Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 29, Issue 8

Issues

Rab23 and developmental disorders

Catherine H.H. HorORCID iD: http://orcid.org/0000-0002-7467-2243 / Bor Luen TangORCID iD: http://orcid.org/0000-0002-1925-636X
  • Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
  • NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 117456, Singapore
  • orcid.org/0000-0002-1925-636X
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eyleen L.K. Goh
  • Corresponding author
  • Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
  • Department of Research, National Neuroscience Institute, Singapore 308433, Singapore
  • Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
  • KK Research Center, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-04 | DOI: https://doi.org/10.1515/revneuro-2017-0110

Abstract

Rab23 is a conserved member of the Rab family of small GTPases that regulates membrane trafficking in eukaryotes. It is unique amongst the Rabs in terms of its implicated role in mammalian development, as originally illustrated by the embryonic lethality and open neural tube phenotype of a spontaneous mouse mutant that carries homozygous mutation of open brain, a gene encoding Rab23. Rab23 was initially identified to act as an antagonist of Sonic hedgehog (Shh) signaling, and has since been implicated in a number of physiological and pathological roles, including oncogenesis. Interestingly, RAB23 null allele homozygosity in humans is not lethal, but instead causes the developmental disorder Carpenter’s syndrome (CS), which is characterized by craniofacial malformations, polysyndactyly, obesity and intellectual disability. CS bears some phenotypic resemblance to a spectrum of hereditary defects associated with the primary cilium, or the ciliopathies. Recent findings have in fact implicated Rab23 in protein traffic to the primary cilium, thus linking it with the primary cellular locale of Shh signaling. Rab23 also has Shh and cilia-independent functions. It is known to mediate the expression of Nodal at the mouse left lateral plate mesoderm and Kupffer’s vesicle, the zebrafish equivalent of the mouse node. It is thus important for the left-right patterning of vertebrate embryos. In this review, we discuss the developmental disorders associated with Rab23 and attempt to relate its cellular activities to its roles in development.

Keywords: Carpenter syndrome; ciliogenesis; primary cilia; Rab23; Sonic hedgehog

References

  • Alessandri, J.-L., Dagoneau, N., Laville, J.-M., Baruteau, J., Hébert, J.-C., and Cormier-Daire, V. (2010). RAB23 mutation in a large family from Comoros Islands with Carpenter syndrome. Am. J. Med. Genet. 152A, 982–986.Google Scholar

  • Baker, K. and Beales, P.L. (2009). Making sense of cilia in disease: the human ciliopathies. Am. J. Med. Genet. C Semin. Med. Genet. 151C, 281–295.Google Scholar

  • Bangs, F. and Anderson, K.V. (2017). Primary cilia and mammalian hedgehog signaling. Cold Spring Harb. Perspect. Biol. 9, a028175.Google Scholar

  • Barr, F. and Lambright, D.G. (2010). Rab GEFs and GAPs. Curr. Opin. Cell Biol. 22, 461–470.Google Scholar

  • Barral, D.C., Ramalho, J.S., Anders, R., Hume, A.N., Knapton, H.J., Tolmachova, T., Collinson, L.M., Goulding, D., Authi, K.S., and Seabra, M.C. (2002). Functional redundancy of Rab27 proteins and the pathogenesis of Griscelli syndrome. J. Clin. Invest. 110, 247–257.Google Scholar

  • Bem, D., Yoshimura, S.-I., Nunes-Bastos, R., Bond, F.C., Bond, F.F., Kurian, M.A., Rahman, F., Handley, M.T.W., Hadzhiev, Y., Masood, I., et al. (2011). Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am. J. Hum. Genet. 88, 499–507.Google Scholar

  • Ben-Salem, S., Begum, M.A., Ali, B.R., and Al-Gazali, L. (2013). A novel aberrant splice site mutation in RAB23 leads to an eight nucleotide deletion in the mRNA and is responsible for Carpenter syndrome in a consanguineous Emirati family. Mol. Syndromol. 3, 255–261.Google Scholar

