Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 30, Issue 1


Zebrafish as a translational regeneration model to study the activation of neural stem cells and role of their environment

Marcello Ceci
  • Department of Ecological and Biological Sciences, University of Tuscia, largo dell’Università, I-01100 Viterbo, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vittoria Mariano
  • Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicla RomanoORCID iD: https://orcid.org/0000-0002-0155-8271
Published Online: 2018-08-01 | DOI: https://doi.org/10.1515/revneuro-2018-0020


The review is an overview of the current knowledge of neuronal regeneration properties in mammals and fish. The ability to regenerate the damaged parts of the nervous tissue has been demonstrated in all vertebrates. Notably, fish and amphibians have the highest capacity for neurogenesis, whereas reptiles and birds are able to only regenerate specific regions of the brain, while mammals have reduced capacity for neurogenesis. Zebrafish (Danio rerio) is a promising model of study because lesions in the brain or complete cross-section of the spinal cord are followed by an effective neuro-regeneration that successfully restores the motor function. In the brain and the spinal cord of zebrafish, stem cell activity is always able to re-activate the molecular programs required for central nervous system regeneration. In mammals, traumatic brain injuries are followed by reduced neurogenesis and poor axonal regeneration, often insufficient to functionally restore the nervous tissue, while spinal injuries are not repaired at all. The environment that surrounds the stem cell niche constituted by connective tissue and stimulating factors, including pro-inflammation molecules, seems to be a determinant in triggering stem cell proliferation and/or the trans-differentiation of connective elements (mainly fibroblasts). Investigating and comparing the neuronal regeneration in zebrafish and mammals may lead to a better understanding of the mechanisms behind neurogenesis, and the failure of the regenerative response in mammals, first of all, the role of inflammation, considered the main inhibitor of the neuronal regeneration.

Keywords: mammals; neurogenic niche; neuroinflammation; neuronal stem cells; reparative neurogenesis; zebrafish


  • Abdesselem, H., Shypitsyna, A., Solis, G.P., Bodrikov, V., and Stuermer, C.A. (2009). No Nogo66- and NgR-mediated inhibition of regenerating axons in the zebrafish optic nerve. J. Neurosci. 29, 15489–15498.PubMedCrossrefGoogle Scholar

  • Adolf, B., Chapouton, P., Lam, C.S., Topp, S., Tannhauser, B., Strahle, U., Götz, M., and Bally-Cuif, L. (2006). Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. Dev. Biol. 295, 278–293.CrossrefPubMedGoogle Scholar

  • Almeida, R.D., Manadas, B.J., Melo, C.V., Gomes, J.R., Mendes, C.S., Grãos, M.M., Carvalho, R.F., Carvalho, A.P., and Duarte, C.B. (2005). Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death Differ. 12, 1329–1343.PubMedCrossrefGoogle Scholar

  • Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J. Comp. Neurol. 137, 433–457.PubMedCrossrefGoogle Scholar

  • Altman, J. and Das, G.D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335.CrossrefPubMedGoogle Scholar

  • Alto, L.T., Havton, L.A., Conner, J.M., Hollis, E.R., Blesch, A., and Tuszynski, M.H. (2009). Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat. Neurosci. 12, 1106–1113.CrossrefPubMedGoogle Scholar

  • Alvarez-Buylla, A. and Lim, D.A. (2004). For the long run maintaining germinal niches in the adult brain. Neuron 41, 683–686.Google Scholar

  • Amankulor, N.M., Hambardzumyan, D., Pyonteck, S.M., Becher, O.J., Joyce, J.A., and Holland, E.C. (2009). Sonic hedgehog pathway activation is induced by acute brain injury and regulated by injury-related inflammation. J. Neurosci. 29, 10299–10308.CrossrefPubMedGoogle Scholar

  • Arocho, L.C., Figueroa, J.D., Torrado, A.I., Santiago, J.M., Vera, A.E., and Miranda, J.D. (2011). Expression profile and role of EphrinA1 ligand after spinal cord injury. Cell. Mol. Neurobiol. 31, 1057–1069.CrossrefPubMedGoogle Scholar

  • Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970.CrossrefPubMedGoogle Scholar

  • Asahi, M., Wang, X., Mori, T., Sumii, T., Jung, J.C., Moskowitz, M.A., Fini, M.E., and Lo, E.H. (2001). Effects of matrix metalloproteinase 9 gene knockout on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J. Neurosci. 21, 7724–7732.CrossrefPubMedGoogle Scholar

  • Bambakidis, N.C., Wang, R.Z., Franic, L., and Miller, R.H. (2003). Sonic hedgehog-induced neural precursor proliferation after adult rodent spinal cord injury. J. Neurosurg. 99(Suppl. 1), 70–75.PubMedGoogle Scholar

  • Bambakidis, N.C., Petrullis, M., Kui, X., Rothstein, B., Karampelas, I., Kuang, Y., Selman, W.R., La Manna, J.C., and Miller, R.H. (2012). Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of Sonic hedgehog. J. Neurosurg. 116, 1114–1120.PubMedGoogle Scholar

  • Bareyre, F.M., Kerschensteiner, M., Raineteau, O., Mettenleiter, T.C., Weinmann, O., and Schwab, M.E. (2004). The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat. Neurosci. 7, 269–277.CrossrefPubMedGoogle Scholar

  • Barkho, B.Z. and Zhao, X. (2011). Adult neural stem cell: response to stroke injury and potential for therapeutic applications. Curr. Stem. Cell. Res. Ther. 6, 327–338.PubMedCrossrefGoogle Scholar

  • Barnabé-Heider, F., Göritz, C., Sabelström, H., Takebayashi, H., Pfrieger, F.W., Meletis, K., and Frisén, J. (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell 7, 470–482.PubMedCrossrefGoogle Scholar

  • Barnea, A. and Pravosudov, V. (2011). Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur. J. Neurosci. 34, 884–907.CrossrefPubMedGoogle Scholar

  • Becker, T. and Becker, C.G. (2001). Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J. Comp. Neurol. 433, 131–147.CrossrefPubMedGoogle Scholar

  • Becker, C.G. and Becker, T. (2002). Repellent guidance of regenerating optic axons by chondroitin sulfate glycosaminoglycans in zebrafish. J. Neurosci. 22, 842–853.CrossrefPubMedGoogle Scholar

  • Becker, T., Wullimann, M.F., Becker, C.G., Bernhardt, R.R., and Schachner, M. (1997). Axonal regrowth after spinal cord transection in adult zebrafish. J. Comp. Neurol. 377, 577–595.CrossrefPubMedGoogle Scholar

  • Becker, T., Bernhardt, R.R., Reinhard, E., Wullimann, M.F., Tongiorgi, E., and Schachner, M. (1998). Readiness of zebrafish brain neurons to regenerate a spinal axon correlates with differential expression of specific cell recognition molecules. J. Neurosci. 18, 5789–5803.PubMedCrossrefGoogle Scholar

  • Becker, T., Anliker, B., Becker, C.G., Taylor, J., Schachner, M., Meyer, R., and Bartsch, U. (2000). Tenascin-R inhibits regrowth of optic fibers in vitro and persists in the optic nerve of mice after injury. Glia 29, 330–346.PubMedCrossrefGoogle Scholar

  • Becker, C.G., Lieberoth, B.C., Morellini, F., Feldner, J., Becker, T., and Schachner, M. (2004). L1.1 is involved in spinal cord regeneration in adult zebrafish. J. Neurosci. 24, 7837–7842.CrossrefPubMedGoogle Scholar

