Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 29, Issue 8


Roles of the exon junction complex components in the central nervous system: a mini review

Katarzyna Bartkowska
  • Department of Molecular and Cellular Biology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Beata Tepper
  • Department of Molecular and Cellular Biology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kris Turlejski
  • Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruzanna L. Djavadian
  • Corresponding author
  • Department of Molecular and Cellular Biology, Nencki Institute of Experimental Biology Polish Academy of Sciences, Warsaw 02-093, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-05-23 | DOI: https://doi.org/10.1515/revneuro-2017-0113


The exon junction complex (EJC) consists of four core proteins: Magoh, RNA-binding motif 8A (Rbm8a, also known as Y14), eukaryotic initiation factor 4A3 (eIF4A3, also known as DDX48), and metastatic lymph node 51 (MLN51, also known as Casc3 or Barentsz), which are involved in the regulation of many processes occurring between gene transcription and protein translation. Its main role is to assemble into spliceosomes at the exon-exon junction of mRNA during splicing. It is, therefore, a range of functions concerning post-splicing events such as mRNA translocation, translation, and nonsense-mediated mRNA decay (NMD). Apart from this, proteins of the EJC control the splicing of specific pre-mRNAs, for example, splicing of the mapk transcript. Recent studies support essential functions of EJC proteins in oocytes and, after fertilization, in all stages of zygote development, as well as the growth of the embryo, including the development of the nervous system. During the development of the central nervous system (CNS), the EJC controls mitosis, regulating both symmetric and asymmetric cell divisions. Reduced levels of EJC components cause microcephaly. In the adult brain, Y14 and eIF4A3 appear to be involved in synaptic plasticity and in learning and memory. In this review, we focus on the involvement of EJC components in brain development and its functioning under normal conditions.

Keywords: development; elF4A3; Magoh; MLN51; nervous system; Rbm8a


  • Alachkar, A., Jiang, D., Harrison, M., Zhou, Y., Chen, G., and Mao, Y. (2013). An EJC factor RBM8a regulates anxiety behaviors. Curr. Mol. Med. 13, 887–899.Google Scholar

  • Alexandrov, A., Colognori, D., Shu, M.D., and Steitz, J.A. (2012). Human spliceosomal protein CWC22 plays a role in coupling splicing to exon junction complex deposition and nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 109, 21313–21318.Google Scholar

  • Ashton-Beaucage, D., Udell, C.M., Lavoie, H., Baril, C., Lefrançois, M., Chagnon, P., Gendron, P., Caron-Lizotte, O., Bonneil, E., Thibault, P., et al. (2010). The exon junction complex controls the splicing of MAPK and other long intron-containing transcripts in Drosophila. Cell 143, 251–262.Google Scholar

  • Ballut, L., Marchadier, B., Baguet, A., Tomasetto, C., Séraphin, B., and Le Hir, H. (2005). The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12, 861–869.Google Scholar

  • Barbosa, I., Haque, N., Fiorini, F., Barrandon, C., Tomasetto, C., Blanchette, M., and Le Hir, H. (2012). Human CWC22 escorts the helicase eIF4AIII to spliceosomes and promotes exon junction complex assembly. Nat. Struct. Mol. Biol. 19, 983–990.Google Scholar

  • Barker-Haliski, M.L., Pastuzyn, E.D., and Keefe, K.A. (2012). Expression of the core exon-junction complex factor eukaryotic initiation factor 4A3 is increased during spatial exploration and striatally-mediated learning. Neuroscience 226, 51–61.Google Scholar

  • Bazzi, H. and Anderson, K.V. (2014). Acentriolar mitosis activates a p53-dependent apoptosis pathway in the mouse embryo. Proc. Natl. Acad. Sci. USA 111, E1491–500.Google Scholar

  • Berget, S.M., Moore, C., and Sharp, P.A. (1977). Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc. Natl. Acad. Sci. USA 74, 3171–3175.Google Scholar

  • Blanton, S., Srinivasan, A., and Rymond, B.C. (1992). PRP38 encodes a yeast protein required for pre-mRNA splicing and maintenance of stable U6 small nuclear RNA levels. Mol. Cell Biol. 12, 3939–3947.Google Scholar

