Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 29, Issue 8

Issues

CD200-, CX3CL1-, and TREM2-mediated neuron-microglia interactions and their involvements in Alzheimer’s disease

Lihang Zhang / Juan Xu / Jinchao Gao / Yuncheng Wu
  • Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ming Yin / Wenjuan Zhao
Published Online: 2018-05-05 | DOI: https://doi.org/10.1515/revneuro-2017-0084

Abstract

Neurons and microglia are two major components in the central nervous system (CNS). The interactions between them play important roles in maintaining homeostasis of the brain. In recent years, substantial studies have focused on the interactions between neurons and microglia, revealing that microglia become reactive when the interactions are pathophysiologically interfered, usually accompanying neuronal injury, which is a common feature for Alzheimer’s disease (AD). Many molecules and factors participate in these physiological and pathological processes, either in a contact-dependent or a contact-independent manner. Accumulating studies have revealed that in the CNS, cluster of differentiation-200 (CD200) and fractalkine (CX3CL1) expressed mainly on neurons and triggering receptor expressed on myeloid cells 2 (TREM2) expressed mainly on microglia. These molecules can mediate neuron-microglia interactions in a contact-dependent manner and contribute to the pathogenesis of AD. Here, we review the expression, distribution, and function of CD200, CX3CL1, and TREM2 in regulating neuron-microglia interactions under physiological conditions as well as in AD.

Keywords: Alzheimer’s disease; CD200; CX3CL1; neuron-microglia interactions; TREM2

References

  • Atagi, Y., Liu, C.-C., Painter, M.M., Chen, X.-F., Verbeeck, C., Zheng, H., Li, X., Rademakers, R., Kang, S.S., Xu, H., et al. (2015). Apolipoprotein E is a ligand for triggering receptor expressed on myeloid cells 2 (TREM2). J. Alzheimers. Dis. 290, 26043–26050.Google Scholar

  • Azizi, G., Khannazer, N., and Mirshafiey, A. (2014). The potential role of chemokines in Alzheimer’s disease pathogenesis. Am. J. Alzheimers. Dis. 29, 415–425.Google Scholar

  • Balschun, D., Randolf, A., Pitossi, F., Schneider, H., Rey, A., and Besedovsky, H.O. (2003). Hippocampal interleukin-1β gene expression during long-term potentiation decays with age. Ann. N.Y. Acad. Sci. 992, 1–8.Google Scholar

  • Barclay, A.N. (1981). Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44, 727–736.Google Scholar

  • Bazan, J.F., Bacon, K.B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D.R., Zlotnik, A., and Schall, T.J. (1997). A new class of membrane-bound chemokine with a CX(3)C motif. Nature 385, 640–644.Google Scholar

  • Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M., Beattie, M.S., and Malenka, R.C. (2002). Control of synaptic strength by glial TNFα. Science 295, 2282–2285.Google Scholar

  • Bemiller, S.M., McCray, T.J., Allan, K., Formica, S.V., Xu, G., Wilson, G., Kokiko-Cochran, O.N., Crish, S.D., Lasagna-Reeves, C.A., Ransohoff, R.M., et al. (2017). TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Mol. Neurodegener. 12, 74.Google Scholar

  • Boehme, S.A., Lio, F.M., Maciejewski-Lenoir, D., Bacon, K.B., and Conlon, P.J. (2000). The chemokine fractalkine inhibits Fas-mediated cell death of brain microglia. J. Immunol. 165, 397–403.Google Scholar

  • Bolós, M., Perea, J.R., and Avila, J. (2017). Alzheimer’s disease as an inflammatory disease. Biomol. Concepts 8, 37–43.Google Scholar

  • Bouchon, A., Hernandez-Munain, C., Cella, M., and Colonna, M. (2001). A DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122.Google Scholar

  • Butovsky, O., Jedrychowski, M.P., Moore, C.S., Cialic, R., Lanser, A.J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P.M., Doykan, C.E., et al. (2014). Identification of a unique TGF-β dependent molecular and functional signature in microglia. Nat. Neurosci. 17, 131–143.Google Scholar

  • Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., et al. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917–924.Google Scholar

  • Chen, P., Zhao, W., Guo, Y., Xu, J., and Yin, M. (2016). CX3CL1/CX3CR1 in Alzheimer’s disease: a target for neuroprotection. BioMed. Res. Int. 2016, 8090918.Google Scholar

  • Costello, D.A., Lyons, A., Denieffe, S., Browne, T.C., Cox, F.F., and Lynch, M.A. (2011). Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J. Biol. Chem. 286, 34722–34732.Google Scholar

  • Cox, F.F., Carney, D., Miller, A.-M., and Lynch, M.A. (2012). CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav. Immun. 26, 789–796.Google Scholar

  • Daws, M.R., Sullam, P.M., Niemi, E.C., Chen, T.T., Tchao, N.K., and Seaman, W.E. (2003). Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 171, 594–599.Google Scholar

  • Deisseroth, K. (2014). Circuit dynamics of adaptive and maladaptive behaviour. Nature 505, 309–317.Google Scholar

  • Delpech, J.C., Madore, C., Nadjar, A., Joffre, C., Wohleb, E.S., and Layé, S. (2015). Microglia in neuronal plasticity: influence of stress. Neuropharmacology 96, 19–28.Google Scholar

  • Desforges, N.M., Hebron, M.L., Algarzae, N.K., Lonskaya, I., and Moussa, C.E.H. (2012). Fractalkine mediates communication between pathogenic proteins and microglia: implications of anti-inflammatory treatments in different stages of neurodegenerative diseases. Int. J. Alzheimers. Dis. 2012, 345472.Google Scholar

  • Dissing-Olesen, L., LeDue, J.M., Rungta, R.L., Hefendehl, J.K., Choi, H.B., and MacVicar, B.A. (2014). Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J. Neurosci. 34, 10511–10527.Google Scholar

  • Duan, R.-S., Yang, X., Chen, Z.-G., Lu, M.-O., Morris, C., Winblad, B., and Zhu, J. (2008). Decreased fractalkine and increased IP-10 expression in aged brain of APP(swe) transgenic mice. Neurochem. Res. 33, 1085–1089.Google Scholar

  • Fontainhas, A.M., Wang, M., Liang, K.J., Chen, S., Mettu, P., Damani, M., Fariss, R.N., Li, W., and Wong, W.T. (2011). Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 6, e15973.Google Scholar

  • Frank, S., Burbach, G.J., Bonin, M., Walter, M., Streit, W., Bechmann, I., and Deller, T. (2008). TREM2 is upregulated in amyloid plaque-associated microglia in aged APP23 transgenic mice. Glia 56, 1438–1447.Google Scholar

  • Frautschy, S.A., Yang, F.S., Irrizarry, M., Hyman, B., Saido, T.C., Hsiao, K., and Cole, G.M. (1998). Microglial response to amyloid plaques in APPsw transgenic mice. Am. J. Pathol. 152, 307–317.Google Scholar

  • Fuhrmann, M., Bittner, T., Jung, C.K.E., Burgold, S., Page, R.M., Mitteregger, G., Haass, C., LaFerla, F.M., Kretzschmar, H., and Herms, J. (2010). Microglial Cx3cr1 knockout prevents neuron loss in a mouse model of Alzheimer’s disease. Nat. Neurosci. 13, 411–413.Google Scholar

  • Garton, K.J., Gough, P.J., Blobel, C.P., Murphy, G., Greaves, D.R., Dempsey, P.J., and Raines, E.W. (2001). Tumor necrosis factor-α-converting enzyme (ADAM17) mediates the cleavage and shedding of fractalkine (CX3CL1). J. Biol. Chem. 276, 37993–38001.Google Scholar

  • Gosselin, D., Link, V.M., Romanoski, C.E., Fonseca, G.J., Eichenfield, D.Z., Spann, N.J., Stender, J.D., Chun, H.B., Garner, H., Geissmann, F., et al. (2014). Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340.Google Scholar