  • Bedard, A. and Parent, A. (2004). Evidence of newly generated neurons in the human olfactory bulb. Brain Res. Dev. Brain Res. 151, 159–168.PubMedCrossrefGoogle Scholar

  • Beites, C.L., Kawauchi, S., Crocker, C.E., and Calof, A.L. (2005). Identification and molecular regulation of neural stem cells in the olfactory epithelium. Ex. Cell Res. 306, 309–316.CrossrefGoogle Scholar

  • Ben-Hur, T., Ben-Menachem, O., Furer, V., Einstein, O., Mizrachi-Kol, R., and Grigoriadis, N. (2003). Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol. Cell. Neurosci. 24, 623–631.CrossrefPubMedGoogle Scholar

  • Bernier, P.J., Bedard, A., Vinet, J., Levesque, M., and Parent, A. (2002). Newly generated neurons in the amygdala and adjoining cortex of adult primates. Proc. Natl. Acad. Sci. USA 99, 11464–11469.CrossrefGoogle Scholar

  • Bhalala, O.G., Pan, L., Sahni, V., McGuire, T., Gruner, K., Tourtellotte, W.G., and Kessler, J.A. (2012). microRNA-21 regulates astrocytic response following spinal cord injury. J. Neurosci. 32, 17935–17947.CrossrefPubMedGoogle Scholar

  • Boldrini, M., Hen, R., Underwood, M.D., Rosoklija, G.B., Dwork, A.J., Mann, J.J., and Arango, V. (2012). Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol. Psychiatry 72, 562–571.CrossrefPubMedGoogle Scholar

  • Boldrini, M., Rosoklija, G.B., Fulmore, C.A., Stankov, A., Tartt, A.N., Arango, V., Simeon, L.R., Dwork, A.J., Pavlova, I., Poposka, V., et al. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22, 589–599.PubMedCrossrefGoogle Scholar

  • Bollaerts, I., Van Houcke, J., Andries, L., De Groef, L., and Moons, L. (2017). Neuroinflammation as fuel for axonal regeneration in the injured vertebrate central nervous system. Mediat Inflamm. 2017, 9478542.Google Scholar

  • Bonfanti, L. (2011). From hydra regeneration to human brain structural plasticity: a long trip through narrowing roads. ScientificWorldJ. 11, 1270–1299.CrossrefGoogle Scholar

  • Bonfanti, L. and Peretto, P. (2011). Adult neurogenesis in mammals – a theme with many variations. Eur. J. Neurosci. 34, 930–950.PubMedCrossrefGoogle Scholar

  • Bradbury, E.J., Moon, L.D., Popat, R.J., King, V.R., Bennett, G.S., Patel, P.N., Fawcett, J.W., and McMahon, S.B. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640.CrossrefPubMedGoogle Scholar

  • Buckwalter, M.S., Yamane, M., Coleman, B.S., Ormerod, B.K., Chin, J.T., Palmer, T., and Wyss-Coray, T. (2006). Chronically increased transforming growth factor-beta1 strongly inhibits hippocampal neurogenesis in aged mice. Am. J. Pathol. 169, 154–164.PubMedCrossrefGoogle Scholar

  • Burda, J.E. and Sofroniew, M.V. (2014). Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81, 229–248.PubMedCrossrefGoogle Scholar

  • Carter, L.A., MacDonald, J.L., and Roskams, A.J. (2004). Olfactory horizontal basal cells demonstrate a conserved multipotent progenitor phenotype. J. Neurosci. 24, 5670–5683.CrossrefPubMedGoogle Scholar

  • Chambers, C.B., Peng, Y., Nguyen, H., Gaiano, N., Fishell, G., and Nye, J.S. (2001). Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128, 689–702.PubMedGoogle Scholar

  • Chapouton, P., Skupien, P., Hesl, B., Coolen, M., Moore, J.C., Madelaine, R., Kremmer, E., Faus-Kessler, T., Blader, P., Lawson, N.D., et al. (2010). Notch activity levels control the balance between quiescence and recruitment of adult neural stem cells. J. Neurosci. 30, 7961–7974.CrossrefPubMedGoogle Scholar

  • Chen, X., Fang, H., and Schwob, J.E. (2004). Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J. Comp. Neurol. 469, 457–474.PubMedCrossrefGoogle Scholar

  • Chou, J., Harvey, B.K., Chang, C.F., Shen, H., Morales, M., and Wang, Y. (2006). Neuroregenerative effects of BMP7 after stroke in rats. J. Neurol. Sci. 240, 21–29.PubMedCrossrefGoogle Scholar

  • Clint, S.C. and Zupanc, G.K. (2001). Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Brain Res. Dev. Brain Res. 130, 15–23.PubMedCrossrefGoogle Scholar

  • Coumans, J.V., Lin, T.T., Dai, H.N., MacArthur, L., McAtee, M., Nash, C., and Bregman, B.S. (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J. Neurosci. 21, 9334–9344.CrossrefPubMedGoogle Scholar

  • Cullen, D.K., Wolf, J.A., Smith, D.H., and Pfister, B.J. (2011). Neural tissue engineering for neuroregeneration and biohybridized interface microsystems in vivo (Part 2). Crit. Rev. Biomed. Eng. 39, 241–259.PubMedCrossrefGoogle Scholar

  • Curtis, M.A., Low, V.F., and Faull, R.L. (2012). Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev. Neurobiol. 72, 990–1005.CrossrefGoogle Scholar

  • De Winter, F., Oudega, M., Lankhorst, A.J., Hamers, F.P., Blits, B., Ruitenberg, M.J., Pasterkamp, R.J., Gispen, W.H., and Verhaagen, J. (2002). Injury-induced class 3 semaphorin expression in the rat spinal cord. Exp. Neurol. 175, 61–75.PubMedCrossrefGoogle Scholar

  • Deierborg, T., Roybon, L., Inacio, A.R., Pesic, J., and Brundin, P. (2010). Brain injury activates microglia that induces stem cell proliferation ex vivo and promote differentiation of neurosphere-derived ells into neurons and oligodendrocytes. Neuroscience 171, 1386–1396.CrossrefGoogle Scholar

  • Deng, W., Aimone, J.B., and Gage, F.H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci. 11, 339–350.CrossrefGoogle Scholar

  • Dharap, A., Bowen, K., Place, R., Li, L.C., and Vemuganti, R. (2009). Transient focal ischemia induces extensive temporal changes in rat cerebral MicroRNAome. J. Cereb. Blood Flow Metab. 29, 675–687.PubMedCrossrefGoogle Scholar

  • Dias, T.B., Yang, Y., Ogai, K., Becker, T., and Becker, C.G. (2012). Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J. Neurosci. 32, 3245–3252.CrossrefPubMedGoogle Scholar

  • Diekmann, H., Anichtchik, O., Fleming, A., Futter, M., Goldsmith, P., Roach, A., and Rubinsztein, D.C. (2009). Decreased BDNF levels are a major contributor to the embryonic phenotype of huntingtin knockdown zebrafish. J. Neurosci. 29, 1343–1349.PubMedCrossrefGoogle Scholar

  • Doetsch, F., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061.PubMedCrossrefGoogle Scholar

  • Donovan, M.H., Yamaguchi, M., and Eisch, A.J. (2008). Dynamic expression of TrkB receptor protein on proliferating and maturing cells in the adult mouse dentate gyrus. Hippocampus 18, 435–439.CrossrefPubMedGoogle Scholar

  • Dou, C.L. and Levine, J.M. (1994). Inhibition of neurite growth by the NG2 chondroitin sulfate proteoglycan. J. Neurosci. 14, 7616–7628.PubMedCrossrefGoogle Scholar

