Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 30, Issue 2

Issues

Central pattern generators in the brainstem and spinal cord: an overview of basic principles, similarities and differences

Inge Steuer
  • Neuroscience Unit, Laval University Medical Center (CHUL – CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pierre A. Guertin
  • Corresponding author
  • Neuroscience Unit, Laval University Medical Center (CHUL – CHU de Québec), 2705 Laurier Blvd, Quebec City, Quebec G1V 4G2, Canada
  • Faculty of Medicine, Department of Psychiatry and Neurosciences, Laval University, Quebec City, Quebec G1V 0A6, Canada
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-13 | DOI: https://doi.org/10.1515/revneuro-2017-0102

Abstract

Central pattern generators (CPGs) are generally defined as networks of neurons capable of enabling the production of central commands, specifically controlling stereotyped, rhythmic motor behaviors. Several CPGs localized in brainstem and spinal cord areas have been shown to underlie the expression of complex behaviors such as deglutition, mastication, respiration, defecation, micturition, ejaculation, and locomotion. Their pivotal roles have clearly been demonstrated although their organization and cellular properties remain incompletely characterized. In recent years, insightful findings about CPGs have been made mainly because (1) several complementary animal models were developed; (2) these models enabled a wide variety of techniques to be used and, hence, a plethora of characteristics to be discovered; and (3) organizations, functions, and cell properties across all models and species studied thus far were generally found to be well-preserved phylogenetically. This article aims at providing an overview for non-experts of the most important findings made on CPGs in in vivo animal models, in vitro preparations from invertebrate and vertebrate species as well as in primates. Data about CPG functions, adaptation, organization, and cellular properties will be summarized with a special attention paid to the network for locomotion given its advanced level of characterization compared with some of the other CPGs. Similarities and differences between these networks will also be highlighted.

Keywords: brainstem; defecation; ejaculation; locomotion; micturition; respiration; spinal; swallowing

References

  • Abbinanti, M.D., Zhong, G., and Harris-Warrick, R.M. (2012). Postnatal emergence of serotonin-induced plateau potentials in commissural interneurons of the mouse spinal cord. J. Neurophysiol. 108, 2191–2202.PubMedCrossrefGoogle Scholar

  • Abdel-Hamid, I.A., Elsaied, M.A., and Mostafa, T. (2016). The drug treatment of delayed ejaculation. Transl. Androl. Urol. 5, 576–591.CrossrefPubMedGoogle Scholar

  • Acevedo, J., Santana-Almansa, A., Matos-Vergara, N., Marrero-Cordero, L.R., Cabezas-Bous, E., and Diaz-Rios, M. (2016). Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. J. Neuropharmacol. 101, 490–505.CrossrefGoogle Scholar

  • Afelt, Z. (1970). Reflex activity in chronic spinal cats. Acta Neurobiol. Exp. (Warsaw) 30, 129–144.Google Scholar

  • Ahuja, C.S., Nori, S., Tetreault, L., Wilson, J., Kwon, B., Harrop, J., Choi, D., and Fehlings, M.G. (2017). Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80, S9–S22.CrossrefGoogle Scholar

  • Aida, S., Takeishi, R., Magara, J., Watanabe, M., Ito, K., Nakamura, Y., Tsujimura, T., Hayashi, H., and Inoue, M. (2015). Peripheral and central control of swallowing initiation in healthy humans. Physiol. Behav. 151, 404–411.CrossrefPubMedGoogle Scholar

  • Akay, T., Tourtellotte, W.G., Arber, S., and Jessell, T.M. (2014). Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. Proc. Natl. Acad. Sci. USA 111, 16877–16882.CrossrefGoogle Scholar

  • Alford, S.T. and Alpert, M.H. (2014). A synaptic mechanism for network synchrony. Front. Cell. Neurosci. 8, 290.PubMedGoogle Scholar

  • Alluin, O., Delivet-Mongrain, H., and Rossignol, S. (2015). Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only. J. Neurophysiol. 114, 1931–1946.CrossrefPubMedGoogle Scholar

  • Al-Zubaidy, Z.A., Erickson, R.L., and Greer, J.J. (1996). Serotonergic and noradrenergic effects on respiratory neural discharge in the medullary slice preparation of neonatal rats. Pflüger’s Arch. 431, 942–949.CrossrefGoogle Scholar

  • Anderson, T.M. and Ramirez, J.M. (2017). Respiratory rhythm generation: triple oscillator hypothesis. F1000Res. 6, 139.PubMedCrossrefGoogle Scholar

  • Anderson, T.M., Garcia, A.J. 3rd, Baertsch, N.A., Pollak, J., Bloom, J.C., Wei, A.D., Rai, K.G., and Ramirez, J.M. (2016). A novel excitatory network for the control of breathing. Nature 536, 76–80.PubMedCrossrefGoogle Scholar

  • Andersson, K.E. (2016). potential future pharmacological treatment of bladder dysfunction. Basic Clin. Pharmacol. Toxicol. 119 (Suppl. 3), 75–85.PubMedCrossrefGoogle Scholar

  • Andersson, O. and Grillner, S. (1983). Peripheral control of the cat’s step cycle. II. Entrainment of the central pattern generators for locomotion by sinusoidal hip movements during ‘fictive locomotion. Acta Physiol. Scand. 118, 229–239.PubMedGoogle Scholar

  • Andersson, K.E. and Pehrson, R. (2003). CNS involvement in overactive bladder: pathophysiology and opportunities for pharmacological intervention. Drugs 63, 2595–2611.PubMedCrossrefGoogle Scholar

  • Angel, M.J., Guertin, P., Jiménez, I., and McCrea, D.A. (1996). Group I extensor afferents evoke disynaptic EPSPs in cat hindlimb extensor motorneurones during fictive locomotion. J. Physiol. 494, 851–861.CrossrefGoogle Scholar

  • Angel, M.J., Jankowska, E., and McCrea, D.A. (2005). Candidate interneurones mediating group I disynaptic EPSPs in extensor motoneurones during fictive locomotion in the cat. J. Physiol. 563, 597–610.CrossrefGoogle Scholar

  • Angeli, C.A., Edgerton, V.R., Gerasimenko, Y.P., and Harkema, S.J. (2014). Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans. Brain 137, 1394–1409.PubMedCrossrefGoogle Scholar

  • Antri, M., Barthe, J.Y., Mouffle, C., and Orsal, D. (2005). Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine. Neurosci. Lett. 384, 162–167.CrossrefPubMedGoogle Scholar

  • Arshavskii, Y.I., Gelfand, I.M., and Orlovskii, G.N. (1986). Cerebellum and Rhythmical Movements (Berlin: Springer-Verlag).Google Scholar

  • Baldissera, F., Cavallari, P., and Leocani, L. (1998). Cyclic modulation of the H-reflex in a wrist flexor during rhythmic flexion-extension movements of the ipsilateral foot. Exp. Brain Res. 118, 427–430.CrossrefGoogle Scholar

  • Barajon, I., Gossard, J.P., and Hultborn, H. (1992). Induction of fos expression by activity in the spinal rhythm generator for scratching. Brain Res. 588, 168–172.CrossrefPubMedGoogle Scholar

  • Barbeau, H. and Rossignol, S. (1987). Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 412, 84–95.PubMedCrossrefGoogle Scholar

  • Barbeau, H. and Rossignol, S. (1990). The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat. Brain Res. 514, 55–67.PubMedCrossrefGoogle Scholar