  • Blümer, J., Rey, J., Dehmelt, L., Mazel, T., Wu, Y.-W., Bastiaens, P., Goody, R.S., and Itzen, A. (2013). RabGEFs are a major determinant for specific Rab membrane targeting. J. Cell. Biol. 200, 287–300.Google Scholar

  • Boehlke, C., Bashkurov, M., Buescher, A., and Krick, T. (2010). Differential role of Rab proteins in ciliary trafficking: Rab23 regulates smoothened levels. J. Cell. Sci. 123, 1460–1467.Google Scholar

  • Braun, D.A. and Hildebrandt, F. (2017). Ciliopathies. Cold Spring Harb. Perspect. Biol. 9, a028191.Google Scholar

  • Bröcker, C., Engelbrecht-Vandré, S., and Ungermann, C. (2010). Multisubunit tethering complexes and their role in membrane fusion. Curr. Biol. 20, R943–952.Google Scholar

  • Carpenter, B.S., Barry, R.L., Verhey, K.J., and Allen, B.L. (2015). The heterotrimeric kinesin-2 complex interacts with and regulates GLI protein function. J. Cell. Sci. 128, 1034–1050.Google Scholar

  • Caspary, T., Larkins, C.E., and Anderson, K.V. (2007). The graded response to Sonic hedgehog depends on cilia architecture. Dev. Cell. 12, 767–778.Google Scholar

  • Caswell, P.T., Chan, M., Lindsay, A.J., McCaffrey, M.W., Boettiger, D., and Norman, J.C. (2008). Rab-coupling protein coordinates recycling of a5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell. Biol. 183, 143–155.Google Scholar

  • Caswell, P.T., Spence, H.J., Parsons, M., White, D.P., Clark, K., Cheng, K.W., Mills, G.B., Humphries, M.J., Messent, A.J., Anderson, K.I., et al. (2007). Rab25 associates with an a5β1 integrin to promote invasive migration in 3D microenvironments. Dev. Cell. 13, 496–510.Google Scholar

  • Chang, J., Xu, W., Liu, G., Du, X., and Li, X. (2017). Downregulation of Rab23 in prostate cancer inhibits tumor growth in vitro and in vivo. Oncol. Res. 25, 241–248.Google Scholar

  • Chen, Y., Ng, F., and Tang, B.L. (2016). Rab23 activities and human cancer – emerging connections and mechanisms. Tumour Biol. 37, 12959–12967.Google Scholar

  • Cherfils, J. and Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309.Google Scholar

  • Chi, S., Xie, G., Liu, H., Chen, K., Zhang, X., Li, C., and Xie, J. (2012). Rab23 negatively regulates Gli1 transcriptional factor in a Su(Fu)-dependent manner. Cell. Signal. 24, 1222–1228.Google Scholar

  • Chia, W.J. and Tang, B.L. (2009). Emerging roles for Rab family GTPases in human cancer. Biochim. Biophys. Acta 1795, 110–116.Google Scholar

  • Chua, C.E.L. and Tang, B.L. (2015). Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell. Mol. Life Sci. 72, 2289–2304.Google Scholar

  • Cooper, A.F., Yu, K.P., Brueckner, M., Brailey, L.L., Johnson, L., McGrath, J.M., and Bale, A.E. (2005). Cardiac and CNS defects in a mouse with targeted disruption of suppressor of fused. Development 132, 4407–4417.Google Scholar

  • D’Adamo, P., Masetti, M., Bianchi, V., More, L., Mignogna, M.L., Giannandrea, M., and Gatti, S. (2014). RAB GTPases and RAB-interacting proteins and their role in the control of cognitive functions. Neurosci. Biobehav. Rev. 46, 302–314.Google Scholar

  • Davis, E.E. and Katsanis, N. (2012). The ciliopathies: a transitional model into systems biology of human genetic disease. Curr. Opin. Genet. Dev. 22, 290–303.Google Scholar

  • Dozynkiewicz, M.A., Jamieson, N.B., Macpherson, I., Grindlay, J., van den Berghe, P.V.E., von Thun, A., Morton, J.P., Gourley, C., Timpson, P., Nixon, C., et al. (2012). Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131–145.Google Scholar