  • Duan, X., Chang, J.H., Ge, S., Faulkner, R.L., Kim, J.Y., Kitabatake, Y., Liu, X.B., Yang, C.H., Jordan, J.D., Ma, D.K., et al. (2007). Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130, 1146–1158.PubMedCrossrefGoogle Scholar

  • Duan, H., Song, W., Zhao, W., Gao, Y., Yang, Z., and Li, X. (2016). Endogenous neurogenesis in adult mammals after spinal cord injury. Sci. China 59, 1313–1318.CrossrefGoogle Scholar

  • Ekstrom, P., Johnsson, C.M., and Ohlin, L.M. (2001). Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J. Comp. Neurol. 436, 92–110.PubMedCrossrefGoogle Scholar

  • Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tisdale, J., Possnert, G., Druid, H., and Frisén, J. (2014). Neurogenesis in the striatum of the adult human brain. Cell 156, 1072–1083.CrossrefPubMedGoogle Scholar

  • Fabes, J., Anderson, P., Yáñez-Muñoz, R.J., Thrasher, A., Brennan, C., and Bolsover, S. (2006). Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion. Eur. J. Neurosci. 23, 1721–1730.PubMedCrossrefGoogle Scholar

  • Fawcett, J.W. and Asher, R.A. (1999). The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391.CrossrefPubMedGoogle Scholar

  • Fernàdez-Hernàndez, I. and Rhiner, C. (2015). New neurons from injured brains? The emergence of new genetic model organism to study brain regeneration. Neurosci. Behav. Rev. 56, 62–72.CrossrefGoogle Scholar

  • Ferrer, I., Krupinski, J., Goutan, E., Goutan, E., Martí, E., Ambrosio, S., and Arenas, E. (2001). Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral artery occlusion in the rat. Acta Neuropathol. 101, 229–238.PubMedGoogle Scholar

  • Fischer, D. and Leibinger, M. (2012). Promoting optic nerve regeneration. Prog Retin Eye Res. 31, 688–701.PubMedCrossrefGoogle Scholar

  • Fischer, A.J. and Reh, T.A. (2001). Muller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat. Neurosci. 4, 247–252.CrossrefPubMedGoogle Scholar

  • Fischer, D., Pavlidis, M., and Thanos, S. (2000). Cataractogenic lens injury prevents traumatic ganglion cell death and promotes axonal regeneration both in vivo and in culture. Invest. Ophthalmol. Vis. Sci. 41, 3943–3954.PubMedGoogle Scholar

  • Fletcher, R.B., Prasol, M.S., Estrada, J., Baudhuin, A., Choi, Y.G.I., and Ngai, J. (2011). P53 regulates olfactory stem cell self renewal and differentiation. Neuron 72, 748–759.CrossrefPubMedGoogle Scholar

  • Fournier, A.E., Kalb, R.G., and Strittmatter, S.M. (2003). Rho GTPases and axonal growth cone collapse. Methods Enzymol. 325, 473–482.Google Scholar

  • Fuchs, E. (2009). The tortoise and the hair: slow-cycling cells in the stem cell race. Cell 137, 811–819.PubMedCrossrefGoogle Scholar

  • Fuentealba, L.C., Obernier, K., and Avarez-Buylla, A. (2012). Adult neural stem cells bridge their niche. Cell Stem Cell 10, 698–708.PubMedCrossrefGoogle Scholar

  • Fukuda, S., Kato, F., Tozuka, Y., Yamaguchi, M., Miyamoto, Y., and Hisatsune, T. (2003). Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J. Neurosci. 23, 9357–9366.PubMedCrossrefGoogle Scholar

  • Gage, F.H. (2000). Mammalian neural stem cells. Science 287, 1433.CrossrefPubMedGoogle Scholar

  • Gage, F.H., Coates, P.W., Palmer, T.D., Kuhn, H.G., Fisher, L.J., Suhonen, J.O., Peterson, D.A., Suhr, S.T., and Ray, J. (1995). Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883.CrossrefGoogle Scholar

  • Ganz, J., Kaslin, J., Hochmann, S., Freudenreich, D., and Brand, M. (2010). Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 58, 1345–1363.PubMedCrossrefGoogle Scholar

  • Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G., and Sofroniew, M.V. (2004). GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241.CrossrefPubMedGoogle Scholar

  • Gardner, R.T. and Habecker, B.A. (2013). Infarct-derived chondroitin sulfate proteoglycans prevent sympathetic reinnervation after cardiac ischemia-reperfusion injury. J. Neurosci. 33, 7175–7183.CrossrefPubMedGoogle Scholar

  • Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B.A., Dixit, V., and Ferrara, N. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273, 30336–30343.CrossrefPubMedGoogle Scholar

  • Gilbert, S.F. (2005). Developmental Biology, 9th ed. (Bologna: Zanichelli).Google Scholar

  • Givogri, M.I., de Planell, M., Galbiati, F., Superchi, D., Gritti, A., Vescovi, A., de Vellis, J., and Bongarzone, E.R. (2006). Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev. Neurosci. 28, 81–91.PubMedCrossrefGoogle Scholar

  • Gokoffski, K.K., Wu, H.H., Beites, C.L., Kim, J., Kim, E.J., Matzuk, M.M., Johnson, J.E., Lander, A.D., and Calof, A.L. (2011). Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate. Development 138, 4131–4142.PubMedCrossrefGoogle Scholar

  • Goldshmit, Y., Galea, M.P., Wise, G., Bartlett, P.F., and Turnley, A.M. (2004). Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci. 24, 10064–10073.PubMedCrossrefGoogle Scholar

  • Goldshmit, Y., Spanevello, M.D., Tajouri, S., Li, L., Rogers, F., Pearse, M., Galea, M., Bartlett, P.F., Boyd, A.W., and Turnley, A.M. (2011). EphA4 blockers promote axonal regeneration and functional recovery following spinal cord injury in mice. PLoS One 6, e24636.PubMedCrossrefGoogle Scholar

  • Goldshmit, Y., Sztal, T.E., Jusuf, P.R., Hall, T.E., Nguyen-Chi, M., and Currie, P.D. (2012). Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J. Neurosci. 32, 7477–7492.PubMedCrossrefGoogle Scholar

  • Gong, C., Wang, T.W., Huang, H.S., and Parent, J.M. (2007). Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J. Neurosci. 27, 1803–1811.CrossrefPubMedGoogle Scholar

  • Gotts, J.E. and Chesselet, M.F. (2005). Vascular changes in the subventricular zone after distal cortical lesions. Exp. Neurol. 194, 139–150.PubMedCrossrefGoogle Scholar

  • Götz, M. and Huttner, W.B. (2005). The cell biology of neurogenesis. Nat. Rev. 6, 777–788.CrossrefGoogle Scholar

  • Gould, E., Reeves, A.J., Graziano, M.S., and Gross, C.G. (1999). Neurogenesis in the neocortex of adult primates. Science 286, 548–552.PubMedCrossrefGoogle Scholar

  • Grandel, H. and Brand, M. (2013). Comparative aspects of adult neural stem cell activity in vertebrates. Dev. Genes. Evol. 223, 131–147.CrossrefPubMedGoogle Scholar

  • Grandel, H., Kaslin, J., Ganz, J., Wenzel, I., and Brand, M. (2006). Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev. Biol. 295, 263–277.PubMedCrossrefGoogle Scholar

  • Graziadei, P.P. and Graziadei, G.A. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J. Neurocytol. 8, 1–18.CrossrefPubMedGoogle Scholar