  • Barbeau, H. and Rossignol, S. (1991). Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res. 546, 250–260.PubMedCrossrefGoogle Scholar

  • Barrière, G., Mellen, N., and Cazalets, J.R. (2004). Neuromodulation of the locomotor network by dopamine in the isolated spinal cord of newborn rat. Eur. J. Neurosci. 19, 1325–1335.PubMedCrossrefGoogle Scholar

  • Barrington, F. (1925). The effect of lesions of the hind- and midbrain on micturition in the cat. J. Exp. Physiol. Cogn. Med. 15, 81–102.CrossrefGoogle Scholar

  • Barry, M.A. and O’Donovan, M.J. (1987). The effects of excitatory amino acids and their antagonists on the generation of motor activity in the isolated chick spinal cord. Dev. Brain Res. 36, 271–276.CrossrefGoogle Scholar

  • Baruscotti, M., Bucchi, A., and Difrancesco, D. (2005). Physiology and pharmacology of the cardiac pacemaker (‘funny’) current. Pharmacol. Ther. 107, 59–79.PubMedCrossrefGoogle Scholar

  • Bassi, M., Furuya, W.I., Zoccal, D.B., Menani, J.V., Colombari, D.S., Mulkey, D.K., and Colombari, E. (2016). Facilitation of breathing by leptin effects in the central nervous system. J. Physiol. 594, 1617–1625.CrossrefPubMedGoogle Scholar

  • Beato, M., Bracci, E., and Nistri, A. (1997). Contribution of NMDA and non-NMDA glutamate receptors to locomotor pattern generation in the neonatal rat spinal cord. Proc. R. Soc. Lond. 264, 877–884.CrossrefGoogle Scholar

  • Beckel, J.M. and Holstege, G. (2011). Neurophysiology of the lower urinary tract. Handbook of Experimental Pharmacology. K.E. Andersson and M.C. Michel, eds. (Berlin/Heidelberg: Springer), pp. 149–169.PubMedGoogle Scholar

  • Bélanger, M., Drew, T., and Rossignol, S. (1988). Spinal locomotion: a comparison of the kinematics and the electromyographic activity in the same animal before and after spinalization. Acta Biol. Hung. 39, 151–154.PubMedGoogle Scholar

  • Bélanger, M., Drew, T., Provencher, J., and Rossignol, S. (1996). A comparison of treadmill locomotion in adult cats before and after spinal transection. J. Neurophysiol. 76, 471–491.CrossrefPubMedGoogle Scholar

  • Bellardita, C. and Kiehn, O. (2015). Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks. Curr. Biol. 25, 1426–1436.PubMedCrossrefGoogle Scholar

  • Bellen, H., Tong, C., and Tsuda, H. (2010). 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat. Rev. Neurosci. 11, 514–522.CrossrefPubMedGoogle Scholar

  • Ben, T., Orsal, D., and Cabelguen, J.M. (1993). Fictive locomotion in the adult thalamic rat. Exp. Brain Res. 97, 301–304.PubMedGoogle Scholar

  • Berg, R.M. (2017). Neuronal population activity in spinal motor circuits: greater than the sum of its parts. Front. Neural Circuits 11, 103.CrossrefGoogle Scholar

  • Bergmans, J., Burke, R., and Lundberg, A. (1969). Inhibition of transmission in the recurrent inhibitory pathway to motoneurones. Brain Res. 13, 600–602.CrossrefPubMedGoogle Scholar

  • Bernier, A.P., Arsenault, I., Lund, J.P., and Kolta, A. (2010). Effect of the stimulation of sensory inputs on the firing of neurons of the trigeminal main sensory nucleus in the rat. J. Neurophysiol. 103, 915–923.CrossrefPubMedGoogle Scholar

  • Bieger, D., Giles, S.A., and Hockman, C.H. (1977). Dopaminergic influences on swallowing. Neuropharmacol. 16, 245–252.CrossrefGoogle Scholar

  • Biering-Sorensen, F. and Sonksen, J. (2001). Sexual function in spinal cord lesioned men. Spinal Cord 39, 455–470.PubMedCrossrefGoogle Scholar

  • Binienda, A., Storr, M., Fichna, J., and Salaga, M. (2018). Efficacy and safety of serotonin receptor ligands in the treatment of irritable bowel syndrome: a review. Curr. Drug Targets. 19, 1774–1781.CrossrefPubMedGoogle Scholar

  • Birder, L.A. and de Groat, W.C. (1993). Induction of c-fos expression in spinal neurons by nociceptive and nonnociceptive stimulation of LUT. Am. J. Physiol. 265, R326–333.PubMedGoogle Scholar

  • Birder, L.A., Roppolo, J.R., Erickson, V.L., and de Groat, W.C. (1999). Increased c-fos expression in spinal lumbosacral projection neurons and preganglionic neurons after irritation of the lower urinary tract in the rat. Brain Res. 834, 55–65.PubMedCrossrefGoogle Scholar

  • Bizzi, E., Cheung, V.C., d’Avella, A., Saltiel, P., and Tresch, M. (2008). Combining modules for movement. Brain Res. Rev. 57, 25–33.Google Scholar

  • Blanchard-Dauphin, A., Rigot, J.M., and Thevenon, A. (2005). Treatment of ejaculation disorders by midodrine (Gutron) per os retrospective study of about 16 subjects. Ann. Readapt. Med. Phys. 48, 34–40.PubMedGoogle Scholar

  • Bois, P., Guinamard, R., Chemaly, A.E., Faivre, J.P., and Bescond, J. (2007). Molecular regulation and pharmacology of pacemaker channels. Curr. Pharm. Des. 13, 2338–2349.CrossrefPubMedGoogle Scholar

  • Bonnot, A., Whelan, P.J., Mentis, G.Z., and O’Donovan, M.J. (2002). Locomotor-like activity generated by the neonatal mouse spinal cord. Brain Res. Brain Res. Rev. 40, 141–151.PubMedCrossrefGoogle Scholar

  • Borgdorff, A.J., Bernabé, J., Denys, P., Alexandre, L., and Giuliano, F. (2008). Ejaculation elicited by microstimulation of lumbar spinothalamic neurons. Eur. Urol. 54, 449–456.CrossrefPubMedGoogle Scholar

  • Borowska, J., Jones, C.T., Zhang, H., Blacklaws, J., Goulding, M., and Zhang, Y. (2013). Functional subpopulations of V3 interneurons in the mature mouse spinal cord. J. Neurosci. 33, 18553–18565.CrossrefPubMedGoogle Scholar

  • Bosma, J.F. (1957). Deglutition: pharyngeal stage. Physiol. Rev. 37, 275–300.CrossrefPubMedGoogle Scholar

  • Bourque, M.J. and Kolta, A. (2001). Properties and interconnections of trigeminal interneurons of the lateral pontine reticular formation in the rat. J. Neurophysiol. 86, 2583–2596.PubMedCrossrefGoogle Scholar

  • Bouvier, J., Caggiano, V., Leiras, R., Caldeira, V., Bellardita, C., Balueva, K., Fuchs, A., and Kiehn, O. (2015). Descending command neurons in the brainstem that halt locomotion. Cell 163, 1191–1203.PubMedCrossrefGoogle Scholar

  • Bouyer, L. and Rossignol, S. (2003). Contributions of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats. J. Neurophysiol. 90, 3640–3653.CrossrefGoogle Scholar

  • Boyce, V.S. and Mendell, L.M. (2014). Neurotrophins and spinal circuit function. Front. Neural Circuits 5, 8–59.Google Scholar