  • Guerreiro, R., Wojtas, A., Bras, J., Carrasquillo, M., Rogaeva, E., Majounie, E., Cruchaga, C., Sassi, C., Kauwe, J.S.K., Lupton, M.K., et al. (2013). TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127.Google Scholar

  • Hanzel, C.E., Pichet-Binette, A., Pimentel, L.S.B., Iulita, M.F., Allard, S., Ducatenzeiler, A., Do Carmo, S., and Cuello, A.C. (2014). Neuronal driven pre-plaque inflammation in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging 35, 2249–2262.Google Scholar

  • Hariri, A.R. and Holmes, A. (2015). Finding translation in stress research. Nat. Neurosci. 18, 1347–1352.Google Scholar

  • Harrison, J.K., Jiang, Y., Chen, S.Z., Xia, Y.Y., Maciejewski, D., McNamara, R.K., Streit, W.J., Salafranca, M.N., Adhikari, S., Thompson, D.A., et al. (1998). Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA 95, 10896–10901.Google Scholar

  • Hatherley, D. and Barclay, A.N. (2004). The CD200 and CD200 receptor cell surface proteins interact through their N-terminal immunoglobulin-like domains. Eur. J. Immunol. 34, 1688–1694.Google Scholar

  • Heneka, M.T., Carson, M.J., El Khoury, J., Landreth, G.E., Brosseron, F., Feinstein, D.L., Jacobs, A.H., Wyss-Coray, T., Vitorica, J., Ransohoff, R.M., et al. (2015). Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 14, 388–405.Google Scholar

  • Hensley, K. (2010). Neuroinflammation in Alzheimer’s disease: mechanisms, pathologic consequences, and potential for therapeutic manipulation. J. Alzheimers. Dis. 21, 1–14.Google Scholar

  • Hernangomez, M., Carrillo-Salinas, F.J., Mecha, M., Correa, F., Mestre, L., Loria, F., Feliu, A., Docagne, F., and Guaza, C. (2014). Brain innate immunity in the regulation of neuroinflammation: therapeutic strategies by modulating CD200-CD200R interaction involve the cannabinoid system. Curr. Pharm. Des. 20, 4707–4722.Google Scholar

  • Hickman, S.E. and El Khoury, J. (2014). TREM2 and the neuroimmunology of Alzheimer’s disease. Biochem. Pharmacol. 88, 495–498.Google Scholar

  • Hsieh, C.L., Koike, M., Spusta, S.C., Niemi, E.C., Yenari, M., Nakamura, M.C., and Seaman, W.E. (2009). A role for TREM2 ligands in the phagocytosis of apoptotic neuronal cells by microglia. J. Neurochem. 109, 1144–1156.Google Scholar

  • Ito, H. and Hamerman, J.A. (2012). TREM-2, triggering receptor expressed on myeloid cell-2, negatively regulates TLR responses in dendritic cells. Eur. J. Immunol. 42, 176–185.Google Scholar

  • Jiang, T., Yu, J.-T., Zhu, X.-C., and Tan, L. (2013). TREM2 in Alzheimer’s disease. Mol. Neurobiol. 48, 180–185.Google Scholar

  • Jiang, T., Tan, L., Zhu, X.-C., Zhang, Q.-Q., Cao, L., Tan, M.-S., Gus, L.-Z., Wang, H.-F., Ding, Z.-Z., Zhang, Y.-D., et al. (2014). Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 39, 2949–2962.Google Scholar

  • Jonsson, T., Stefansson, H., Steinberg, S., Jonsdottir, I., Jonsson, P.V., Snaedal, J., Bjornsson, S., Huttenlocher, J., Levey, A.I., Lah, J.J., et al. (2013). Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med. 368, 107–116.Google Scholar

  • Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A., and Littman, D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106–4114.Google Scholar