  • Gris, D., Marsh, D.R., Oatway, M.A., Chen, Y., Hamilton, E.F., Dekaban, G.A., and Weaver, L.C. (2004). Transient blockade of the CD11d/CD18 integrin reduces secondary damage after spinal cord injury, improving sensory, autonomic, and motor function. J. Neurosci. 24, 4043–4051.CrossrefPubMedGoogle Scholar

  • Guo, Y., Ma, L., Cristofanili, M., Hart, R.P., Hao, A., and Schachner, M. (2011). Transcription factor Sox11b is involved in spinal cord re generation in adult zebrafish. Neuroscience 23, 329–341.Google Scholar

  • Harvey, B.K., Hoffer, B.J., and Wang, Y. (2005). Stroke and TGF-β proteins: glial cell line-derived neurotrophic factor and bone morphogenetic protein. Pharmacol. Ther. 105, 113–125.PubMedCrossrefGoogle Scholar

  • Hauk, T.G., Leibinger, M., Muller, A., Andreadaki, A., Knippschild, U., and Fischer, D. (2010). Stimulation of axon regeneration in the mature optic nerve by intravitreal application of the toll-like receptor 2 agonist Pam3Cys. Invest. Ophthalmol. Vis. Sci. 51, 459–464.CrossrefPubMedGoogle Scholar

  • Holzschuh, J., Wada, N., Wada, C., Schaffer, A., Javidan, Y., Tallafuss, A., Bally-Cuif, L., and Schilling, T.F. (2005). Requirements for endoderm and BMP signaling in sensory neurogenesis in zebrafish. Development 132, 3731–3742.CrossrefPubMedGoogle Scholar

  • Hou, S., Wang, Y., Xu, M., Shen, D., Wang, J., Huang, F., Yu, Z., and Sun, F. (2008). Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 39, 2837–2844.CrossrefPubMedGoogle Scholar

  • Hui, S.P., Dutta, A., and Ghosh, S. (2010). Cellular response after crush injury in adult zebrafish spinal cord. Dev. Dyn. 239, 2962–2979.PubMedCrossrefGoogle Scholar

  • Hynds, D.L. and Snow, D.M. (1999). Axon outgrowth inhibition by chondroitin sulfate proteoglycan: stalling/stopping exceeds turning in human neuroblastoma growth cones. Exp. Neurol. 160, 244–255.PubMedCrossrefGoogle Scholar

  • Imitola, J., Raddassi, K., Park, K.I., Mueller, F.J., Nieto, M., Teng, Y.D., Frenkel, D., Li, J., Sidman, R.L., Walsh, C.A., et al. (2004). Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci. USA 28, 18117–18122.Google Scholar

  • Ingham, P.W. and McMahon, A.P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15, 3059–3087.PubMedCrossrefGoogle Scholar

  • Iosif, R.E., Ahlenius, H., Ekdahlet, C., Darsalia, V., Thored, P., Jovinge, S., Kokaia, Z., and Lindvall, O. (2008). Suppression of stroke-induced progenitor proliferation in adult subventricular zone by tumor necrosis factor receptor 1. J. Cereb. Blood Flow Metab. 28, 1574–1587.CrossrefPubMedGoogle Scholar

  • Iwai, N., Zhou, Z., Roop, D.R., and Behringer, R.R. (2008). Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26, 1298–1306.PubMedCrossrefGoogle Scholar

  • Jaerve, A. and Muller, H.W. (2012). Chemokines in CNS injury and repair. Cell Tissue Res. 349, 229–248.CrossrefPubMedGoogle Scholar

  • Jin, K.L., Mao, X.O., and Greenberg, D.A. (2000). Vascular endothelial growth factor: direct neuroprotective effect in in vitro ischemia. Proc. Natl. Acad. Sci. USA 97, 10242–10247.CrossrefGoogle Scholar

  • Jin, K., Minami, M., Lan, J.Q., Mao, X.O., Batteur, S., Simon, R.P., and Greenberg, D.A. (2001). Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc. Natl. Acad. Sci. USA 98, 4710–4715.CrossrefGoogle Scholar

  • Jin, K., Mao, X.O., and Greenberg, D.A. (2006). Vascular endothelial growth factor stimulates neurite outgrowth from cerebral cortical neurons via Rho kinase signaling. J. Neurobiol. 66, 236–242.CrossrefPubMedGoogle Scholar

  • Kadota, T., Shingo, T., Yasuhara, T., Tajiri, N., Kondo, A., Morimoto, T., Yuan, W.J., Wang, F., Baba, T., Tokunaga, K., et al. (2009). Continuous intraventricular infusion of erythropoietin exerts neuroprotective/rescue effects upon Parkinson’s disease model of rats with enhanced neurogenesis. Brain Res. 1254, 120–127.PubMedCrossrefGoogle Scholar

  • Kalluri, H.S.G. and Dempsey, R.J. (2008). Growth factors, stem cells and stroke. Neurosurg. Focus 24, E13.Google Scholar

  • Kaslin, J., Ganz, J., and Brand, M. (2008). Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 101–122.CrossrefPubMedGoogle Scholar

  • Kazanis, I. (2012). Can adult neural stem cells create new brains? Plasticity in the adult mammalian neurogenic niches: realities and expectations in the era of regenerative biology. Neuroscientist 18, 15–27.PubMedCrossrefGoogle Scholar

  • Keirstead, H.S., Dyer, J.K., Sholomenko, G.N., McGraw, J., Delaney, K.R., and Steeves, J.D. (1995). Axonal regeneration and physiological activity following transection and immunological disruption of myelin within the hatchling chick spinal cord. J. Neurosci. 15, 6963–6974.PubMedCrossrefGoogle Scholar

  • Kim, S.U. and De Vellis, J. (2005). Microglia in health and disease. J. Neurosci. Res. 81, 302–313.PubMedCrossrefGoogle Scholar

  • Kim, H., Shin, J., Kim, S., Poling, J., Park, H.C., and Appel, B. (2008). Notch-regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. Dev. Dyn. 237, 2081–2089.CrossrefPubMedGoogle Scholar

  • Kishimoto, N., Shimizu, K., and Sawamoto, K. (2012). Neuronal regeneration in a zebrafish model of adult brain injury. Dis. Model. Mech. 5, 200–209.CrossrefGoogle Scholar

  • Kitagawa, H., Hayashi, T., Mitsumoto, Y., Koga, N., Itoyama, Y., and Abe, K. (1998). Reduction of ischemic brain injury by topical application of glial cell line derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 29, 1417–1422.CrossrefPubMedGoogle Scholar

  • Kizil, C., Kaslin, J., Kroehne, V., and Brand, M. (2011). Adult neurogenesis and brain regeneration in zebrafish. Dev. Neurobiol. 72, 429–461.Google Scholar

  • Kizil, C., Kyritsis, N., Dudczig, S., Kroehne, V., Freudenreich, D., Kaslin, J., and Brand, M. (2012). Regenerative neurogenesis from neural progenitor cells requires injury-induced expression of Gata3. Dev. Cell 23, 1230–1237.CrossrefPubMedGoogle Scholar

  • Kroehne, V., Freudenreich, D., Hans, S., Kaslin, J., and Brand, M. (2011). Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development 138, 4831–4841.CrossrefPubMedGoogle Scholar

  • Kumar, A. and Loane, D.J. (2012). Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav. Immun. 26, 1191–1201.CrossrefPubMedGoogle Scholar

  • Kyritsis, N., Kizil, C., Zocher, S., Kroehne, V., Kaslin, J., Freudenreich, D., Iltzsche, A., and Brand, M. (2012). Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 2338, 1353–1356.Google Scholar