  • Braitenberg, V. and Atwood, R.P. (1958). Morphological observations on the cerebellar cortex. J. Comp. Neurol. 109, 1–33.PubMedCrossrefGoogle Scholar

  • Braune, W. and Fischer, O. (1895). Der Gang des Menschen. Abh Math Phys Kl Saechs Ges Wiss 21, 153–322.Google Scholar

  • Bretzner, F. and Brownstone, R.M. (2013). Lhx3-Chx10 reticulospinal neurons in locomotor circuits. J. Neurosci. 33, 14681–14692.CrossrefPubMedGoogle Scholar

  • Brocard, F., Verdier, D., Arsenault, I., Lund, J.P., and Kolta, A. (2006). Emergence of intrinsic bursting in trigeminal sensory neurons parallels the acquisition of mastication in weanling rats. J. Neurophysiol. 96, 2410–2424.PubMedCrossrefGoogle Scholar

  • Brocard, F., Ryczko, D., Fénelon, K., Hatem, R., Gonzales, D., Auclair, F., and Dubuc, R. (2010a). The transformation of a unilateral locomotor command into a symmetrical bilateral activation in the brainstem. J. Neurosci. 30, 523–533.CrossrefGoogle Scholar

  • Brocard, F., Tazerart, S., and Vinay, L. (2010b). Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 16, 139–155.CrossrefGoogle Scholar

  • Brocard, F., Shevtsova, N.A., Bouhadfane, M., Tazerart, S., Heinemann, U., Rybak, I.A., and Vinay, L. (2013). Activity-dependent changes in extracellular Ca2+ and K+ reveal pacemakers in the spinal locomotor-related network. Neuron 77, 1047–1054.CrossrefGoogle Scholar

  • Brooks, V.B. and Wilson, V.J. (1959). Recurrent inhibition in the cat’s spinal cord. J. Physiol. 146, 380–391.CrossrefPubMedGoogle Scholar

  • Brownstone, R.M. and Wilson, J.M. (2008). Strategies for delineating spinal locomotor-rhythm generating networks and the possible role of Hb9 interneurones in rhythmogenesis. Brain Res. Rev. 57, 64–76.PubMedCrossrefGoogle Scholar

  • Brustein, E. and Rossignol, S. (1998). Recovery of locomotion after ventral and ventrolateral spinal lesions in the cat. I. Deficits and adaptive mechanisms. J. Neurophysiol. 80, 1245–1267.CrossrefGoogle Scholar

  • Bui, T.V., Stifani, N., Akay, T., and Brownstone, R.M. (2016). Spinal microcircuits comprising dI3 interneurons are necessary for motor functional recovery following spinal cord transection. Elife 5, e21715.PubMedCrossrefGoogle Scholar

  • Buschges, A., Akay, T., Gabriel, J.P., and Schmidt, J. (2008). Organizing network action for locomotion: insights from studying insect walking. Brain Res. Rev. 57, 162–171.CrossrefPubMedGoogle Scholar

  • Bussel, B., Roby-Brami, A., Azouvi, P., Biraben, A., Yakovleff, A., and Held, J.P. (1988a). Myoclonus in a patient with spinal cord transection. Possible involvement of the spinal stepping generator. Brain 111, 1235–1245.CrossrefGoogle Scholar

  • Bussel, B., Roby-Brami, A., Yakovleff, A., and Bennis, N. (1988b). Evidences for the presence of a spinal stepping generator inpatients with a spinal cord section. Posture and Gait: Development, Adaptation and Modulation. B. Amblard, A. Berthoz, and F. Clarac, eds. (Amsterdam, the Netherlands: Elsevier), pp. 273–278.Google Scholar

  • Bussel, B., Roby-Brami, A., Yakovleff, A., Bennis, N. (1989). Late flexion reflex in paraplegic patients. Evidence for a spinal stepping generator. Brain Res. Bull. 22, 53–56.CrossrefPubMedGoogle Scholar

  • Butt, S.J., Harris-Warrick, R.M., and Kiehn, O. (2002a). Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator. J. Neurosci. 22, 9961–9971.CrossrefGoogle Scholar

  • Butt, S.J., Lebret, J.M., and Kiehn, O. (2002b). Organization of left-right coordination in the mammalian locomotor network. Brain Res. Brain Res. Rev. 40, 107–117.CrossrefGoogle Scholar

  • Cabaj, A.M., Majczyński, H., Couto, E., Gardiner, P.F., Stecina, K., Sławińska, U., and Jordan, L.M. (2017). Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT7 receptors in adult rats. J. Physiol. 595, 301–320.CrossrefPubMedGoogle Scholar

  • Calancie, B., Needham-Shropshire, B., Jacobs, P., Willer, K., Zych, G., and Green, B.A. (1994). Involuntary stepping after chronic spinal cord injury. Evidence for a central rhythm generator for locomotion in man. Brain 117, 1143–1159.CrossrefPubMedGoogle Scholar

  • Caldeira, V., Dougherty, K.J., Borgius, L., and Kiehn, O. (2017). Spinal Hb9: cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci. Rep. 7, 41369.CrossrefPubMedGoogle Scholar

  • Callaghan, B., Furness, J.B., and Pustovit, R.V. (2018). Neural pathways for colorectal control, relevance to spinal cord injury and treatment: a narrative review. Spinal Cord 56, 199–205.CrossrefPubMedGoogle Scholar

  • Camacho, F.J., Castro, M., Hernandez, V., and Paredes, R.G. (2007). Facilitation of ejaculation induced by 8-OH-DPAT does not produce conditioned place preference in male rats. Behav. Neurosci. 121, 579–585.CrossrefPubMedGoogle Scholar

  • Car, A. and Roman, C. (1970). Deglutitions and oesophageal reflex contractions induced by electrical stimulation of the medulla oblongata. Exp. Brain Res. 11, 75–92.PubMedGoogle Scholar

  • Car, A. and Amri, M. (1987). Activity of neurons located in the region of the hypoglossal motor nucleus during swallowing in sheep. Exp. Brain Res. 69, 175–182.PubMedGoogle Scholar

  • Caudle, K.L., Atkinson, D.A., Brown, E.H., Donaldson, K., Seibt, E., Chea, T., Smith, E., Chung, K., Shum-Siu, A., Cron, C.C., et al. (2015). Hindlimb stretching alters locomotor function after spinal cord injury in the adult rat. Neurorehabil. Neural Repair 29, 268–277.PubMedCrossrefGoogle Scholar

  • Cazalets, J.R. and Bertrand, S. (2000). Coupling between lumbar and sacral motor networks in the neonatal rat spinal cord. Eur. J. Neurosci. 12, 2993–3002.CrossrefPubMedGoogle Scholar

  • Cazalets, J.R., Squalli-Houssaini, Y., and Clarac, F. (1992). Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J. Physiol. 455, 187–204.PubMedCrossrefGoogle Scholar

  • Cazalets, J.R., Sqalli-Houssaini, Y., and Clarac, F. (1994). GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J. Physiol. 474, 173–181.CrossrefPubMedGoogle Scholar

  • Cazalets, J.R., Borde, M., and Clarac, F. (1995). Localization and organization of the central pattern generator for hindlimb locomotion in newbord rat. J. Neurosci. 15, 4943–4951.CrossrefGoogle Scholar

  • Chamberlin, N.L. and Saper, C.B. (1998). A brainstem network mediating apneic reflexes in the rat. J. Neurosci. 18, 6048–6056.PubMedCrossrefGoogle Scholar

