Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2018: 2.80

SCImago Journal Rank (SJR) 2018: 0.933
Source Normalized Impact per Paper (SNIP) 2018: 0.710

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 29, Issue 8

Issues

How different priming stimulations affect the corticospinal excitability induced by noninvasive brain stimulation techniques: a systematic review and meta-analysis

Maryam HassanzahraeeORCID iD: http://orcid.org/0000-0002-8629-4104
  • Corresponding author
  • Non-invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Peninsula Campus, P. O. Box 527, Victoria 3199, Australia
  • orcid.org/0000-0002-8629-4104
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maryam Zoghi
  • Department of Rehabilitation, Nutrition and Sport, School of Allied Health, Discipline of Physiotherapy, La Trobe University, Bundoora, Victoria 3086, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shapour Jaberzadeh
  • Non-invasive Brain Stimulation and Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Peninsula Campus, P. O. Box 527, Victoria 3199, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-31 | DOI: https://doi.org/10.1515/revneuro-2017-0111

Abstract

Noninvasive brain stimulation (NIBS) techniques could induce changes in corticospinal excitability (CSE) and neuroplasticity. These changes could be affected by different factors, including having a session of stimulation called the ‘priming’ protocol before the main stimulation session called the ‘test’ protocol. Literature indicates that a priming protocol could affect the activity of postsynaptic neurons, form a neuronal history, and then modify the expected effects of the test protocol on CSE indicated by the amplitude of transcranial magnetic stimulation-induced motor-evoked potentials. This prior history affects a threshold to activate the necessary mechanism stabilizing the neuronal activity within a useful dynamic range. For studying the effects of this history and related metaplasticity mechanisms in the human primary motor cortex (M1), priming-test protocols are successfully employed. Thirty-two studies were included in this review to investigate how different priming protocols could affect the induced effects of a test protocol on CSE in healthy individuals. The results showed that if the history of synaptic activity were high or low enough to displace the threshold, the expected effects of the test protocol would be the reverse. This effect reversal is regulated by homeostatic mechanisms. On the contrary, the effects of the test protocol would not be the reverse, and at most we experience a prolongation of the lasting effects if the aforementioned history is not enough to displace the threshold. This effect prolongation is mediated by nonhomeostatic mechanisms. Therefore, based on the characteristics of priming-test protocols and the interval between them, the expected results of priming-test protocols would be different. Moreover, these findings could shed light on the different mechanisms of metaplasticity involved in NIBS. It helps us understand how we can improve the expected outcomes of these techniques in clinical approaches.

Keywords: motor-evoked potentials; plasticity; primary motor cortex; priming; tDCS; TMS

References

  • Abbot, L.F. and Nelson, S.B. (2000). Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178–1183.PubMedCrossrefGoogle Scholar

  • Abraham, W.C. and Bear, M.F. (1996). Metaplasticity: the plasticity of synaptic plasticity. Trends Neurosci. 19, 126–130.PubMedCrossrefGoogle Scholar

  • Bastani, A. and Jaberzadeh, S. (2014). Within-session repeated a-tDCS: the effects of repetition rate and inter-stimulus interval on corticospinal excitability and motor performance. Clin. Neurophysiol. 125, 1809–1818.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Bienenstock, E.L., Cooper, L.N., and Munro, P.W. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48.CrossrefPubMedGoogle Scholar

  • Cooper, L.N. and Bear, M.F. (2012). The BCM theory of synapse modification at 30: interaction of theory with experiment. Nat. Rev. Neurosci. 13, 798–810.CrossrefWeb of SciencePubMedGoogle Scholar

  • Cosentino, G., Fierro, B., Paladino, P., Talamanca, S., Vigneri, S., Palermo, A., Giglia, G., and Brighina, F. (2012). Transcranial direct current stimulation preconditioning modulates the effect of high-frequency repetitive transcranial magnetic stimulation in the human motor cortex. Eur. J. Neurosci. 35, 119–124.Web of ScienceCrossrefPubMedGoogle Scholar

  • Delvendahl, I., Jung, N.H., Mainberger, F., Kuhnke, N.G., Cronjaeger, M., and Mall, V. (2010). Occlusion of bidirectional plasticity by preceding low-frequency stimulation in the human motor cortex. Clin. Neurophysiol. 121, 594–602.Web of SciencePubMedCrossrefGoogle Scholar

  • Doeltgen, S.H. and Ridding, M.C. (2011). Modulation of cortical motor networks following primed theta burst transcranial magnetic stimulation. Exp. Brain Res. 215, 199–206.Web of ScienceCrossrefPubMedGoogle Scholar

  • Downs, S.H. and Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health 52, 377–384.CrossrefPubMedGoogle Scholar

  • Fricke, K., Seeber, A.A., Thirugnanasambandam, N., Paulus, W., Nitsche, M.A., and Rothwell, J.C. (2010). Time course of the induction of homeostatic plasticity generated by repeated transcranial direct current stimulation of the human motor cortex. J. Neurophysiol. 105, 1141–1149.PubMedWeb of ScienceGoogle Scholar