  • Jurgens, H.A. and Johnson, R.W. (2012). Dysregulated neuronal-microglial cross-talk during aging, stress and inflammation. Exp. Neurol. 233, 40–48.Google Scholar

  • Kawabori, M., Kacimi, R., Kauppinen, T., Calosing, C., Kim, J.Y., Hsieh, C.L., Nakamura, M.C., and Yenari, M.A. (2015). Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J. Neurosci. 35, 3384–3396.Google Scholar

  • Keren-Shaul, H., Spinrad, A., Weiner, A., Matcovitch-Natan, O., Dvir-Szternfeld, R., Ulland, T.K., David, E., Baruch, K., Lara-Astaiso, D., Toth, B., et al. (2017). A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169, 1276–1290.Google Scholar

  • Kettenmann, H., Kirchhoff, F., and Verkhratsky, A. (2013). Microglia: new roles for the synaptic stripper. Neuron 77, 10–18.Google Scholar

  • Kierdorf, K. and Prinz, M. (2013). Factors regulating microglia activation. Front. Cell Neurosci. 7, 44.Google Scholar

  • Kim, T.-S., Lim, H.-K., Lee, J.Y., Kim, D.-J., Park, S., Lee, C., and Lee, C.-U. (2008). Changes in the levels of plasma soluble fractalkine in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci. Lett. 436, 196–200.Google Scholar

  • Kiyota, T., Okuyama, S., Swan, R.J., Jacobsen, M.T., Gendelman, H.E., and Ikezu, T. (2010). CNS expression of anti-inflammatory cytokine interleukin-4 attenuates Alzheimer’s disease-like pathogenesis in APP+PS1 bigenic mice. FASEB J. 24, 3093–3102.Google Scholar

  • Kober, D.L. and Brett, T.J. (2017). TREM2-ligand interactions in health and disease. J. Mol. Biol. 429, 1607–1629.Google Scholar

  • Koning, N., van Eijk, M., Pouwels, W., Brouwer, M.S.M., Voehringer, D., Huitinga, I., Hoek, R.M., Raes, G., and Hamann, J. (2010). Expression of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2, 195–200.Google Scholar

  • Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., Beckers, L., O’Loughlin, E., Xu, Y., Fanek, Z., et al. (2017). The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 47, 566–581.e569.Google Scholar

  • Landel, V., Baranger, K., Virard, I., Loriod, B., Khrestchatisky, M., Rivera, S., Benech, P., and Feron, F. (2014). Temporal gene profiling of the 5XFAD transgenic mouse model highlights the importance of microglial activation in Alzheimer’s disease. Mol. Neurodegener. 9, 33.Google Scholar

  • Lee, C.Y.D. and Landreth, G.E. (2010). The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. 117, 949–960.Google Scholar

  • Lee, S., Varvel, N.H., Konerth, M.E., Xu, G., Cardona, A.E., Ransohoff, R.M., and Lamb, B.T. (2010). CX3CR1 deficiency alters microglial activation and reduces β-amyloid deposition in two Alzheimer’s disease mouse models. Am. J. Pathol. 177, 2549–2562.Google Scholar

  • Lee, L.C., Goh, M.Q., and Koo, E.H. (2017). Transcriptional regulation of APP by apoE: to boldly go where no isoform has gone before. Bioessays 39, 1700062.Google Scholar

  • Lerner, T.N., Ye, L., and Deisseroth, K. (2016). Communication in neural circuits: tools, opportunities, and challenges. Cell 164, 1136–1150.Google Scholar

  • Li, X., Montine, K.S., Keene, C.D., and Montine, T.J. (2015). Different mechanisms of apolipoprotein E isoform-dependent modulation of prostaglandin E-2 production and triggering receptor expressed on myeloid cells 2 (TREM2) expression after innate immune activation of microglia. FASEB J. 29, 1754–1762.Google Scholar

  • Lian, H. and Zheng, H. (2016). Signaling pathways regulation neuron-glia interaction and their implication in Alzheimer’s disease. J. Neurochem. 136, 475–491.Google Scholar