  • Champagnat, J., Jacquin, T., and Richter, D.W. (1986). Voltage-dependent currents in neurones of the nuclei of the solitary tract of rat brainstem slices. Pflüger’s Arch. 406, 372–379.CrossrefGoogle Scholar

  • Chang, H.Y., Cheng, C.L., Chen, J.J., and de Groat, W.C. (2006). Roles of glutamatergic and serotonergic mechanisms in reflex control of the external urethral sphincter in urethane-anesthetized female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, 224–234.CrossrefGoogle Scholar

  • Chang, S.R., Nandor, M.J., Li, L., Kobetic, R., Foglyano, K.M., Schnellenberger, J.R., Audu, M.L., Pinault, G., Quinn, R.D., and Triolo, R.J. (2017). A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia. J. Neuroeng. Rehabil. 14, 48.CrossrefPubMedGoogle Scholar

  • Chau, C., Barbeau, H., and Rossignol, S. (1998a). Effects of intrathecal α1- and α2-noradrenergic agonists and norepinephrine on locomotion in chronic spinal cats. J. Neurophysiol. 79, 2941–2963.CrossrefGoogle Scholar

  • Chau, C., Barbeau, H., and Rossignol, S. (1998b). Early locomotor training with clonidine in spinal cats. J. Neurophysiol. 79, 392–409.CrossrefGoogle Scholar

  • Chéhensse, C., Bahrami, S., Denys, P., Clément, P., Bernabé, J., and Giuliano, F. (2013). The spinal control of ejaculation revisited: a systematic review and meta-analysis of anejaculation in spinal cord injured patients. Hum. Reprod. Update 19, 507–526.CrossrefPubMedGoogle Scholar

  • Chéhensse, C., Clément, P., Joussain, C., Bernabé, J., and Giuliano, F. (2016). The spinal generator of ejaculation: Functional consequences of chronic spinalization and effect of substance P in anesthetized rats. Neuroscience 336, 12–19.PubMedCrossrefGoogle Scholar

  • Chéhensse, C., Facchinetti, P., Bahrami, S., Andrey, P., Soler, J.M., Chrétien, F., Bernabé, J., Clément, P., Denys, P., and Giuliano, F. (2017). Human spinal ejaculation generator. Ann. Neurol. 81, 35–45.PubMedCrossrefGoogle Scholar

  • Chen, J., Gu, B., Wu, G., Tu, H., Si, J., Xu, Y., and Andersson, K.E. (2013a). The effect of the 5-HT2A/2C receptor agonist DOI on micturition in rats with chronic spinal cord injury. J. Urol. 189, 1982–1988.CrossrefGoogle Scholar

  • Chen, C.Y., Kuo, T.B., Hsieh, I.T., and Yang, C.C. (2013b). Electrical stimulation of the rostral ventrolateral medulla promotes wakefulness in rats. Sleep Med. 14, 1076–1084.CrossrefGoogle Scholar

  • Cheng, L., Song, W., Looger, L., Jan, L., and Jan, Y. (2010). The role of the TRP channel NompC in Drosophila larval and adult locomotion. Neuron 67, 373–380.PubMedCrossrefGoogle Scholar

  • Chervin, R.D., Consens, F.B., and Kutluay, E. (2003). Alternating leg muscle activation during sleep and arousals: a new sleep-related motor phenomenon? Mov. Disord. 18, 551–559.CrossrefGoogle Scholar

  • Chiao, G.Z., Larson, C.R., Yajima, Y., Ko, P., and Kahrilas, P.J. (1994). Neuronal activity in nucleus ambiguus during deglutition and vocalization in conscious monkeys. Exp. Brain Res. 100, 29–38.PubMedGoogle Scholar

  • Cina, C. and Hochman, S. (2000). Diffuse distribution of sulforhodamine-labeled neurons during serotonin-evoked locomotion in the neonatal rat thoracolumbar spinal cord. J. Comp. Neurol. 423, 590–602.CrossrefPubMedGoogle Scholar

  • Clarac, F. (2008). Some historical reflections on the neural control of locomotion. Brain Res. Rev. 57, 13–21.CrossrefPubMedGoogle Scholar

  • Clarac, F. and Pearlstein, E. (2007). Invertebrate preparations and their contribution to neurobiology in the second half of the 20th C. Brain Res. Rev. 54, 113–161.CrossrefGoogle Scholar

  • Clement, P. and Giuliano, F. (2016). Physiology and Pharmacology of Ejaculation. Basic Clin. Pharmacol. Toxicol. 119, 18–25.CrossrefPubMedGoogle Scholar

  • Clemens, S., Rye, D., and Hochman, S. (2006). Restless legs syndrome: revisiting the dopamine hypothesis from the spinal cord perspective. Neurology 67, 125–130.CrossrefPubMedGoogle Scholar

  • Cohen, A.H. and Wallen, P. (1980). The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey spinal cord. Exp. Brain Res. 41, 11–18.Google Scholar

  • Cohen, A.H., Holmes, P.J., and Rand, R.H. (1982). The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J. Math. Biol. 13, 345–369.PubMedCrossrefGoogle Scholar

  • Consentino, F.L., Iero, I., Lanuzza, B., Tripodi, M., and Ferri, R. (2006). The neurophysiology of the alternating leg muscle activation (ALMA) during sleep: study of one patient before and after treatment with pramipexole. Sleep Med. 7, 63–71.CrossrefPubMedGoogle Scholar

  • Conway, B.A., Hultborn, H., and Kiehn, O. (1987). Proprioceptive input resets central locomotor rhythm in the spinal cat. Exp. Brain Res. 68, 643–656.PubMedGoogle Scholar

  • Coolen, L.M., Veening, J.G., Wells, A.B., and Shirpley, M.T. (2003). Afferent connections of the parvocellular subparafascicular thalamic nucleus in the rat: evidence for functional subdivisions. J. Comp. Neurol. 463, 132–156.PubMedCrossrefGoogle Scholar

  • Courtine, G., van den Brand, R., and Musienko, P. (2011). Spinal cord injury: time to move. Lancet 377, 1896–1898.CrossrefPubMedGoogle Scholar

  • Courtois, F.J., Charvier, K.F., Leriche, A., Vezina, J.G., Côté, M., and Bélanger, M. (2008). Blood pressure changes during sexual stimulation, ejaculation and midodrine treatment in men with SCI. BJU Int. 101, 331–337.CrossrefPubMedGoogle Scholar

  • Cowley, K.C. and Schmidt, B.J. (1994). A comparison of motor patterns induced by N-methyl-d, l-aspartate, acetylcholine and serotonin in the in vitro neonatal rat spinal cord. Neurosci. Lett. 171, 147–150.PubMedCrossrefGoogle Scholar

  • Cowley, K.C., Zaporozhets, E., MacLean, J.N., and Schmidt, B.J. (2005). Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord? J. Neurophysiol. 94, 3805–3814.CrossrefPubMedGoogle Scholar

  • Cowley, K.C., MacNeil, B.J., Chopek, J.W., Sutherland, S., and Schmidt, B.J. (2015). Neurochemical excitation of thoracic propriospinal neurons improves hindlimb stepping in adult rats with spinal cord lesions. Exp. Neurol. 264, 174–187.CrossrefPubMedGoogle Scholar

  • Croll, N.A. and Smith, J.M. (1978). Integrated behavior in the feeding phase of Caenorhabditis elegans (Nematoda). J. Zool. 184, 507–517.Google Scholar