  • Gamboa, O.L., Antal, A., Moliadze, V., and Paulus, W. (2010). Simply longer is not better: reversal of theta burst after-effect with prolonged stimulation. Exp. Brain Res. 204, 181–187.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Gamboa, O.L., Antal, A., Laczo, B., Moliadze, V., Nitsche, M.A., and Paulus, W. (2011). Impact of repetitive theta burst stimulation on motor cortex excitability. Brain Stimul. 4, 145–151.CrossrefWeb of SciencePubMedGoogle Scholar

  • Gentner, R., Wankerl, K., Reinsberger, C., Zeller, D., and Classen, J. (2008). Depression of human corticospinal excitability induced by magnetic theta-burst stimulation: evidence of rapid polarity-reversing metaplasticity. Cereb. Cortex 18, 2046–2053.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Goldsworthy, M.R., Pitcher, J.B., and Ridding, M.C. (2012). The application of spaced theta burst protocols induces long-lasting neuroplastic changes in the human motor cortex. Eur. J. Neurosci. 35, 125–134.CrossrefWeb of SciencePubMedGoogle Scholar

  • Goldsworthy, M.R., Pitcher, J.B., and Ridding, M.C. (2013). Neuroplastic modulation of inhibitory motor cortical networks by spaced theta burst stimulation protocols. Brain Stimul. 6, 340–345.CrossrefWeb of SciencePubMedGoogle Scholar

  • Goldsworthy, M.R., Muller-Dahlhaus, F., Ridding, M.C., and Ziemann, U. (2014). Inter-subject variability of LTD-like plasticity in human motor cortex: a matter of preceding motor activation. Brain Stimul. 7, 864–870.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Goldsworthy, M.R., Pitcher, J.B., and Ridding, M.C. (2015). Spaced noninvasive brain stimulation: prospects for inducing long-lasting human cortical plasticity. Neurorehabil. Neural Repair 29, 714–721.Web of ScienceCrossrefPubMedGoogle Scholar

  • Hamada, M., Terao, Y., Hanajima, R., Shirota, Y., Nakatani-Enomoto, S., Furubayashi, T., Matsumoto, H., and Ugawa, Y. (2008). Bidirectional long-term motor cortical plasticity and metaplasticity induced by quadripulse transcranial magnetic stimulation. J. Physiol. 586, 3927–3947.PubMedWeb of ScienceCrossrefGoogle Scholar

  • Hordacre, B., Ridding, M.C., and Goldsworthy, M.R. (2015). Response variability to non-invasive brain stimulation protocols. Clin. Neurophysiol. 126, 2249–2250.Web of ScienceCrossrefPubMedGoogle Scholar

  • Huang, Y.Z., Edwards, M.J., Rounis, E., Bhatia, K.P., and Rothwell, J.C. (2005). Theta burst stimulation of the human motor cortex. Neuron 45, 201–206.CrossrefPubMedGoogle Scholar

  • Huang, Y.Z., Rothwell, J.C., Lu, C.S., Chuang, W.L., Lin, W.Y., and Chen, R.S. (2010). Reversal of plasticity-like effects in the human motor cortex. J. Physiol. 588, 3683–3693.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Iezzi, E., Suppa, A., Conte, A., Li Voti, P., Bologna, M., and Berardelli, A. (2011). Short-term and long-term plasticity interaction in human primary motor cortex. Eur. J. Neurosci. 33, 1908–1915.Web of ScienceCrossrefPubMedGoogle Scholar

  • Iyer, M., Schepler, N., and Wassermann, E. M. (2003). Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. J. Neurosci. 23, 10867–10872.PubMedCrossrefGoogle Scholar

  • Jaberzadeh, S., Bastani, A., and Kidgell, D. (2013). Does the longer application of anodal-transcranial direct current stimulation increase corticomotor excitability further? a pilot study. Basic Clin. Neurosci. 3, 28–35.Google Scholar

  • Joseph, A. Plot Digitizer 2.5.1 2011. Available at: http://plotdigitizer.sourceforge.net/.

  • Karabanov, A., Ziemann, U., Hamada, M., George, M.S., Quartarone, A., Classen, J., Massimin, M., Rothwell, J., and Siebner, H.R. (2015). Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation. Brain Stimul. 8, 442–454.PubMedCrossrefGoogle Scholar

  • Lang, N., Siebner, H.R., Ernst, D., Nitsche, M.A., Paulus, W., Lemon, R.N., and Rothwell, J.C. (2004). Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol. Psychiatry 56, 634–639.CrossrefPubMedGoogle Scholar

  • Mastroeni, C., Bergmann, T.O., Rizzo, V., Ritter, C., Klein, C., Pohlmann, I., Brueggemann, N., Quartarone, A., and Siebner, H. R. (2013). Brain-derived neurotrophic factor – a major player in stimulation-induced homeostatic metaplasticity of human motor cortex? PLoS One 8, e57957.Web of ScienceCrossrefGoogle Scholar