  • Kyritsis, N., Kizil, C., and Brand, M. (2014). Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24, 128–135.CrossrefPubMedGoogle Scholar

  • Lanfranconi, S., Locatelli, F., Corti, S., Candelise, L., Corni, G.P., Baron, P.L., Strazzer, S., Bresolin, N., and Bersano, A. (2011). Growth factors in ischemic stroke. J. Cell. Mol. Med. 15, 1645–1687.CrossrefPubMedGoogle Scholar

  • Larsson, E., Mandel, R.J., Klein, R.L., Muzyczka, N., Lindvall, O., and Kokaia, Z. (2002). Suppression of insult-induced neurogenesis in adult rat brain by brain-derived neurotrophic factor. Exp. Neurol. 177, 1–8.PubMedCrossrefGoogle Scholar

  • Lavine, K.J., White, A.C., Park, C., Smith, C.S., Choi, K., Long, F., Hui, C.C., and Ornitz, D.M. (2006). Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 20, 1651–1666.PubMedCrossrefGoogle Scholar

  • Lee, A., Kessler, J.D., Read, T.A., Kaiser, C., Corbeil, D., Huttner, W.B., Johnson, J.E., and Wechsler-Reya, R.J. (2005). Isolation of neural stem cells from the postnatal cerebellum. Nat. Neurosci. 8, 723–729.PubMedCrossrefGoogle Scholar

  • Lee, S., Kim, H., Rogowska, J., Zhao, B., Bhide, P., Parent, J.M., and Lo, E.H. (2006). Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke. J. Neurosci. 26, 3491–3495.CrossrefPubMedGoogle Scholar

  • Lee-Liu, D., Edwards-Faret, G., Tapia, V.S., and Larraìn, J. (2013). Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis 51, 529–544.CrossrefPubMedGoogle Scholar

  • Leibinger, M., Müller, A., Gobrecht, P., Diekmann, H., Andreadaki, A., and Fischer, D. (2013). Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis. 4, e609.PubMedCrossrefGoogle Scholar

  • Lepilina, A., Coon, A.N., Kikuchi, K., Holdway, J.E., Roberts, R.W., Burns, C.G., and Poss, K.D. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127, 607–619.PubMedCrossrefGoogle Scholar

  • Li, L. and Clevers, H. (2010). Coexistence of quiescent and active adult stem cells in mammals. Science 327, 542–545.CrossrefPubMedGoogle Scholar

  • Li, Q., Shirabe, K., Thisse, C., Thisse, B., Okamoto, H., Masai, I., and Kuwada, J.Y. (2005). Chemokine signaling guides axons within the retina in zebrafish. J. Neurosci. 25, 1711–1717.CrossrefPubMedGoogle Scholar

  • Liang, D., Chang, J.R., Chin, A.J., Smith, A., Kelly, C., Weinberg, E.S., and Ge, R. (2001). The role of vascular endothelial growth factor (VEGF) in vasculogenesis, angiogenesis, and hematopoiesis in zebrafish development. Mech. Dev. 108, 29–43.PubMedCrossrefGoogle Scholar

  • Liem, K.F., Bemis, W.E., Walker, W.F., and Grande, L. (2002). Functional Anatomy of the Vertebrates, 1st ed. (Napoli, Italy: EsiSES).Google Scholar

  • Lim, D.A., Tramontin, A.D., Trevejo, J.M., Herrera, D.G., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2000). Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726.PubMedCrossrefGoogle Scholar

  • Lin, T.N., Te, J., Lee, M., Sun, G.Y., and Hsu, C.Y. (1997). Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res. Mol. Brain Res. 49, 255–265.CrossrefPubMedGoogle Scholar

  • Lin, J.F., Pan, H.C., Ma, L.P., Shen, Y.Q., and Schachner, M. (2012). The cell neural adhesion molecule contactin-2 (TAG-1) is beneficial for functional recovery after spinal cord injury in adult zebrafish. PLoS One 7, e52376.PubMedCrossrefGoogle Scholar

  • Liu, J., Solway, K., Messing, R.O., and Sharp, F.R. (1998). Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 18, 7768–7778.CrossrefPubMedGoogle Scholar

  • Liu, X.F., Fawcett, J.R., Thorne, R.G., De For, T.A., and Frey, W.H., 2nd. (2001). Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J. Neurol. Sci. 187, 91–97.PubMedCrossrefGoogle Scholar

  • Liu, N.K., Wang, X.F., Lu, Q.B., and Xu, X.M. (2009). Altered microRNA expression following traumatic spinal cord injury. Exp. Neurol. 219, 424–429.PubMedCrossrefGoogle Scholar

  • Liu, X.S., Chopp, M., Zhang, R.L., Tao, T., Wang, X.L., Kassis, H., Hozeska-Solgot, A., Zhang, L., Chen, C., and Zhang, Z.G. (2011). MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through notch signaling pathway. PLoS One 6, e23461.CrossrefPubMedGoogle Scholar

  • Lledo, P.M. and Saghatelyan, A. (2005). Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the effects of sensory experience. Trends Neurosci. 28, 248–254.CrossrefGoogle Scholar

  • Lois, C. and Alvarez-Buylla, A. (1994). Long-distance neuronal migration in the adult mammalian brain. Science 264, 1145–1148.PubMedCrossrefGoogle Scholar

  • Londin, E.R., Niemiec, J., and Sirotkin, H.I. (2005). Chordin, FGF signaling, and mesodermal factors cooperate in zebrafish neural induction. Dev. Biol. 279, 1–19.CrossrefPubMedGoogle Scholar

  • Lu, D., Mahmood, A., Qu, C., Goussev, A., Schallert, T., and Chopp, M. (2005). Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J. Neurotrauma 22, 1011–1017.PubMedCrossrefGoogle Scholar

  • Luo, Y., Coskun, V., Liang, A., Yu, J., Cheng, L., Ge, W., Shi, Z., Zhang, K., Li, C., Cui, Y., et al. (2015). Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161, 1175–1186.CrossrefPubMedGoogle Scholar

  • Lucini, C., Maruccio, L., Patruno, M., Tafuri, S., Staiano, N., Mascarello, F., and Castaldo, L. (2008). Glial cell line-derived neurotrophic factor expression in the brain of adult zebrafish (Danio rerio). Histol. Histopathol. 23, 251–261.PubMedGoogle Scholar

  • Ma, D.K., Ming, G., and Song, H. (2005). Glial influences on neural stem cell development: cellular niches for adult neurogenesis. Curr. Opin. Neurobiol. 15, 514–520.CrossrefPubMedGoogle Scholar

  • Mann, F., Miranda, E., Weinl, C., Harmer, E., and Holt, C.E. (2003). B-type Eph receptors and ephrins induce growth cone collapse through distinct intracellular pathways. J. Neurobiol. 57, 323–336.PubMedCrossrefGoogle Scholar

  • Marti, H.J., Bernaudin, M., Bellail, A., Schoch, H., Euler, M., Petit, E., and Risau, W. (2000). Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am. J. Pathol. 156, 965–976.PubMedCrossrefGoogle Scholar

  • Martino, G., Pluchino, S., Bonfanti, L., and Schwartz, M. (2011). Brain re generation in physiology and pathology: the immune signature driving therapeutic plasticità of neural stem cell. Physiol. Rev. 91, 1281–1304.CrossrefGoogle Scholar

  • März, M., Chapouton, P., Diotel, N., Vaillant, C., Hesl, B., Takamiya, M., Lam, C.S., Kah, O., Bally-Cuif, L., and Strahle, U. (2010). Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia 58, 870–888.PubMedGoogle Scholar