  • Crone, S.A., Quinlan, K.A., Zagoraiou, L., Droho, S., Restrepo, C.E., Lundfald, L., Endo, T., Setlak, J., Jessell, T.M., Kiehn, O., et al. (2008). Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60, 70–83.PubMedCrossrefGoogle Scholar

  • Daghfous, G., Green, W.W., Alford, S.T., Zielinski, B.S., and Dubuc, R. (2016). Sensory activation of command cells for locomotion and modulatory mechanisms: Lessons from lampreys. Front. Neural Circuits 10, 18.PubMedGoogle Scholar

  • Dai, Y. and Jordan, L.M. (2010a). Multiple effects of serotonin and acetylcholine on hyperpolarization-activated inward current in locomotor activity-related neurons in Cfos-EGFP mice. J. Neurophysiol. 104, 366–381.CrossrefGoogle Scholar

  • Dai, Y. and Jordan, L.M. (2010b). Multiple patterns and components of persistent inward current with serotonergic modulation in locomotor activity-related neurons in Cfos-EGFP mice. J. Neurophysiol. 103, 1712–1727.CrossrefGoogle Scholar

  • David, I., Holmes, P., and Ayali, A. (2016). Endogenous rhythm and pattern-generating circuit interactions in cockroach motor centres. Biol. Open 5, 1229–1240.PubMedCrossrefGoogle Scholar

  • Deeh Defo, P.B., Asongu, E., Wankeu, M.N., Ngadjui, E., Bonsou Fazin, G.R., Kemka, F.X., Carro-Juarez, M., Kamanyi, A., Kamtchouing, P., and Watcho, P. (2017). Guibourtia tessmannii-induced fictive ejaculation in spinal male rat: involvement of D1, D2-like receptors. Pharm. Biol. 55, 1138–1143.PubMedCrossrefGoogle Scholar

  • de Groat, W.C. and Yoshimura, N. (2001). Pharmacology of the lower urinary tract. Ann. Rev. Pharmacol. Toxicol. 41, 691–721.CrossrefGoogle Scholar

  • de Groat, W.C. and Yoshimura, N. (2015). Anatomy and physiology of the lower urinary tract. Handb. Clin. Neurol. 130, 61–108.CrossrefPubMedGoogle Scholar

  • de Groat, W.C., Booth, A.M., and Yoshimura, N. (1993). Nervous Control of the Urogenital System (Autonomic Nervous System), Vol. 3, Ch. 8. Maggi, C.A. ed. (London: Harwood Academic Publishers), pp. 227–289.Google Scholar

  • De Groat, W.C., Griffiths, D., and Yoshimura, N. (2015). Neural control of the lower urinary tract. Compr. Physiol. 5, 327–396.PubMedGoogle Scholar

  • de Kam, D., Rijken, H., Manintveld, T., Nienhuis, B., Dietz, V., and Duysens, J. (2013). Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals. J. Appl. Physiol. 115, 34–42.PubMedCrossrefGoogle Scholar

  • De Looze, D., Van Laere, M., De Muynck, M., Beke, R., and Elewaut, A. (1998). Constipation and other chronic gastrointestinal problems in spinal cord injury patients. Spinal Cord 36, 63–66.CrossrefPubMedGoogle Scholar

  • Delcomyn, F. (1977). Coordination of invertebrate locomotion. Mechanics and Energetics of Locomotion. R.M. Alexander and G. Gold Spink, eds. (London: Chapman and Hall), pp. 82–114.Google Scholar

  • Del Negro, C.A., Morgado-Valle, C., Hayes, J.A., Mackay, D.D., Pace, R.W., Crowder, E.A., and Feldman, J.L. (2005). Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J. Neurosci. 25, 446–453.CrossrefPubMedGoogle Scholar

  • Dempsey, J.A., Smith, C.A., Blain, G.M., Xie, A., Gong, Y., and Teodorescu, M. (2012). Role of central/peripheral chemoreceptors and their interdependence in the pathophysiology of sleep apnea. Adv. Exp. Med. Biol. 758, 343–349.PubMedCrossrefGoogle Scholar

  • Dergacheva, O., Yamanaka, A., Schwartz, A.R., Polotsky, V.Y., and Mendelowitz, D. (2016). Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons. Neuroscience 339, 47–53.CrossrefPubMedGoogle Scholar

  • Derjean, D., Bertrand, S., Nagy, F., and Shefchyk, S.J. (2005). Plateau potentials and membrane oscillations in parasympathetic preganglionic neurones and intermediolateral neurones in the rat lumbosacral spinal cord. J. Physiol. 563, 583–596.CrossrefPubMedGoogle Scholar

  • Díaz-Ríos, M., Dombeck, D.A., Webb, W.W., and Harris-Warrick, R.M. (2007). Serotonin modulates dendritic calcium influx in commissural interneurons in the mouse spinal locomotor network. J. Neurophysiol. 98, 2157–2167.CrossrefPubMedGoogle Scholar

  • Díaz-Ríos, M., Guertin, P.A., and Rivera-Oliver, M. (2017). Neuromodulation of spinal locomotor networks in rodents. Curr. Pharm. Des. 23, 1741–1752.CrossrefPubMedGoogle Scholar

  • Dietz, V. and Duysens, J. (2000). Significance of load receptor input during locomotion: a review. Gait Posture 11, 102–110.PubMedCrossrefGoogle Scholar

  • Dietz, V., Fouad, K., and Bastiaanse, C.M. (2001). Neuronal coordination of arm and leg movements during human locomotion. Eur. J. Neurosci. 14, 1906–1914.PubMedCrossrefGoogle Scholar

  • Dietz, V., Müller, R., and Colombo, G. (2002). Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125, 2626–2634.CrossrefPubMedGoogle Scholar

  • Dimitrijevic, M.R., Gerasimenko, Y., and Pinter, M.M. (1998). Evidence for a spinal central pattern generator in humans. Ann. NY Acad. Sci. 860, 360–376.CrossrefGoogle Scholar

  • Dimitropoulos, K. and Gravas, S. (2015). Solifenacin/tamsulosin fixed-dose combination therapy to treat lower urinary tract symptoms in patients with benign prostatic hyperplasia. Drug Des. Devel. Ther. 9, 1707–1716.PubMedGoogle Scholar

  • Dolber, P.C., Gu, B., Zhang, X., Fraser, M.O., Thor, K.B., and Reiter, J.P. (2007). Activation of the external urethral sphincter central pattern generator by a 5-HT(1A) receptor agonist in rats with chronic spinal cord injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 1699–1706.CrossrefGoogle Scholar

  • Doty, R.W. and Bosma, J.F. (1956). An electromyographic analysis of reflex deglutition. J. Neurophysiol. 19, 44–60.CrossrefPubMedGoogle Scholar

  • Doty, R.W., Richmond, W.H., and Storey, A.T. (1967). Effect of medullary lesions on coordination of deglutition. Exp. Neurol. 17, 91–106.CrossrefPubMedGoogle Scholar

  • Dougherty, K.J., Zagoraiou, L., Satoh, D., Rozani, I., Doobar, S., Arber, S., Jessell, T.M., and Kiehn, O. (2013). Locomotor rhythm generation linked to the output of spinal shox2 excitatory interneurons. Neuron 80, 920–933.PubMedCrossrefGoogle Scholar

  • Drake, M.J., Fowler, C.J., Griffiths, D., Mayer, E., Paton, J.F., and Birder, L. (2010). Neural control of the lower urinary and gastrointestinal tracts: supraspinal CNS mechanisms. Neurourol. 29, 119–127.Google Scholar