  • Lim, S.H., Park, E., You, B., Jung, Y., Park, A.R., Park, S.G., and Lee, J.R. (2013). Neuronal synapse formation induced by microglia and interleukin 10. PLoS One 8, e81218.Google Scholar

  • Lyons, A., Downer, E.J., Crotty, S., Nolan, Y.M., Mills, K.H.G., and Lynch, M.A. (2007). CD200 ligand-receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci. 27, 8309–8313.Google Scholar

  • Lyons, A., McQuillan, K., Deighan, B.F., O’Reilly, J.-A., Downer, E.J., Murphy, A.C., Watson, M., Piazza, A., O’Connell, F., Griffin, R., et al. (2009). Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav. Immun. 23, 1020–1027.Google Scholar

  • Lyons, A., Downer, E.J., Costello, D.A., Murphy, N., and Lynch, M.A. (2012). Dok2 mediates the CD200Fc attenuation of A β-induced changes in glia. J. Neuroinflamm. 9, 107.Google Scholar

  • Lyons, A., Minogue, A.M., Jones, R.S., Fitzpatrick, O., Noonan, J., Campbell, V.A., and Lynch, M.A. (2016). Analysis of the impact of CD200 on phagocytosis. Mol. Neurobiol. 54, 5730–5739.Google Scholar

  • McMaster, W.R. and Williams, A.F. (1979). Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur. J. Immunol. 9, 426–433.Google Scholar

  • Melchior, B., Garcia, A.E., Hsiung, B.-K., Lo, K.M., Doose, J.M., Thrash, J.C., Stalder, A.K., Staufenbiel, M., Neumann, H., and Carson, M.J. (2010). Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease. Asn Neuro. 2, 157–170.Google Scholar

  • Mihrshahi, R., Barclay, A.N., and Brown, M.H. (2009). Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J. Immunol. 183, 4879–4886.Google Scholar

  • Mizuno, T., Kawanokuchi, J., Numata, K., and Suzumura, A. (2003). Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res 979, 65–70.Google Scholar

  • Moynagh, P.N. (2005). The interleukin-1 signalling pathway in astrocytes: a key contributor to inflammation in the brain. J. Anat. 207, 265–269.Google Scholar

  • Murphy, K.J. (2013). Neuron-glia crosstalk in health and disease: fractalkine and CX(3)CR1 take centre stage. Open Biol. 3, 130181.Google Scholar

  • N’Diaye, E.-N., Branda, C.S., Branda, S.S., Nevarez, L., Colonna, M., Lowell, C., Hamerman, J.A., and Seaman, W.E. (2009). TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J. Cell. Biol. 184, 215–223.Google Scholar

  • Neumann, H. and Daly, M.J. (2013). Variant TREM2 as risk factor for Alzheimer’s disease. N. Engl. J. Med. 368, 182–184.Google Scholar

  • Nimmervoll, B., White, R., Yang, J.W., An, S., Henn, C., Sun, J.J., and Luhmann, H.J. (2012). LPS-induced microglial secretion of TNFα increases activity-dependent neuronal apoptosis in the neonatal cerebral cortex. Cereb. Cortex 23, 1742–1755.Google Scholar

  • Noda, M., Doi, Y., Liang, J., Kawanokuchi, J., Sonobe, Y., Takeuchi, H., Mizuno, T., and Suzumura, A. (2011). Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J. Biol. Chem. 286, 2308–2319.Google Scholar

  • Painter, M.M., Atagi, Y., Liu, C.-C., Rademakers, R., Xu, H., Fryer, J.D., and Bu, G. (2015). TREM2 in CNS homeostasis and neurodegenerative disease. Mol. Neurodegener. 10, 43.Google Scholar

  • Paolicelli, R.C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T.A., Guiducci, E., Dumas, L., et al. (2011). Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458.Google Scholar

