Frontiers in Cellular Neuroscience, 2018, Volume 12
[8]
Huahua Song, Xinyi Ma, Jianrong Xu, Qingxiang Song, Meng Hu, Xiao Gu, Qian Zhang, Lina Hou, Lepei Chen, Yukun Huang, Ping Yu, Dayuan Wang, Gan Jiang, Meng Huang, Jun Chen, Hongzhuan Chen, and Xiaoling Gao
Nano Research, 2018

Comments (0)

Please log in or register to comment.
Log in