  • Drew, T. and Marigold, D.S. (2015). Taking the next step: cortical contributions to the control of locomotion. Curr. Opin. Neurobiol. 33, 25–33.CrossrefPubMedGoogle Scholar

  • Duran, I., Gil, L., and Cueva-Rolon, R. (2000). Masculine copulatory behavior is facilitated by intrathecally administered muscarine. Exp. Brain Res. 134, 490–496.PubMedCrossrefGoogle Scholar

  • Duysens, J. (1977). Reflex control locomotion as revealed by stimulation of cutaneous afferents in spontaneously walking premammillary cats. J. Neurophysiol. 40, 737–751.CrossrefPubMedGoogle Scholar

  • Duysens, J., De Groote, F., and Jonkers, I. (2013). The flexion synergy, mother of all synergies and father of new models of gait. Front. Comput. Neurosci. 7, 14.PubMedGoogle Scholar

  • Eccles, R.M. and Lundberg, A. (1958). Integrative pattern of Ia synaptic actions on motoneurones of hip and knee muscles. J. Physiol. 144, 271–298.PubMedCrossrefGoogle Scholar

  • Edgerton, V.R., Grillner, S., Sjöström, A., and Zangger, P. (1976). Central generation of locomotion in vertebrates. Neural Control of Locomotion. Herman, Grillner, Stein and Stuart, eds. (New York, USA: Plenum Press), pp. 439–464.Google Scholar

  • Edgerton, V.R., Leon, R.D., Harkema, S.J., Hodgson, J.A., London, N., Reinkensmeyer, D.J., Roy, R.R., Talmadge, R.J., Tillakaratne, N.J., Timoszyk, W., et al. (2001). Retraining the injured spinal cord. J. Physiol. 533, 15–22.PubMedCrossrefGoogle Scholar

  • Edgley, S.A. and Jankowska, E. (1987). An interneuronal relay for group I and II muscle afferents in the midlumbar segments of the cat spinal cord. J. Physiol. 389, 647–674.CrossrefGoogle Scholar

  • Eke-Okoro, S.T., Gregoric, M., and Larsson, L.E. (1997). Alterations in gait resulting from deliberate changes of arm-swing amplitude and phase. Clin Biomech 12, 516–521.CrossrefGoogle Scholar

  • Eken, T., Hultborn, H., and Kiehn, O. (1989). Possible functions of transmitter-controlled plateau potentials in alpha motoneurones. Prog. Brain Res. 80, 257–267.PubMedCrossrefGoogle Scholar

  • El Manira, A., Tegnér, J., and Grillner, S. (1994). Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J. Neurophysiol. 72, 1852–1861.CrossrefPubMedGoogle Scholar

  • Endo, T. and Kiehn, O. (2008). Asymmetric operation of the locomotor central pattern generator in the neonatal mouse spinal cord. J. Neurophysiol. 100, 3043–3054.PubMedCrossrefGoogle Scholar

  • Ertekin, C. and Aydogdu, I. (2003). Neurophysiology of swallowing. Clin. Neurophysiol. 114, 2226–2244.CrossrefPubMedGoogle Scholar

  • Ezure, K., Oku, Y., and Tanaka, I. (1993). Location and axonal projection of one type of swallowing interneurons in cat medulla. Brain Res. 632, 216–224.CrossrefPubMedGoogle Scholar

  • Facchinetti, P., Giuliano, F., Laurin, M., Barnabé, J., and Clément, P. (2014). Direct brain projections onto the spinal generator of ejaculation in the rat. Neurosci. 272, 207–216.CrossrefGoogle Scholar

  • Fedirchuk, B., Nielsen, J., Petersen, N., and Hultborn, H. (1998). Pharmacologically evoked fictive motor patterns in the acutely spinalized marmoset monkey (Callithrix jacchus). Exp. Brain Res. 122, 351–361.PubMedCrossrefGoogle Scholar

  • Feldman, J.L. and Kam, K. (2015). Facing the challenge of mammalian neural microcircuits: taking a few breaths may help. J. Physiol. 593, 3–23.CrossrefPubMedGoogle Scholar

  • Feldman, J.L., Del Negro, C.A., and Gray, P.A. (2013). Understanding the rhythm of breathing: so near, yet so far. Annu. Rev. Physiol. 75, 423–452.CrossrefPubMedGoogle Scholar

  • Feng-Chen, K.C. and Wolpaw, J.R. (1996). Operant conditioning of H-reflex changes synaptic terminals on primate motoneurons. Proc. Natl. Acad. Sci. USA 93, 9206–9211.CrossrefGoogle Scholar

  • Fernandez, J.M., Sadaba, F., Villaverde, F.J., Alvaro, L.C., and Cortina, C. (1995). Cataplexy associated with midbrain lesion. Neurology 45, 393–394.PubMedCrossrefGoogle Scholar

  • Field-Fote, E., Ness, L.L., and Ionno, M. (2012). Vibration elicits involuntary, step-like behavior in individuals with spinal cord injury. Neurorehabil. Neural Repair 26, 861–869.CrossrefPubMedGoogle Scholar

  • Flourens, M.J.P. (1924). Recherches Expérimentales Sur Les Propriétés Et Les Fonctions Du Système Nerveux, Dans Les Animaux Vertébrés (Paris: Chez Crevot), Vol. 26, p. 20.Google Scholar

  • Forssberg, H. and Grillner, S. (1973). The locomotion of the acute spinal cat injected with clonidine i.v. Brain Res. 50, 184–186.PubMedCrossrefGoogle Scholar

  • Forssberg, H. and Hirschfeld, H. (1988). Phasic modulation of postural activation patterns during human walking. Prog. Brain Res. 76, 221–227.CrossrefPubMedGoogle Scholar

  • Forssberg, H., Grillner, S., and Rossignol, S. (1975). Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 85, 103–107.PubMedCrossrefGoogle Scholar

  • Forster, H.V., Haouzi, P., and Dempsey, J.A. (2012). Control of breathing during exercise. Compr. Physiol. 2, 743–777.PubMedGoogle Scholar

  • Fowler, C.J., Beck, R.O., Gerrard, S., Betts, C.D., and Fowler, C.G. (1994). Intravesical capsaicin for treatment of detrusor hyperreflexia. J. Neurol. Neurosurg. Psych. 57, 169–173.CrossrefGoogle Scholar

  • Fowler, C.J., Griffiths, D., and de Groat, W.C. (2008). The neural control of micturition. Nat. Rev. Neurosci. 9, 453–466.CrossrefPubMedGoogle Scholar

  • Friedman, H., Nashold, B.S.J., and Senechal, P. (1972). Spinal cord stimulation and bladder function in normal and paraplegic animals. J. Neurosurgery 36, 430–437.Google Scholar

  • Frigon, A. (2017). The neural control of interlimb coordination during mammalian locomotion. J. Neurophysiol. 117, 2224–2241.PubMedCrossrefGoogle Scholar

  • Frigon, A. and Rossignol, S. (2008). Adaptive changes of the locomotor pattern and cutaneous reflexes during locomotion studied in the same cats before and after spinalization. J. Physiol. 586, 2927–2945.PubMedCrossrefGoogle Scholar

  • Frigon, A., Thibaudier, Y., Johnson, M.D., Heckman, C.J., and Hurteau, M.F. (2012). Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury. Exp. Neurol. 235, 588–598.PubMedCrossrefGoogle Scholar