  • Blencowe, B.J., Issner, R., Nickerson, J.A., and Sharp, P.A. (1998). A coactivator of pre-mRNA splicing. Genes Dev. 12, 996–1009.Google Scholar

  • Boehm, V. and Gehring, N.H. (2016). Exon junction complexes: supervising the gene expression assembly line. Trends Genet. 32, 724–735.Google Scholar

  • Brogna, S. and Wen, J. (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 16, 107–113.Google Scholar

  • Brunetti-Pierri, N., Berg, J.S., Scaglia, F., Belmont, J., Bacino, C.A., Sahoo, T., Lalani, S.R., Graham, B., Lee, B., Shinawi, M., et al. (2008). Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat. Genet. 40, 1466–1471.Google Scholar

  • Chan, C.C., Dostie, J., Diem, M.D., Feng, W., Mann, M., Rappsilber, J., and Dreyfuss, G. (2004). eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209.Google Scholar

  • Chazal, P.E., Daguenet, E., Wendling, C., Ulryck, N., Tomasetto, C., Sargueil, B., and Le Hir, H. (2013). EJC core component MLN51 interacts with eIF3 and activates translation. Proc. Natl. Acad. Sci. USA 110, 5903–5908.Google Scholar

  • Chow, L.T., Gelinas, R.E., Broker, T.R., and Roberts, R.J. (1977). An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12, 1–8.Google Scholar

  • Cougot, N., Daguenet, E., Baguet, A., Cavalier, A., Thomas, D., Bellaud, P., Fautrel, A., Godey, F., Bertrand, E., Tomasetto, C., et al. (2014). Overexpression of MLN51 triggers p-body disassembly and formation of a new type of RNA granules. J Cell Sci. 127, 4692–4701.Google Scholar

  • Daberkow, D.P., Riedy, M.D., Kesner, R.P., and Keefe, K.A. (2007). Arc mRNA induction in striatal efferent neurons associated with response learning. Eur. J. Neurosci. 26, 228–241.Google Scholar

  • Dostie, J. and Dreyfuss, G. (2002). Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067.Google Scholar

  • Dunphy, W.G., Brizuela, L., Beach, D., and Newport, J. (1988). The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431.Google Scholar

  • Farris, S., Lewandowski, G., Cox, C.D., and Steward, O. (2014). Selective localization of arc mRNA in dendrites involves activity- and translation-dependent mRNA degradation. J. Neurosci. 34, 4481–4493.Google Scholar

  • Fukumura, K., Wakabayashi, S., Kataoka, N., Sakamoto, H., Suzuki, Y., Nakai, K., Mayeda, A., and Inoue, K. (2016). The exon junction complex controls the efficient and faithful splicing of a subset of transcripts involved in mitotic cell-cycle progression. Int. J. Mol. Sci. 17, pii: E1153.Google Scholar

  • Gamba, B.F., Zechi-Ceide, R.M., Kokitsu-Nakata, N.M., Vendramini-Pittoli, S., Rosenberg, C., Krepischi Santos, A.C., Ribeiro-Bicudo, and L., and Richieri-Costa, A. (2016). Interstitial 1q21.1 microdeletion is associated with severe skeletal anomalies, dysmorphic face and moderate intellectual disability. Mol. Syndromol. 7, 344–348.Google Scholar

  • Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W., and Kulozik, A.E. (2003). Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949.Google Scholar

  • Gehring, N.H., Lamprinaki, S., Hentze, M.W., and Kulozik, A.E. (2009). The hierarchy of exon-junction complex assembly by the spliceosome explains key features of mammalian nonsense-mediated mRNA decay. PLoS Biol. 7, e1000120.Google Scholar

  • Giorgi, C., Yeo, G.W., Stone, M.E., Katz, D.B., Burge, C., Turrigiano, G., and Moore, M.J. (2007). The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell 130, 179–191.Google Scholar

  • Guzowski, J.F., McNaughton, B.L., Barnes, C.A., and Worley, P.F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 2, 1120–1124.Google Scholar

  • Inaki, M., Kato, D., Utsugi, T., Onoda, F., Hanaoka, F., and Murakami, Y. (2011). Genetic analyses using a mouse cell cycle mutant identifies magoh as a novel gene involved in Cdk regulation. Genes Cells 16, 166–178.Google Scholar