  • Perlmutter, L.S., Barron, E., and Chui, H.C. (1990). Morphologic association between microglia and senile plaque amyloid in Alzheimer’s disease. Neurosci. Lett. 119, 32–36.Google Scholar

  • Pocock, J.M. and Kettenmann, H. (2007). Neurotransmitter receptors on microglia. Trends Neurosci. 30, 527–535.Google Scholar

  • Podbielska, M., Das, A., Smith, A.W., Chauhan, A., Ray, S.K., Inoue, J., Azuma, M., Nozaki, K., Hogan, E.L., and Banik, N.L. (2016). Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation. J. Neurochem. 139, 440–455.Google Scholar

  • Poliani, P.L., Wang, Y., Fontana, E., Robinette, M.L., Yamanish, Y., Gilfillan, S., and Colonna, M. (2015). TREM2 sustains microglial expansion during aging and response to demyelination. J. Clin. Invest. 125, 2161–2170.Google Scholar

  • Ransohoff, R.M. (2016). How neuroinflammation contributes to neurodegeneration. Science 353, 777–783.Google Scholar

  • Rogers, J.T., Morganti, J.M., Bachstetter, A.D., Hudson, C.E., Peters, M.M., Grimmig, B.A., Weeber, E.J., Bickford, P.C., and Gemma, C. (2011). CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci. 31, 16241–16250.Google Scholar

  • Salminen, A., Ojala, J., Kauppinen, A., Kaarniranta, K., and Suuronen, T. (2009). Inflammation in Alzheimer’s disease: amyloid-β oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol. 87, 181–194.Google Scholar

  • Stancu, I.-C., Vasconcelos, B., Terwel, D., and Dewachter, I. (2014). Models of β-amyloid induced Tau-pathology: the long and ‘folded’ road to understand the mechanism. Mol. Neurodegen. 9, 51.Google Scholar

  • Strobel, S., Gruenblatt, E., Riederer, P., Heinsen, H., Arzberger, T., Al-Sarraj, S., Troakes, C., Ferrer, I., and Monoranu, C.M. (2015). Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer’s disease progression: CX3CL1, TREM2, and PPARγ. J. Neural Transm. 122, 1069–1076.Google Scholar

  • Takahashi, K., Rochford, C.D.P., and Neumann, H. (2005). Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657.Google Scholar

  • Tan, M.-S., Yu, J.-T., Jiang, T., Zhu, X.-C., Wang, H.-F., Zhang, W., Wang, Y.-L., Jiang, W., and Tan, L. (2013). NLRP3 polymorphisms are associated with late-onset Alzheimer’s disease in Han Chinese. J. Neuroimmunol. 265, 91–95.Google Scholar

  • Tang, Y. and Le, W. (2016). Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol. 53, 1181–1194.Google Scholar

  • Turnbull, I.R., Gilfillan, S., Cella, M., Aoshi, T., Miller, M., Piccio, L., Hernandez, M., and Colonna, M. (2006). Cutting edge: TREM-2 attenuates macrophage activation. J. Immunol. 177, 3520–3524.Google Scholar

  • Varnum, M.M. and Ikezu, T. (2012). The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch. Immunol. Ther. Ex. 60, 251–266.Google Scholar

  • Varnum, M.M., Kiyota, T., Ingraham, K.L., Ikezu, S., and Ikezu, T. (2015). The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol Aging 36, 2995–3007.Google Scholar

  • Walker, D.G. and Lue, L.-F. (2013). Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? Future Neurol. 8, 321–332.Google Scholar

  • Walker, D.G., Dalsing-Hernandez, J.E., Campbell, N.A., and Lue, L.-F. (2009). Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp. Neurol. 215, 5–19.Google Scholar

  • Walter, S., Letiembre, M., Liu, Y., Heine, H., Penke, B., Hao, W., Bode, B., Manietta, N., Walter, J., Schulz-Schaeffer, W., et al. (2007). Role of the toll-like receptor 4 in neuro-inflammation in Alzheimer’s disease. Cell. Physiol. Biochem. 20, 947–956.Google Scholar