  • Füllhase, C., Soler, R., Westerling-Andersson, K., and Andersson, K.E. (2011). Beta3-adrenoceptors in the rat sacral spinal cord and their functional relevance in micturition under normal conditions and in a model of partial urethral obstruction. Neurourol. Urodyn. 30, 1382–1387.Google Scholar

  • Fushiki, A., Zwart, M.F., Kohsaka, H., Fetter, R.D., Cardona, A., and Nose, A. (2016). A circuit mechanism for the propagation of waves of muscle contraction in Drosophila. Elife 15, e13253.Google Scholar

  • Gad, P.N., Roy, R.R., Zhong, H., Lu, D.C., Gerasimenko, Y.P., and Edgerton, V.R. (2014). Initiation of bladder voiding with epidural stimulation in paralyzed, step trained rats. PLoS One 9, e108184.CrossrefPubMedGoogle Scholar

  • Gad, P.N., Gerasimenko, Y.P., Zdunowski, S., Sayenko, D., Haakana, P., Turner, A., Lu, D., Roy, R.R., and Edgerton, V.R. (2015). Iron ’ElectriRx’ man: Overground stepping in an exoskeleton combined with noninvasive spinal cord stimulation after paralysis. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 1124–1127.Google Scholar

  • Gang, W., Hongjian, T., Jasheng, C., Jiemin, S., Zhong, C., Yuemin, X., Baojun, G., and Andersson, K.E. (2014). The effect of the 5-HT7 serotonin receptor agonist, LP44, on micturition in rats with chronic spinal cord injury. Neurourol. Urodyn. 33, 1165–1170.CrossrefPubMedGoogle Scholar

  • Garcia-Bravo, A.M., Suarez-Hernandez, D., Ruiz-Fernandez, M.A., Silva Gonzalez, O., Barbara-Bataller, E., and Méndez Suarez, J.L. (2006). Determination of changes in blood pressure during administration of Viagra in patients with SCI and erectile dysfunction. Spinal Cord 44, 301–308.PubMedCrossrefGoogle Scholar

  • Gargaglioni, L.H., Bícegoa, K.C., and Branco, L.G. (2008). Brain monoaminergic neurons and ventilatory control in vertebrates. Respir. Physiol. Neurobiol. 164, 112–122.CrossrefPubMedGoogle Scholar

  • Gariépy, J.F., Missaghi, K., and Dubuc, R. (2010). The interactions between locomotion and respiration. Prog. Brain Res. 187, 173–188.CrossrefPubMedGoogle Scholar

  • Gaunt, R.A. and Prochazka, A. (2006). Control of urinary bladder function with devices: successes and failures. Prog. Brain Res. 152, 163–194.CrossrefPubMedGoogle Scholar

  • Gerasimenko, Y., Roy, R.R., and Edgerton, V.R. (2008). Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Exp. Neurol. 209, 417–425.PubMedCrossrefGoogle Scholar

  • Gerstenberg, T.C, Levin, R.J., and Wagner, G. (1990). Erection and ejaculation in man – assessment of the electromyographic activity of the bulbocavernosus and ischiocavernosus muscles. Br. J. Urol. 65, 395–402.PubMedCrossrefGoogle Scholar

  • Gerstner, G., Madhavan, S., and Crane, E. (2011). Mammalian oral rhythms and motor control. Biomechanics in applications - Chapter 12. V. Kliva, ed. (Croatia: InTech Open Access publisher), pp. 275–299.Google Scholar

  • Getting, P.A. (1977). Neuronal organization of escape swimming in Tritonia. J. Comp. Physiol. 121, 325–342.CrossrefGoogle Scholar

  • Ginty, D.D., Bading, H., and Greenberg, M.E. (1992). Trans-synaptic regulation of gene expression. Curr. Opin. Neurobiol. 2, 312–316.PubMedCrossrefGoogle Scholar

  • Giroux, N., Brustein, E., Chau, C., Barbeau, H., Reader, T.A., and Rossignol, S. (1998). Differential effects of the noradrenergic agonist clonidine on the locomotion of intact, partially and completely spinalized adult cats. Ann. NY Acad. Sci. 860, 517–520.CrossrefGoogle Scholar

  • Giroux, N., Rossignol, S., and Reader, T.A. (1999). Autoradiographic study of alpha1- and alpha2-noradrenergic and serotonin1A receptors in the spinal cord of normal and chronically transected cats. J. Comp. Neurol. 406, 402–414.PubMedCrossrefGoogle Scholar

  • Giroux, N., Chau, C., Barbeau, H., Reader, T.A., and Rossignol, S. (2003). Effects of intrathecal glutamatergic drugs on locomotion. II. NMDA and AP-5 in intact and late spinal cats. J. Neurophysiol. 90, 1027–1045.PubMedCrossrefGoogle Scholar

  • Giszter, S., Patil, V., and Hart, C. (2007). Primitives, premotor drives, and pattern generation: a combined computational and neuroethological perspective. Prog. Brain Res. 165, 323–346.PubMedCrossrefGoogle Scholar

  • Giuliano, F. and Clement, P. (2005). Physiology of ejaculation: emphasis on serotonergic control. Eur. Urol. 48, 408–417.PubMedCrossrefGoogle Scholar

  • Glendinning, D.S., Cooper, B.Y., Vierck, C.J. Jr., and Leonard, C.M. (1992). Altered precision grasping in stumptail macaques after fasciculus cuneatus lesions. Somatosens. Mot. Res. 9, 61–73.PubMedCrossrefGoogle Scholar

  • Goltz, F. and Freusberg, A. (1874). Uber die Funktionen des Lendenmarkes des Hundes. Pflüger’s Physiol. 8, 460–498.Google Scholar

  • Gomez-Pinilla, F., Ying, Z., Roy, R.R., Hodgson, J., and Edgerton, V.R. (2004). Afferent input modulates neurotrophins and synaptic plasticity in the spinal cord. J. Neurophysiol. 92, 3423–3432.PubMedCrossrefGoogle Scholar

  • Gorczyca, D.A., Younger, S., Meltzer, S., Kim, S.E., Cheng, L., Song, W., Lee, H.Y., Jan, L.Y., and Jan, Y.N. (2014). Identification of Ppk26, a DEG/ENaC channel functioning with Ppk1 in a mutually dependent manner to guide locomotion behavior in Drosophila. Cell Rep. 9, 1446–1458.CrossrefGoogle Scholar

  • Gordan, R., Gwathmey, J.K., and Xie, L.H. (2015). Autonomic and endocrine control of cardiovascular function. World J. Cardiol. 7, 204–214.CrossrefPubMedGoogle Scholar

  • Gorodnichev, R.M., Pivovarova, E.A., Pukhov, A., Moissev, S.A., Sovokhin, A.A., Moshonkina, T.R., Shcherbakova, N.A., Kilimnik, V.A., Selionov, V.A., Kozlovskaia, I.B., et al. (2012). [Transcutaneous electrical stimulation of the spinal cord: non-invasive tool for activation of locomotor circuitry in human]. Fiziol. Cheloveka 38, 46–56.PubMedGoogle Scholar

  • Gosgnach, S., Lanuza, G.M., Butt, S.J., Saueressig, H., Zhang, Y., Velasquez, T., Riethmacher, D., Callaway, E.M., Kiehn, O., and Goulding, M. (2006). V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature 440, 215–219.CrossrefPubMedGoogle Scholar

  • Gossard, J.P., Brownstone, R.M., Barajon, I., and Hultborn, H. (1994). Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp. Brain Res. 98, 213–228.Google Scholar