  • Eggenschwiler, J.T., Espinoza, E., and Anderson, K.V. (2001). Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198.Google Scholar

  • Eggenschwiler, J.T., Bulgakov, O.V., Qin, J., Li, T., and Anderson, K.V. (2006). Mouse Rab23 regulates Hedgehog signaling from Smoothened to Gli proteins. Dev Biol. 290, 1–12.Google Scholar

  • El-Chemaly, S. and Young, L.R. (2016). Hermansky-Pudlak Syndrome. Clin. Chest Med. 37, 505–511.Google Scholar

  • Evans, T.M., Ferguson, C., Wainwright, B.J., Parton, R.G., and Wicking, C. (2003). Rab23, a negative regulator of hedgehog signaling, localizes to the plasma membrane and the endocytic pathway. Traffic 4, 869–884.Google Scholar

  • Fuller, K., O’Connell, J.T., Gordon, J., Mauti, O., and Eggenschwiler, J. (2014). Rab23 regulates Nodal signaling in vertebrate left-right patterning independently of the Hedgehog pathway. Dev. Biol. 391, 182–195.Google Scholar

  • Gerondopoulos, A., Langemeyer, L., Liang, J.-R., Linford, A., and Barr, F.A. (2012). BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22, 2135–2139.Google Scholar

  • Giannandrea, M., Bianchi, V., Mignogna, M.L., Sirri, A., Carrabino, S., D’Elia, E., Vecellio, M., Russo, S., Cogliati, F., Larizza, L., et al. (2010). Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am. J. Hum. Genet. 86, 185–195.Google Scholar

  • Gomes, A.Q., Ali, B.R., Ramalho, J.S., Godfrey, R.F., Barral, D.C., Hume, A.N., and Seabra, M.C. (2003). Membrane targeting of Rab GTPases is influenced by the prenylation motif. Mol. Biol. Cell. 14, 1882–1899.Google Scholar

  • Guo, A., Wang, T., Ng, E.L., Aulia, S., Chong, K.H., Teng, F.Y.H., Wang, Y., and Tang, B.L. (2006). Open brain gene product Rab23: expression pattern in the adult mouse brain and functional characterization. J. Neurosci. Res. 83, 1118–1127.Google Scholar

  • Gutkowska, M. and Swiezewska, E. (2012). Structure, regulation and cellular functions of Rab geranylgeranyl transferase and its cellular partner Rab Escort Protein. Mol. Membr. Biol. 29, 243–256.Google Scholar

  • Haye, D., Collet, C., Sembely-Taveau, C., Haddad, G., Denis, C., Soulé, N., Suc, A.-L., Listrat, A. and Toutain, A. (2014). Prenatal findings in Carpenter syndrome and a novel mutation in RAB23. Am. J. Med. Genet. 164A, 2926–2930.Google Scholar

  • Hidestrand, P., Vasconez, H., and Cottrill, C. (2009). Carpenter syndrome. J. Craniofac. Surg. 20, 254–256.Google Scholar

  • Hildebrandt, F., Benzing, T., and Katsanis, N. (2011). Ciliopathies. N. Engl. J. Med. 364, 1533–1543.Google Scholar

  • Hirokawa, N., Noda, Y., Tanaka, Y., and Niwa, S. (2009). Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682–696.Google Scholar

  • Horgan, C.P. and McCaffrey, M.W. (2011). Rab GTPases and microtubule motors. Biochem. Soc. Trans. 39, 1202–1206.Google Scholar

  • Hou, Q., Wu, Y.H., Grabsch, H., Zhu, Y., Leong, S.H., Ganesan, K., Cross, D., Tan, L.K., Tao, J., Gopalakrishnan, V., et al. (2008). Integrative genomics identifies RAB23 as an invasion mediator gene in diffuse-type gastric cancer. Cancer Res. 68, 4623–4630.Google Scholar

  • Huang, T.-H., Shui, H.-A., Ka, S.-M., Tang, B.L., Chao, T.-K., Chen, J.-S., Lin, Y.-F., and Chen, A. (2009). Rab 23 is expressed in the glomerulus and plays a role in the development of focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 24, 743–754.Google Scholar