  • März, M., Schmidt, R., Rastegar, S., and Strahle, U. (2011). Regenerative response following stab injury in the adult zebrafish telencephalon. Dev. Dyn. 240, 2221–2231.CrossrefPubMedGoogle Scholar

  • Matsuzaki, H., Tamatani, M., Yamaguchi, A., Namikawa, K., Kiyama, H., Vitek, M.P., Mitsuda, N., and Tohyama, M. (2001). Vascular endothelial growth factor rescues hippocampal neurons from glutamate-induced toxicity: signal transduction cascades. FASEB J. 15, 1218–1220.PubMedCrossrefGoogle Scholar

  • Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278.PubMedCrossrefGoogle Scholar

  • Miyasaka, N., Knaut, H., and Yoshihara, Y. (2007). Cxcl12/Cxcr4 chemokine signaling is required for placode assembly and sensory axon pathfinding in the zebrafish olfactory system. Development 134, 2459–2468.CrossrefPubMedGoogle Scholar

  • Moriyama, M., Fukuhara, T., Britschgi, M., He, Y., Narasimhan, R., Villeda, S., Molina, H., Huber, B.T., Holers, M., and Wyss-Coray, T. (2011). Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J. Neurosci. 31, 3981–3989.PubMedCrossrefGoogle Scholar

  • Nakatomi, H., Kuriu, T., Okabe, S., Yamamoto, S., Hatano, O., Kawahara, N., Tamura, A., Kirino, T., and Nakafuku, M. (2002). Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110, 429–441.PubMedCrossrefGoogle Scholar

  • Nör, J.E., Christensen, J., Mooney, D.J., and Polverini, P.J. (1999). Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J. Pathol. 154, 375–384.PubMedCrossrefGoogle Scholar

  • Oertle, T., Van Der Haar, M.E., Bandtlow, C.E., Robeva, A., Burfeind, P., Buss, A., Huber, A.B., Simonen, M., Schnell, L., and Brösamle, C. (2003). Nogo-A inhibits neurite outgrowth and cell spreading with three discrete regions. J. Neurosci. 23, 5393–5406.CrossrefPubMedGoogle Scholar

  • Ohab, J.J., Fleming, S., Blesch, A., and Carmichael, S.T. (2006). A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016.PubMedCrossrefGoogle Scholar

  • Onhishi, Y., Iwatsuki, K., Shinzawa, K., Ishihara, M., Moriwaki, T., Umegaki, M., Kishima, H., and Yoshimine, T. (2013). Adult olfactory sphere cells are a source of oligodendrocyte and Schwann cell progenitors. Stem Cell Res. 11, 1178–1190.CrossrefPubMedGoogle Scholar

  • Ortega-Perez, I., Murray, K., and Lledo, P.M. (2007). The how and why of adult neurogenesis. J. Mol. Hist. 38, 555–562.CrossrefGoogle Scholar

  • Oya, S., Yoshikawa, G., Takai, K., Tanaka, J., Higashiyama, S., Saito, N., Kirino, T., and Kawahara, N. (2008). Region-specific proliferative response of neural progenitors to exogenous stimulation by growth factors following ischemia. Neuroreport 19, 805–809.CrossrefPubMedGoogle Scholar

  • Parent, J.M., Yu, T.W., Leibowitz, R.T., Geschwind, D.H., Sloviter, R.S., and Lowenstein, D.H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci. 17, 3727–3738.PubMedCrossrefGoogle Scholar

  • Parent, J.M., Vexler, Z.S., Gong, C., Derugin, N., and Ferriero, D.M. (2002). Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann. Neurol. 52, 802–813.PubMedCrossrefGoogle Scholar

  • Park, H.C. and Appel, B. (2003). Delta-Notch signaling regulater oligodendrocyte specification. Development 130, 3747–3755.CrossrefGoogle Scholar

  • Peng, H., Huang, Y., Rose, J., Erichsen, D., Herek, S., Fujii, N., Tamamura, H., and Zheng, J. (2004). Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J. Neurosci. Res. 76, 35–50.PubMedCrossrefGoogle Scholar

  • Pirotte, N., Leynen, N., Artois, T., and Smeets, K. (2016). Do you have the nerves to regenerate? The importance of neural signalling in the regeneration process. Dev. Biol. 409, 4–15.CrossrefPubMedGoogle Scholar

  • Quian, F., Zhen, F., Ong, C., Jin, S.W., Soo, H.M., Stainer, D.Y.R., Lin, S., Peng, J., and Wen, Z. (2005). Microarray Analysis of zebrafish cloche mutant using amplified cDNA and identification of potential downstream target genes. Dev. Dyn. 233, 1163–1172.CrossrefPubMedGoogle Scholar

  • Rehermann, M.I., Santiñaque, F.F., López-Carro, B., Russo, R.E., and Trujillo-Cenóz, O. (2011). Cell proliferation and cytoarchitectural remodeling during spinal cord reconnection in the fresh-water turtle Trachemys dorbignyi. Cell Tissue Res. 344, 415–433.CrossrefPubMedGoogle Scholar

  • Reimer, M.M., Sorensen, I., Kuscha, V., Frank, R.E., Liu, C., Becker, C.G., and Becker, T. (2008). Motor neuron regeneration in adult zebrafish. J. Neurosci. 28, 8510–8516.PubMedCrossrefGoogle Scholar

  • Reimer, M.M., Kuscha, V., Wyatt, C., Sorensen, I., Frank, R.E., Knuwer, M., Becker, T., and Becker, C.G. (2009). Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J. Neurosci. 29, 15073–15082.PubMedCrossrefGoogle Scholar

  • Reynolds, B.A. and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.CrossrefPubMedGoogle Scholar

  • Robin, A.M., Zhang, Z.G., Wang, L., Zhang, R.L., Katakowski, M., Zhang, L., Wang, Y., Zhang, C., and Chopp, M. (2006). Stromal cell-derived factor 1alpha mediates neural progenitor cell motility after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 26, 125–134.CrossrefPubMedGoogle Scholar

  • Rothenaigner, I., Krecsmarik, M., Hayes, J.A., Bahn, B., Lepier, A., Fortin, G., Götz, M., Jagasia, R., and Bally-Cuif, L. (2011). Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 138, 1459–1469.CrossrefPubMedGoogle Scholar

  • Russo, A., Scardigli, R., Regina, F.L., Murray, M.E., Romano, N., Dickson, D.W., Wolozin, B., Cattaneo, A., and Ceci, M. (2017). Increased cytoplasmic TDP-43 reduces global protein synthesis by interacting with Rack1 on polyribosomes. Hum. Mol. Genet. 26, 1407–1418.PubMedCrossrefGoogle Scholar

  • Sabo, J.S., Kilpatrick, T.J., and Cate, H.S. (2009). Effects of bone morphogenic proteins on neural precursor cells and regulation during central nervous system injury. Neurosignals 17, 255–264.CrossrefPubMedGoogle Scholar

  • Sanai, N., Tramontin, A.D., Quinones-Hinojosa, A., Barbaro, N.M., Gupta, N., Kunwar, S., Lawton, M.T., McDermott, M.W., Parsa, A.T., Manuel-García Verdugo, J., et al. (2004). Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744.CrossrefPubMedGoogle Scholar

  • Schäbitz, W.R., Sommer, C., Zoder, W., Kiessling, M., Schwaninger, M., and Schwab, S. (2000). Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31, 2212–2217.PubMedCrossrefGoogle Scholar