  • Moloney, T.M. and Witney, A.G. (2014). Pressure pain thresholds increase after preconditioning 1 Hz repetitive transcranial magnetic stimulation with transcranial direct current stimulation. PLoS One 9, e92540.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Monte-Silva, K., Kuo, M.F., Liebetanz, D., Paulus, W., and Nitsche, M.A. (2010). Shaping the optimal repetition interval for cathodal transcranial direct current stimulation (tDCS). J. Neurophysiol. 103, 1735–1740.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Monte-Silva, K., Kuo, M.F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., and Nitsche, M.A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimul. 6, 424–432.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Muller, J.F., Orekhov, Y., Liu, Y., and Ziemann, U. (2007). Homeostatic plasticity in human motor cortex demonstrated by two consecutive sessions of paired associative stimulation. Eur. J. Neurosci. 25, 3461–3468.Web of SciencePubMedCrossrefGoogle Scholar

  • Müller-Dahlhaus, F. and Ziemann, U. (2015). Metaplasticity in human cortex. Neuroscientist 21, 185–202.Web of SciencePubMedCrossrefGoogle Scholar

  • Muller-Dahlhaus, F., Lucke, C., Lu, M. K., Arai, N., Fuhl, A., Herrmann, E., and Ziemann, U. (2015). Augmenting LTP-like plasticity in human motor cortex by spaced paired associative stimulation. PLoS One 10, e0131020.Web of ScienceCrossrefPubMedGoogle Scholar

  • Murakami, T., Muller-Dahlhaus, F., Lu, M.K., and Ziemann, U. (2012). Homeostatic metaplasticity of corticospinal excitatory and intracortical inhibitory neural circuits in human motor cortex. J. Physiol. 590, 5765–5781.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Ni, Z., Gunraj, C., Kailey, P., Cash, R.F., and Chen, R. (2014). Heterosynaptic modulation of motor cortical plasticity in human. J. Neurosci. 34, 7314–7321.CrossrefPubMedWeb of ScienceGoogle Scholar

  • Nitsche, M.A., Roth, A., Kuo, M.F., Fischer, A.K., Liebetanz, D., Lang, N., Tergau, F., and Paulus, W. (2007). Timing-dependent modulation of associative plasticity by general network excitability in the human motor cortex. J. Neurosci. 27, 3807–3812.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Opie, G.M., Post, A.K., Ridding, M.C., Ziemann, U., and Semmler, J.G. (2017a). Modulating motor cortical neuroplasticity with priming paired associative stimulation in young and old adults. Clin. Neurophysiol. 128, 763–769.CrossrefWeb of ScienceGoogle Scholar

  • Opie, G.M., Vosnakis, E., Ridding, M.C., Ziemann, U., and Semmler, J.G. (2017b). Priming theta burst stimulation enhances motor cortex plasticity in young but not old adults. Brain Stimul. 10, 298–304.CrossrefWeb of ScienceGoogle Scholar

  • Player, M.J., Taylor, J.L., Alonzo, A., and Loo, C.K. (2012). Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation. Clin. Neurophysiol. 123, 2220–2226.Web of SciencePubMedCrossrefGoogle Scholar

  • Potter-Nerger, M., Fischer, S., Mastroeni, C., Groppa, S., Deuschl, G., Volkmann, J., Quartarone, A., Munchau, A., and Siebner, H.R. (2009). Inducing homeostatic-like plasticity in human motor cortex through converging corticocortical inputs. J. Neurophysiol. 102, 3180–3190.CrossrefWeb of SciencePubMedGoogle Scholar

  • Ridding, M.C. and Ziemann, U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588, 2291–2304.PubMedCrossrefWeb of ScienceGoogle Scholar

  • Siebner, H.R., Lang, N., Rizzo, V., Nitsche, M.A., Paulus, W., Lemon, R.N., and Rothwell, J.C. (2004). Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J. Neurosci. 24, 3379–3385.CrossrefPubMedGoogle Scholar

  • Stefan, K., Kunesch, E., Chen, L.G., Benecke, R., and Classen, J. (2000). Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123, 572–584.CrossrefPubMedGoogle Scholar

  • Todd, G., Flavel, S.C., and Ridding, M.C. (2009). Priming theta-burst repetitive transcranial magnetic stimulation with low- and high-frequency stimulation. Exp. Brain Res. 195, 307–315.CrossrefWeb of SciencePubMedGoogle Scholar

  • Ziemann, U. and Siebner, H.R. (2008). Modifying motor learning through gating and homeostatic metaplasticity. Brain Stimul. 1, 60–66.CrossrefPubMedWeb of ScienceGoogle Scholar

About the article

Received: 2017-12-23

Accepted: 2018-01-12

Published Online: 2018-03-31

Published in Print: 2018-11-27


Citation Information: Reviews in the Neurosciences, Volume 29, Issue 8, Pages 883–899, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0111.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in