  • Huang, T.-H., Ka, S.-M., Hsu, Y.-J., Shui, H.-A., Tang, B.L., Hu, K.-Y., Chang, J.-L., and Chen, A. (2011). Rab23 plays a role in the pathophysiology of mesangial cells – a proteomic analysis. Proteomics. 11, 380–394.Google Scholar

  • Huangfu, D. and Anderson, K.V. (2006). Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development 133, 3–14.Google Scholar

  • Huangfu, D., Liu, A., Rakeman, A.S., Murcia, N.S., Niswander, L., and Anderson, K.V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83–87.Google Scholar

  • Ishikawa, H. and Marshall, W.F. (2011). Ciliogenesis: building the cell’s antenna. Nat. Rev. Mol. Cell Biol. 12, 222–234.Google Scholar

  • Ishikawa, H. and Marshall, W.F. (2017). Intraflagellar transport and ciliary dynamics. Cold Spring Harb. Perspect. Biol. 9, a021998.Google Scholar

  • Ishikawa, H., Thompson, J., Yates, J.R., and Marshall, W.F. (2012). Proteomic analysis of mammalian primary cilia. Curr. Biol. 22, 414–419.Google Scholar

  • Jenkins, D., Seelow, D., Jehee, F.S., Perlyn, C.A., Alonso, L.G., Bueno, D.F., Donnai, D., Josifova, D., Josifiova, D., Mathijssen, I.M.J., et al. (2007). RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am. J. Hum. Genet. 80, 1162–1170.Google Scholar

  • Jenkins, D., Baynam, G., De Catte, L., Elcioglu, N., Gabbett, M.T., Hudgins, L., Hurst, J.A., Jehee, F.S., Oley, C., and Wilkie, A.O.M. (2011). Carpenter syndrome: extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum. Mutat. 32, 2069–2078.Google Scholar

  • Jeong, J. and McMahon, A.P. (2005). Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1. Development. 132, 143–154.Google Scholar

  • Jiang, Y., Han, Y., Sun, C., Han, C., Han, N., Zhi, W., and Qiao, Q. (2016). Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion. Tumour Biol. 37, 8131–8138.Google Scholar

  • Johnston, J.J., Olivos-Glander, I., Killoran, C., Elson, E., Turner, J.T., Peters, K.F., Abbott, M.H., Aughton, D.J., Aylsworth, A.S., Bamshad, M.J., et al. (2005). Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am. J. Hum. Genet. 76, 609–622.Google Scholar

  • Kasarskis, A., Manova, K., and Anderson, K.V. (1998). A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl. Acad. Sci. USA 95, 7485–7490.Google Scholar

  • Kolpakova-Hart, E., Jinnin, M., Hou, B., Fukai, N., and Olsen, B.R. (2007). Kinesin-2 controls development and patterning of the vertebrate skeleton by Hedgehog- and Gli3-dependent mechanisms. Dev. Biol. 309, 273–284.Google Scholar

  • Kovacs, J.J., Whalen, E.J., Liu, R., Xiao, K., Kim, J., Chen, M., Wang, J., Chen, W., and Lefkowitz, R.J. (2008). Beta-arrestin-mediated localization of smoothened to the primary cilium. Science 320, 1777–1781.Google Scholar

  • Krzewski, K. and Cullinane, A.R. (2013). Evidence for defective Rab GTPase-dependent cargo traffic in immune disorders. Exp. Cell Res. 319, 2360–2367.Google Scholar

  • Leaf, A. and Von Zastrow, M. (2015). Dopamine receptors reveal an essential role of IFT-B, KIF17, and Rab23 in delivering specific receptors to primary cilia. eLife 4, e06996.Google Scholar

  • Li, N., Volff, J.-N., and Wizenmann, A. (2007). Rab23 GTPase is expressed asymmetrically in Hensen’s node and plays a role in the dorsoventral patterning of the chick neural tube. Dev. Dyn. 236, 2993–3006.Google Scholar