  • Scharff, C., Kirn, J.R., Grossman, M., Macklis, J.D., and Nottebohm, F. (2000). Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron 25, 481–492.CrossrefPubMedGoogle Scholar

  • Schlueter, P.J., Peng, G., Westerfield, M., and Duan, C. (2007). Insulin-like growth factor signaling regulates zebrafish embryonic growth and development by promoting cell survival and cell cycle progression. Cell Death Differ. 14, 1095–1105.PubMedCrossrefGoogle Scholar

  • Schmidt, R., Strähle, U., and Scholpp, S. (2013). Neurogenesis in zebrafish – from embryo to adult. Neural Dev. 8, 1–13.Google Scholar

  • Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cell 4, 47–25.Google Scholar

  • Schuster, K., Dambly-Chaudière, C., and Ghysen, A. (2010). Glial cell line-derived neurotrophic factor defines the path of developing and regenerating axons in the lateral line system of zebrafish. Proc. Natl. Acad. Sci. USA 107, 19531–19536.CrossrefGoogle Scholar

  • Schwartz, M. and Yoles, E. (2006). Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J. Neurotrauma 23, 360–370.CrossrefPubMedGoogle Scholar

  • Seri, B., Garcia-Verdugo, J.M., McEwen, B.S., and Alvarez-Buylla, A. (2001). Astrocytes give rise to new neurons in the adult mammalian hippocampus. J. Neurosci. 21, 7153–7160.CrossrefPubMedGoogle Scholar

  • Shen, Y., Tenney, A.P., Busch, S.A., Horn, K.P., Cuascut, F.X., Liu, K., He, Z., Silver, J., and Flanagan, J.G. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326, 592–596.PubMedCrossrefGoogle Scholar

  • Sieger, D. and Peri, F. (2013). Animal models for studying microglia: the first, the popular, and the new. Glia 61, 3–9.PubMedCrossrefGoogle Scholar

  • Singla, V. and Reiter, J.F. (2006). The primary cilium as the cell’s antenna: signaling at a sensory organelle. Science 313, 629–633.CrossrefGoogle Scholar

  • Sirén, A.L., Knerlich, F., Poser, W., Gleiter, C.H., Brück, W., and Ehrenreich, H. (2001). Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol. 101, 271–276.PubMedGoogle Scholar

  • Sofroniew, M.V. (2009). Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 32, 638–647.PubMedCrossrefGoogle Scholar

  • Song, J.H., Wang, C.X., Song, D.K., Wangx, P., Shuaib, A., and Hao, C. (2005). Interferon gamma induces neurite outgrowth by up-regulation of p35 neuron-specific cyclin-dependent kinase 5 activation of ERK1/2 pathway. J. Biol. Chem. 280, 12896–12901.CrossrefPubMedGoogle Scholar

  • Sorrells, S.F., Paredes, M.F., Cebrian-Silla, A., Sandoval, K., Qi, D., James, D., Mayer, S., Chang, J., Auguste, K.I., Chang, E.F., et al. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555, 377–381.PubMedCrossrefGoogle Scholar

  • Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttener, H.B., Boström, E., Westerlund, I., Vial, C., Buchhols, B.A., et al. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227.CrossrefPubMedGoogle Scholar

  • Suh, H., Consiglio, A., Ray, J., Sawai, T., D’Amour, K.A., and Gage, F.H. (2007). In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1, 515–528.PubMedCrossrefGoogle Scholar

  • Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X.O., Logvinova, A., and Greenberg, D.A. (2003). VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J. Clin. Invest. 111, 1843–1851.CrossrefPubMedGoogle Scholar

  • Sun, D., Bullock, M.R., McGinn, M.J., Zhou, Z., Altememi, N., Hagood, S., Hamm, R., and Colello, R.J. (2009). Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp. Neurol. 216, 56–65.CrossrefPubMedGoogle Scholar

  • Svensson, B., Peters, M., König, H.G., Poppe, M., Levkau, B., Rothermundt, M., Arolt, V., Kögel, D., and Prehn, J.H. (2002). Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J. Cereb. Blood Flow. Metab. 22, 1170–1175.CrossrefPubMedGoogle Scholar

  • Tang, X., Davies, J.E., and Davies, S.J. (2003). Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J. Neurosci. Res. 71, 427–444.PubMedCrossrefGoogle Scholar

  • Thau-Zuchman, O., Shohami, E., Alexandrovich, A.G., and Leker, R.R. (2010). Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J. Cereb. Blood Flow Metab. 30, 1008–1016.PubMedCrossrefGoogle Scholar

  • Thored, P., Arvidsson, A., Cacci, E., Ahlenius, H., Kallur, T., Darsalia, V., Ekdahl, C.T., Kokaia, Z., and Lindvall, O. (2006). Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24, 739–747.CrossrefPubMedGoogle Scholar

  • Thundyil, J., Manzanero, S., Pavlovski, D., Cully, T.R., Lok, K.Z., Widiapradja, A., Chunduri, P., Jo, D.G., Naruse, C., Asano, M., et al. (2013). Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One 8, e53528.CrossrefPubMedGoogle Scholar

  • Tonchev, A.B. (2011). Brain ischemia, neurogenesis, and neurotrophic receptor expression in primates. Arch. Ital. Biol. 149, 225–231.PubMedGoogle Scholar

  • Tsai, P.T., Ohab, J.J., Kertesz, N., Groszer, M., Matter, C., Gao, J., Liu, X., Wu, H., and Carmichael, S.T. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J. Neurosci. 26, 1269–1274.PubMedCrossrefGoogle Scholar

  • Türeyen, K., Vemuganti, R., Bowen, K.K., Sailor, K.A., and Dempsey, R.J. (2005). EGF and FGF-2 infusion increases post-ischemic neural progenitor cell proliferation in the adult rat brain. Neurosurgery 57, 1254–1263.PubMedCrossrefGoogle Scholar

  • Vajn, K., Plunkett, J.A., Tapanese-Castillo, A., and Oudega, M. (2013). Axonal regeneration after spinal cord injury in zebrafish and mammals: differences, similarities, translation. Neurosci. Bull. 29, 402–410.PubMedCrossrefGoogle Scholar

  • Vallieres, L., Campbell, I.L., Gage, F.H., and Sawchenko, P.E. (2002). Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486–492.CrossrefPubMedGoogle Scholar

  • Vargas, M.E., Yamagishi, Y., Tessier-Lavigne, M., and Sagasti, A. (2015). Live imaging of calcium dynamics during axon degeneration reveals two functionally distinct phases of calcium influx. J. Neurosci. 35, 15026–15038.PubMedCrossrefGoogle Scholar

  • Wang, Y., Lin, S.Z., Chiou, A.L., Williams, L.R., and Hoffer, B.J. (1997). Glial cell line derived neurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J. Neurosci. 17, 4341–4348.CrossrefPubMedGoogle Scholar

  • Wang, L., Zhang, Z.G., Wang, Y., Zhang, R., and Chopp, M. (2004). Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35, 1732–1737.PubMedCrossrefGoogle Scholar

  • Wang, L., Zhang, Z.G., Zhang, R.L., Gregg, S.R., Hozeska-Solgot, A., Le Tourneau, Y., Wang, Y., and Chopp, M. (2006). Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J. Neurosci. 26, 5996–6003.CrossrefPubMedGoogle Scholar

  • Wang, X., Fu, S., Wang, Y., Yu, P., Hu, J., Gu, W., Xu, X.M., and Lu, P. (2007). Interleukin-1 beta mediates proliferation and differentiation of multipotent neural precursor cells through the activation of SPAK/JNK pathway. Mol. Cell. Neurosci. 36, 343–354.CrossrefGoogle Scholar