  • Wang, Y., Cella, M., Mallinson, K., Ulrich, J.D., Young, K.L., Robinette, M.L., Gilfillan, S., Krishnan, G.M., Sudhakar, S., Zinselmeyer, B.H., et al. (2015). TREM2 lipid sensing sustains the microglial response in an Alzheimer’s disease model. Cell 160, 1061–1071.Google Scholar

  • Webb, M. and Barclay, A.N. (1984). Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J. Neurochem. 43, 1061–1067.Google Scholar

  • Wohleb, E.S. (2016). Neuron-microglia interactions in mental health disorders: ‘for better, and for worse’. Front Immunol. 7, 544.Google Scholar

  • Wolf, S.A., Boddeke, H.W.G.M., and Kettenmann, H. (2017). Microglia in physiology and disease. Annu. Rev. Physiol. 79, 619–643.Google Scholar

  • Xiang, X., Werner, G., Bohrmann, B., Liesz, A., Mazaheri, F., Capell, A., Feederle, R., Knuesel, I., Kleinberger, G., and Haass, C. (2016). TREM2 deficiency reduces the efficacy of immunotherapeutic amyloid clearance. EMBO Mol. Med. 8, 992–1004.Google Scholar

  • Yamamoto, M., Kiyota, T., Walsh, S.M., Liu, J., Kipnis, J., and Ikezu, T. (2008). Cytokine-mediated inhibition of fibrillar amyloid-beta peptide degradation by human mononuclear phagocytes. J. Immunol. 181, 3877–3886.Google Scholar

  • Yeo, S.I., Kim, J.E., Ryu, H.J., Seo, C.H., Lee, B.C., Choi, I.G., Kim, D.S., and Kang, T.C. (2011). The roles of fractalkine/CX3CR1 system in neuronal death following pilocarpine-induced status epilepticus. J. Neuroimmunol. 234, 93–102.Google Scholar

  • Zhao, W., Dumanis, S.B., Tamboli, I.Y., Rodriguez, G.A., Jo LaDu, M., Moussa, C.E., and William Rebeck, G. (2013). Human APOE genotype affects intraneuronal Aβ1-42 accumulation in a lentiviral gene transfer model. Human Mol Genet 23, 1365–1375.Google Scholar

  • Zheng, H., Liu, C.-C., Atagi, Y., Chen, X.-F., Jia, L., Yang, L., He, W., Zhang, X., Kang, S.S., Rosenberry, T.L., et al. (2016). Opposing roles of the triggering receptor expressed on myeloid cells 2 and triggering receptor expressed on myeloid cells-like transcript 2 in microglia activation. Neurobiol Aging 42, 132–141.Google Scholar

  • Zhong, L., Chen, X.-F., Zhang, Z.-L., Wang, Z., Shi, X.-Z., Xu, K., Zhang, Y.-W., Xu, H., and Bu, G. (2015). DAP12 stabilizes the C-terminal fragment of the triggering receptor expressed on myeloid cells-2 (TREM2) and protects against LPS-induced pro-inflammatory response. J. Biol. Chem. 290, 15866–15877.Google Scholar

  • Zujovic, V., Benavides, J., Vige, X., Carter, C., and Taupin, V. (2000). Fractalkine modulates TNF-α secretion and neurotoxicity induced by microglial activation. Glia 29, 305–315.Google Scholar

About the article

Received: 2017-10-02

Accepted: 2018-03-06

Published Online: 2018-05-05

Published in Print: 2018-11-27


Conflict of interest statement: The authors declare that they have no conflict of interest.


Citation Information: Reviews in the Neurosciences, Volume 29, Issue 8, Pages 837–848, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0084.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zsuzsanna Szepesi, Oscar Manouchehrian, Sara Bachiller, and Tomas Deierborg
Frontiers in Cellular Neuroscience, 2018, Volume 12

Comments (0)

Please log in or register to comment.
Log in