  • Ishigaki, Y., Nakamura, Y., Tatsuno, T., Hashimoto, M., Shimasaki, T., Iwabuchi, K., and Tomosugi, N. (2013). Depletion of RNA-binding protein RBM8A (Y14) causes cell cycle deficiency and apoptosis in human cells. Exp. Biol. Med. 238, 889–897.Google Scholar

  • Kataoka, N., Diem, M.D., Kim, V.N., Yong, J., and Dreyfuss, G. (2001). Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433.Google Scholar

  • Le Hir, H., Izaurralde, E., Maquat, L.E., and Moore M.J. (2000). The spliceosome deposits multiple proteins 20-24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869.Google Scholar

  • Li, C., Lin, R.I., Lai, M.C., Ouyang, P., and Tarn, W.Y. (2003). Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol. Cell Biol. 23, 7363–7376.Google Scholar

  • Lykke-Andersen, J., Shu, M.D., and Steitz, J.A. (2000). Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131.Google Scholar

  • MacDonald, M.R., Schaefer, G.B., Olney, A.H., and Patton, D.F. (1994). Hypoplasia of the cerebellar vermis and corpus callosum in thrombocytopenia with absent radius syndrome on MRI studies. Am. J. Med. Genet. 50, 46–50.Google Scholar

  • Mao, H., Pilaz, L.J., McMahon, J.J., Golzio, C., Wu, D., Shi, L., Katsanis, N., and Silver, D.L. (2015). Rbm8a haploinsufficiency disrupts embryonic cortical development resulting in microcephaly. J. Neurosci. 35, 7003–7018.Google Scholar

  • Mao, H., McMahon, J.J., Tsai, Y.H., Wang, Z., and Silver, D.L. (2016). Haploinsufficiency for core exon junction complex components disrupts embryonic neurogenesis and causes p53-mediated microcephaly. PLoS Genet. 12, e1006282.Google Scholar

  • Mao, H., Brown, H.E., and Silver D.L. (2017). Mouse models of Casc3 reveal developmental functions distinct from other components of the exon junction complex. RNA 23, 23–31.Google Scholar

  • McMahon, J.J., Shi, L., and Silver D.L. (2014). Generation of a Magoh conditional allele in mice. Genesis 52, 752–758.Google Scholar

  • McMahon, J.J., Miller, E.E., and Silver, D.L. (2016). The exon junction complex in neural development and neurodevelopmental disease. Int. J. Dev. Neurosci. 55, 117–123.Google Scholar

  • Mefford, H.C., Sharp, A.J., Baker, C., Itsara, A., Jiang, Z., Buysse, K., Huang, S., Maloney, V.K., Crolla, J.A., Baralle, D., et al. (2008). Recurrent rearrangements of chromosome 1q21.1 and variable pediatric phenotypes. N. Engl. J. Med. 359, 1685–1699.Google Scholar

  • Michelle, L., Cloutier, A., Toutant, J., Shkreta, L., Thibault, P., Durand, M., Garneau, D., Gendron, D., Lapointe, E., Couture, S., et al. (2012). Proteins associated with the exon junction complex also control the alternative splicing of apoptotic regulators. Mol. Cell Biol. 32, 954–967.Google Scholar

  • Nguyen, L.S., Kim, H.G., Rosenfeld, J.A., Shen, Y., Gusella, J.F., Lacassie, Y., Layman, L.C., Shaffer, L.G., and Gécz, J. (2013). Contribution of copy number variants involving nonsense-mediated mRNA decay pathway genes to neuro-developmental disorders. Hum. Mol. Genet. 22, 1816–1825.Google Scholar

  • Noctor, S.C., Martínez-Cerdeño, V., Ivic, L., and Kriegstein, A.R. (2004). Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144.Google Scholar

  • Nott, A., Le Hir, H., and Moore, M.J. (2004). Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222.Google Scholar

  • Palacios, I.M., Gatfield, D., St Johnston, D., and Izaurralde, E. (2004). An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757.Google Scholar