  • Liegel, R.P., Handley, M.T., Ronchetti, A., Brown, S., Langemeyer, L., Linford, A., Chang, B., Morris-Rosendahl, D.J., Carpanini, S., Posmyk, R., et al. (2013). Loss-of-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg micro syndrome in humans. Am. J. Hum. Genet. 93, 1001–1014.Google Scholar

  • Liem, K.F., Ashe, A., He, M., Satir, P., Moran, J., and Beier, D. (2012). The IFT-A complex regulates Shh signaling through cilia structure and membrane protein trafficking. J. Cell. Biol. 197, 789–800.Google Scholar

  • Lim, Y.S. and Tang, B.L. (2015). A role for Rab23 in the trafficking of Kif17 to the primary cilium. J. Cell Sci. 128, 2996–3008.Google Scholar

  • Lim, Y.S., Chua, C.E.L., and Tang, B.L. (2011). Rabs and other small GTPases in ciliary transport. Biol. Cell. 103, 209–221.Google Scholar

  • Litingtung, Y., Dahn, R.D., Li, Y., Fallon, J.F., and Chiang, C. (2002). Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 418, 979–983.Google Scholar

  • Liu, Y., Zeng, C., Bao, N., Zhao, J., Hu, Y., Li, C., and Chi, S. (2015). Effect of Rab23 on the proliferation and apoptosis in breast cancer. Oncol. Rep. 34, 1835–1844.Google Scholar

  • Lumb, J.H. and Field, M.C. (2011). Rab23 is a flagellar protein in Trypanosoma brucei. BMC Res. Notes 4, 190.Google Scholar

  • Mellman, I. and Yarden, Y. (2013). Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5, a016949.Google Scholar

  • Meng, X., Poon, R., Zhang, X., Cheah, A., Ding, Q., Hui, C.C., and Alman, B. (2001). Suppressor of fused negatively regulates β-catenin signaling. J. Biol. Chem. 276, 40113–40119.Google Scholar

  • Miao, Y., Jian, Q., Zhang, M., and Li, C. (2015). Rab23 enhances invasion of Sa3 cutaneous squamous cell carcinoma cells via up-regulating the expression of Rac1. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 31, 1611–1614.Google Scholar

  • Min, T.H., Kriebel, M., Hou, S., and Pera, E.M. (2011). The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo. Dev. Biol. 358, 262–276.Google Scholar

  • Mitra, S., Cheng, K.W., and Mills, G.B. (2011). Rab GTPases implicated in inherited and acquired disorders. Semin. Cell Dev. Biol. 22, 57–68.Google Scholar

  • Murdoch, J.N. and Copp, A.J. (2010). The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. Birth Defects Res. A Clin. Mol. Teratol. 88, 633–652.Google Scholar

  • Novarino, G., Akizu, N., and Gleeson, J.G. (2011). Modeling human disease in humans: the ciliopathies. Cell 147, 70–79.Google Scholar

  • Olkkonen, V.M., Peterson, J.R., Dupree, P., Lütcke, A., Zerial, M., and Simons, K. (1994). Isolation of a mouse cDNA encoding Rab23, a small novel GTPase expressed predominantly in the brain. Gene 138, 207–211.Google Scholar

  • Pataki, C., Matusek, T., Kurucz, E., Andó, I., Jenny, A., and Mihály, J. (2010). Drosophila Rab23 is involved in the regulation of the number and planar polarization of the adult cuticular hairs. Genetics 184, 1051–1065.Google Scholar

  • Pfeffer, S.R. (2013). Rab GTPase regulation of membrane identity. Curr. Opin. Cell Biol. 25, 414–419.Google Scholar

  • Pfeffer, S. and Aivazian, D. (2004). Targeting Rab GTPases to distinct membrane compartments. Nat. Rev. Mol. Cell Biol. 5, 886–896.Google Scholar

  • Pylypenko, O., Hammich, H., Yu, I.-M., and Houdusse, A. (2017). Rab GTPases and their interacting protein partners: structural insights into Rab functional diversity. Small GTPases 9, 22–48.Google Scholar

  • Reiter, J.F. and Leroux, M.R. (2017). Genes and molecular pathways underpinning ciliopathies. Nat. Rev. Mol. Cell Biol. 18, 533.Google Scholar