  • Wang, L., Chopp, M., Zhang, R.L., Zhang, L., Letourneau, Y., Feng, Y.F., Jiang, A., Morris, D.C., and Zhang, Z.G. (2009). The Notch pathway mediates expansion of a progenitor pool and neuronal differentiation in adult neural progenitor cells after stroke. Neuroscience 158, 1356–1363.PubMedCrossrefGoogle Scholar

  • Weidner, N., Ner, A., Salimi, N., and Tuszynski, M.H. (2001). Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc. Natl. Acad. Sci. USA 98, 3513–3518.CrossrefGoogle Scholar

  • Willson, C.A., Irizarry-Ramírez, M., Gaskins, H.E., Cruz-Orengo, L., Figueroa, J.D., Whittemore, S.R., and Miranda, J.D. (2002). Upregulation of EphA receptor expression in the injured adult rat spinal cord. Cell Transplant. 11, 229–239.CrossrefPubMedGoogle Scholar

  • William, A. (2014). Central nervous system regeneration – where are we? QJM 107, 335–339.PubMedCrossrefGoogle Scholar

  • Wong, G., Goldshmit, Y., and Turnley, A.M. (2004). Interferon-gamma but not TNFα promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp. Neurol. 187, 171–177.PubMedCrossrefGoogle Scholar

  • Xiao, M.J., Han, Z., Shao, B., and Jin, K. (2009). Notch signalling and neurogenesis in normal and stroke brain. Int. J. Physiol. Pathophysiol. Pharmacol. 1, 192–202.Google Scholar

  • Xin, H., Li, Y., Buller, B., Katakowski, M., Zhang, Y., Wang, X., Shang, X., Zhang, Z.G., and Choppa, M. (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cell 30, 1556–1564.CrossrefGoogle Scholar

  • Xiong, Y., Zhang, Y., Mahmood, A., Meng, Y., Qu, C., and Chopp, M. (2011). Erythropoietin mediates neurobehavioral recovery and neurovascular remodeling following brain injury in rats by increasing expression of vascular endothelial growth factor. Transl. Stroke. Res. 2, 619–632.PubMedCrossrefGoogle Scholar

  • Xu, Y., Tamamaki, N., Noda, T., Kimura, K., Itokazu, Y., Matsumoto, N., Dezawa, M., and Ide, C. (2005). Neurogenesis in the ependymal layer of the adult rat 3rd ventricle. Exp. Neurol. 192, 251–264.PubMedCrossrefGoogle Scholar

  • Yagita, Y., Kitagawa, K., Ohtsuki, T., Takasawa, K.I., Miyata, T., Okano, H., Hori, M., and Matsumoto, M. (2001). Neurogenesis by progenitor cells in the ischemic adult rat hippocampus. Stroke 32, 1890–1896.PubMedCrossrefGoogle Scholar

  • Yamamoto, S., Nagao, M., Sugimori, M., Kosako, H., Nakatomi, H., Yamamoto, N., Takebayashi, H., Nabeshima, Y., Kitamura, T., Weinmaster, G., et al. (2001). Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J. Neurosci. 21, 9814–9823.PubMedCrossrefGoogle Scholar

  • Yamashita, T., Ninomiya, M., Hernandez Acosta, P., Garcia-Verdugo, J.M., Sunabori, T., Sakaguchi, M., Adachi, K., Kojima, T., Hirota, Y., Kawase, T., et al. (2006). Subventricular zone-derived neuroblasts migrate and differentiate into mature neurons in the post-stroke adult striatum. J. Neurosci. 26, 6627–6636.PubMedCrossrefGoogle Scholar

  • Yang, P., Wen, H., Ou, S., Cui, J., and Fan, D. (2012). IL-6 promotes regeneration and functional recovery after cortical spinal tract injury by reactivating intrinsic growth program of neurons and enhancing synapse formation. Exp. Neurol. 236, 19–27.CrossrefPubMedGoogle Scholar

  • Yin, K.J., Deng, Z., Huang, H., Hamblin, M., Xie, C., Zhang, J., and Chen, Y.E. (2010). MiR-497 regulates neuronal death in mouse brain after transient focal cerebral ischemia. Neurobiol. Dis. 38, 17–26.CrossrefPubMedGoogle Scholar

  • Yiu, G. and He, Z. (2006). Glial inhibition of CNS axon regeneration. Nat. Rev. Neurosci. 7, 617–627.PubMedCrossrefGoogle Scholar

  • Yoneyama, M., Shiba, T., Hasebe, S., and Ogita, K. (2011). Adult neurogenesis is regulated by endogenous factors produced during neurodegeneration. J. Pharmacol. Sci. 115, 425–432.PubMedCrossrefGoogle Scholar

  • Yu, Y.M., Cristofanilli, M., Valiveti, A., Ma, L., Yoo, M., Morellini, F., and Schachner, M. (2011a). The extracellular matrix glycoprotein tenascin-C promotes locomotor recovery after spinal cord injury in adult zebrafish. Neuroscience 2, 238–250.Google Scholar

  • Yu, Y.M., Gibbs, K.M., Davila, J., Campbell, N., Sung, S., Todorova, T.I., Otsuka, S., Sabaawy, H.E., Hart, R.P., and Schachner, M. (2011b). MicroRNA miR-133b is essential for functional recovery after spinal cord injury in adult zebrafish. Eur. J. Neurosci. 33, 1587–1597.CrossrefGoogle Scholar

  • Zhang, Z.G., Zhang, L., Tsang, W., Soltanian-Zadeh, H., Morris, D., Zhang, R., Goussev, A., Powers, C., Yeich, T., and Chopp, M. (2002). Correlation of VEGF and angiopoietin expression with disruption of blood–brain barrier and angiogenesis after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 22, 379–392.CrossrefPubMedGoogle Scholar

  • Zhang, R., Zhang, Z., Wang, L., Wang, Y., Gousev, A., Zhang, L., Ho, K.L., Morshead, C., and Chopp, M. (2004). Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J. Cereb. Blood Flow Metab. 24, 441–448.PubMedCrossrefGoogle Scholar

  • Zhao, C., Teng, E.M., Summers, R.G., Jr., Ming, G.L., and Gage, F.H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J. Neurosci. 26, 3–11.CrossrefPubMedGoogle Scholar

  • Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.CrossrefPubMedGoogle Scholar

  • Zheng, W., Nowakowski, R.S., and Vaccarino, F.M. (2004). Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci. 26, 181–196.PubMedCrossrefGoogle Scholar

  • Zigova, T., Pencea, V., Wiegand, S.J., and Luskin, M.B. (1998). Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb. Mol. Cell Neurosci. 11, 234–245.PubMedCrossrefGoogle Scholar

  • Zou, S., Kamei, H., Modi, Z., and Duan, C. (2009). Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development. PLoS One 4, e7026.PubMedCrossrefGoogle Scholar

  • Zupanc, G.K. (2001). Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav. Evol. 58, 250–275.PubMedCrossrefGoogle Scholar

  • Zupanc, G.K. and Horschke, I. (1995). Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J. Comp. Neurol. 353, 213–233.CrossrefGoogle Scholar

  • Zupanc, G.K. and Zupanc, M.M. (2006). New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. Regen. Med. 1, 207–216.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-03-04

Accepted: 2018-04-27

Published Online: 2018-08-01

Published in Print: 2018-12-19

Citation Information: Reviews in the Neurosciences, Volume 30, Issue 1, Pages 45–66, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0020.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in