  • Pilaz, L.J., McMahon, J.J., Miller, E.E., Lennox, A.L., Suzuki, A., Salmon, E., and Silver, D.L. (2016). Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89, 83–99.Google Scholar

  • Pilz, D.T., Matsumoto, N., Minnerath, S., Mills, P., Gleeson, J.G., Allen, K.M., Walsh, C.A., Barkovich, A.J., Dobyns, W.B., Ledbetter, D.H., et al. (1998) LIS1 and XLIS (DCX) mutations cause most classical lissencephaly, but different patterns of malformation. Hum. Mol. Genet. 7, 2029–2037.Google Scholar

  • Reiner, O., Carrozzo, R., Shen, Y., Wehnert, M., Faustinella, F., Dobyns, W.B., Caskey, C.T., and Ledbetter, D.H. (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364, 717–721.Google Scholar

  • Rosenfeld, J.A., Traylor, R.N., Schaefer, G.B., McPherson, E.W., Ballif, B.C., Klopocki, E., Mundlos, S., Shaffer, L.G., Aylsworth, A.S., and 1q21.1 Study Group. (2012). Proximal microdeletions and microduplications of 1q21.1 contribute to variable abnormal phenotypes. Eur. J. Hum. Genet. 20, 754–761.Google Scholar

  • Shibuya, T., Tange, T. Ø., Sonenberg, N., and Moore, M.J. (2004). eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–3451.Google Scholar

  • Silver, D.L., Watkins-Chow, D.E., Schreck, K.C., Pierfelice, T.J., Larson, D.M., Burnetti, A.J., Liaw, H.J., Myung, K., Walsh, C.A., Gaiano, N., et al. (2010). The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat. Neurosci. 13, 551–558.Google Scholar

  • Skoufias, D.A., DeBonis, S., Saoudi, Y., Lebeau, L., Crevel, I., Cross, R., Wade, R.H., Hackney, D., and Kozielski, F. (2006). S-trityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression. J. Biol Chem. 281, 17559–17569.Google Scholar

  • Steckelberg, A.L., Boehm, V., Gromadzka, A.M., and Gehring, N.H. (2012). CWC22 connects pre-mRNA splicing and exon junction complex assembly. Cell Rep. 2, 454–461.Google Scholar

  • Steward, O., Wallace, C.S., Lyford, G.L., and Worley, P.F. (1998). Synaptic activation causes the mRNA for the IEG Arc to localize selectively near activated postsynaptic sites on dendrites. Neuron 21, 741–751.Google Scholar

  • Tange, T. Ø., Shibuya, T., Jurica, M.S., and Moore, M.J. (2005). Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA 11, 1869–1883.Google Scholar

  • Teng, I.F. and Wilson, S.A. (2013). Mapping interactions between mRNA export factors in living cells. PLoS One 8, e67676.Google Scholar

  • Uetake, Y. and Sluder, G. (2010). Prolonged prometaphase blocks daughter cell proliferation despite normal completion of mitosis. Curr. Biol. 20, 1666–1671.Google Scholar

  • Woodward, L.A., Mabin, J.W., Gangras, P., and Singh, G. (2017). The exon junction complex: a lifelong guardian of mRNA fate. Wiley Interdiscip Rev. RNA 8. doi: 10.1002/wrna.1411.Google Scholar

  • Zhao, X.F., Nowak, N.J., Shows, T.B., and Aplan, P.D. (2000). MAGOH interacts with a novel RNA-binding protein. Genomics 63, 145–148.Google Scholar

  • Zou, D., McSweeney, C., Sebastian, A., Reynolds, D.J., Dong, F., Zhou, Y., Deng, D., Wang, Y., Liu, L., Zhu, J., et al. (2015). A critical role of RBM8a in proliferation and differentiation of embryonicneural progenitors. Neural Dev. 10, 18.Google Scholar

About the article

Received: 2017-12-28

Accepted: 2018-03-22

Published Online: 2018-05-23

Published in Print: 2018-11-27

Citation Information: Reviews in the Neurosciences, Volume 29, Issue 8, Pages 817–824, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0113.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Calvin S. Leung and Tracy L. Johnson
Molecular Cell, 2018, Volume 72, Number 5, Page 799

Comments (0)

Please log in or register to comment.
Log in