  • Rojas, A.M., Fuentes, G., Rausell, A., and Valencia, A. (2012). The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell. Biol. 196, 189–201.Google Scholar

  • Scholey, J.M. and Anderson, K.V. (2006). Intraflagellar transport and cilium-based signaling. Cell 125, 439–442.Google Scholar

  • Schou, K.B., Pedersen, L.B., and Christensen, S.T. (2015). Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16, 1099–1113.Google Scholar

  • Svard, J., Heby-Henricson, K., Persson-Lek, M., Rozell, B., Lauth, M., Bergstrom, A., Ericson, J., Toftgard, R., and Teglund, S. (2006). Genetic elimination of Suppressor of fused reveals an essential repressor function in the mammalian Hedgehog signaling pathway. Dev. Cell. 10, 187–197.Google Scholar

  • Tabin, C.J. (2006). The key to left-right asymmetry. Cell 127, 27–32.Google Scholar

  • Taylor, M.D., Zhang, X., Liu, L., Hui, C.-C., Mainprize, T.G., Scherer, S.W., Wainwright, B., Hogg, D., and Rutka, J.T. (2004). Failure of a medulloblastoma-derived mutant of SUFU to suppress WNT signaling. Oncogene 23, 4577–4583.Google Scholar

  • Tzeng, H.-T. and Wang, Y.-C. (2016). Rab-mediated vesicle trafficking in cancer. J. Biomed. Sci. 23, 70.Google Scholar

  • Verhoeven, K., De Jonghe, P., Coen, K., Verpoorten, N., Auer-Grumbach, M., Kwon, J.M., FitzPatrick, D., Schmedding, E., De Vriendt, E., Jacobs, A., et al. (2003). Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. Am. J. Hum. Genet. 72, 722–727.Google Scholar

  • Victorine, A.S., Weida, J., Hines, K.A., Robinson, B., Torres-Martinez, W., and Weaver, D.D. (2014). Prenatal diagnosis of Carpenter syndrome: looking beyond craniosynostosis and polysyndactyly. Am. J. Med. Genet. 164A, 820–823.Google Scholar

  • Wang, Y., Ng, E.L., and Tang, B.L. (2006). Rab23: what exactly does it traffic? Traffic 7, 746–750.Google Scholar

  • Wang, M., Dong, Q., and Wang, Y. (2016). Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1. Tumour Biol. 37, 11049–11055.Google Scholar

  • Waters, A.M. and Beales, P.L. (2011). Ciliopathies: an expanding disease spectrum. Pediatr. Nephrol. 26, 1039–1056.Google Scholar

  • Wheeler, D.B., Zoncu, R., Root, D.E., Sabatini, D.M., and Sawyers, C.L. (2015). Identification of an oncogenic RAB protein. Science 350, 211–217.Google Scholar

  • Xavier, G.M., Seppala, M., Barrell, W., and Birjandi, A.A. (2016). Hedgehog receptor function during craniofacial development. Dev. Biol. 415, 198–215.Google Scholar

  • Yoshimura, S.I., Egerer, J., Fuchs, E., Haas, A.K., and Barr, F.A. (2007). Functional dissection of Rab GTPases involved in primary cilium formation. J. Cell. Biol. 178, 363–369.Google Scholar

  • Zhang, X.-Y., Mu, J.-H., Liu, L.-Y., and Zhang, H.-Z. (2017). Upregulation of miR-802 suppresses gastric cancer oncogenicity via targeting RAB23 expression. Eur. Rev. Med. Pharmacol. Sci. 21, 4071–4078.Google Scholar

  • Zheng, L.-Q., Chi, S.-M., and Li, C.-X. (2017). Rab23’s genetic structure, function and related diseases: a review. Biosci Rep. 37, BSR20160410.Google Scholar

About the article

Received: 2017-12-20

Accepted: 2018-03-03

Published Online: 2018-05-04

Published in Print: 2018-11-27


Citation Information: Reviews in the Neurosciences, Volume 29, Issue 8, Pages 849–860, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0110.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in