  • Goulding, M. (2009). Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518.CrossrefGoogle Scholar

  • Goulding, M., Bourane, S., Garcia-Campmany, L., Dalet, A., and Koch, S. (2014). Inhibition downunder: an update from the spinal cord. Curr. Opin. Neurobiol. 26, 161–166.CrossrefPubMedGoogle Scholar

  • Graham Brown, T. (1911). The intrinsic factors in the act of progresson in the mammal. Proc. R. Soc. Lond. 84, 309–319.Google Scholar

  • Graham Brown, T. (1914). On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J. Physiol. 48, 18–46.CrossrefGoogle Scholar

  • Grey, M.J., Ladouceur, M., Andersen, J.B., Nielsen, J.B., and Sinkjær, T. (2001). Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. J. Physiol. 534, 925–933.PubMedCrossrefGoogle Scholar

  • Grey, M.J., Nielsen, J.B., Mazzaro, N., and Sinkjaer, T. (2007). Positive force feedback in human walking. J. Physiol. 581, 99–105.CrossrefPubMedGoogle Scholar

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. Handbook of Physiology – The Nervous System II. J.M. Brookhart and V.B. Mountcastle, eds. (Bethesda, USA: American Physiological Society), pp. 1179–1236.Google Scholar

  • Grillner, S. (1996). Neural networks for vertebrate locomotion. Sci Am 274, 64–69.PubMedCrossrefGoogle Scholar

  • Grillner, S. (2006). Neuronal networks in motion from ion channels to behaviour. An. R. Acad. Nac. Med. (Madr) 123, 297–298.PubMedGoogle Scholar

  • Grillner, S. and Rossignol, S. (1978). On the initiation of the swing phase of locomotion in chronic spinal cats. Brain Res. 146, 269–277.CrossrefPubMedGoogle Scholar

  • Grillner, S. and Zangger, P. (1979). On the central generation of locomotion in the low spinal cat. Exp. Brain Res. 34, 241–261.PubMedGoogle Scholar

  • Grillner, S. and Wallen, P. (1985). The ionic mechanisms underlying N-methyl-D-aspartate receptor-induced, tetrodotoxin-resistant membrane potential oscillations in lamprey neurons active during locomotion. Neurosci. Lett. 60, 289–294.PubMedCrossrefGoogle Scholar

  • Grillner, S. and Matsushima, T. (1991). The neural network underlying locomotion in lamprey – synaptic and cellular mechanisms. Neuron 7, 1–15.PubMedCrossrefGoogle Scholar

  • Grob, M. and Guertin, P.A. (2007). Role of Ca(2+) in the pacemaker-like property of spinal motoneurons. Med. Sci. 23, 64–66.Google Scholar

  • Gu, B., Wu, G., Si, J., Xu, Y., and Andersson, K.E. (2012). Improving voiding efficiency in the diabetic rat by a 5-HT1A serotonin receptor agonist. Neurourol. Urodyn. 31, 168–173.CrossrefPubMedGoogle Scholar

  • Guertin, P.A. (2004). Role of NMDA receptor activation in serotonin agonist-induced air-stepping in paraplegic mice. Spinal Cord 42, 185–190.PubMedCrossrefGoogle Scholar

  • Guertin, P.A. (2005). Semiquantitative assessment of hindlimb movement recovery without intervention in adult paraplegic mice. Spinal Cord 43, 162–166.PubMedCrossrefGoogle Scholar

  • Guertin, P.A. (2009). The mammalian central pattern generator for locomotion. Brain Res. Rev. 62, 45–56.PubMedCrossrefGoogle Scholar

  • Guertin, P.A. (2013). Central pattern generator for locomotion: anatomical, physiological, and pathophysiological considerations. Front. Neurol. 3, 183.PubMedGoogle Scholar

  • Guertin, P.A. (2014). Preclinical evidence supporting the clinical development of central pattern generator-modulating therapies for chronic spinal cord-injured patients. Front. Hum. Neurosci. 8, 272.PubMedGoogle Scholar

  • Guertin, P.A. (2016). New pharmacological approaches against chronic bowel and bladder problems in paralytics. World J. Crit. Care Med. 5, 1–6.PubMedCrossrefGoogle Scholar

  • Guertin, P.A. and Hounsgaard, J. (1998a). Chemical and electrical stimulation induce rhythmic motor activity in an in vitro preparation of the spinal cord from adult turtles. Neurosci. Lett. 245, 5–8.CrossrefGoogle Scholar

  • Guertin, P.A. and Hounsgaard, J. (1998b). NMDA-Induced intrinsic voltage oscillations depend on L-type calcium channels in spinal motoneurons of adult turtles. J. Neurophysiol. 80, 3380–3382.CrossrefGoogle Scholar

  • Guertin, P.A. and Hounsgaard, J. (1999). L-type calcium channels but not N-methyl-D-aspartate receptor channels mediate rhythmic activity induced by cholinergic agonist in motoneurons from turtle spinal cord slices. Neurosci. Lett. 261, 81–84.CrossrefPubMedGoogle Scholar

  • Guertin, P.A. and Hounsgaard, J. (2005). Conditional intrinsic voltage oscillations in mature vertebrate neurons undergo specific changes in culture. J. Neurophysiol. 95, 2024–2027.PubMedGoogle Scholar

  • Guertin, P.A. and Steuer, I. (2005). Ionotropic 5-HT3 receptor agonist-induced motor responses in the hindlimbs of paraplegic mice. J. Neurophysiol. 94, 3397–3405.PubMedCrossrefGoogle Scholar

  • Guertin, P.A. and Steuer, I. (2009). Key central pattern generators of the spinal cord. J. Neurosci. Res. 87, 2399–2405.CrossrefPubMedGoogle Scholar

  • Guertin, P., Angel, M.J., Perreault, M.C., and McCrea, D.A. (1995). Ankle extensor group I afferents excite extensors throughout the hindlimb during fictive locomotion in the cat. J. Physiol. 487, 197–209.CrossrefGoogle Scholar

  • Guertin, P.A., Ung, R.V., and Rouleau, P. (2010). Oral administration of a tri-therapy for central pattern generator activation in paraplegic mice: proof-of-concept of efficacy. Biotechnol. J. 5, 421–426.CrossrefPubMedGoogle Scholar

  • Guertin, P.A., Ung, R.V., Rouleau, P., and Steuer, I. (2011). Effects on locomotion, muscle, bone, and blood induced by a combination therapy eliciting weight-bearing stepping in nonassisted spinal cord-transected mice. Neurorehabil. Neural. Repair 25, 234–242.CrossrefPubMedGoogle Scholar

  • Guevremont, L., Renzi, C.G., Norton, J.A., Kowalczewski, J., Saigal, R., and Mushahwar, V.K. (2006). Locomotor-related networks in the lumbosacral enlargement of the adult spinal cat: activation through intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 266–272.PubMedCrossrefGoogle Scholar

  • Guo, Y., Wang, Y., Zhang, W., Meltzer, S., Zanini, D., Yu, Y., Li, J., Cheng, T., Guo, Z., Wang, Q., et al. (2016). Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion. Proc. Natl. Acad. Sci. USA 113, 7243–7248.CrossrefGoogle Scholar

  • Gut, N.K. and Winn, P. (2015). Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J. Neurosci. 35, 4792–4803.CrossrefGoogle Scholar

  • Guttman, L. and Walsh, J.J. (1971). Prostigmine assessment test of fertility in spinal man. Parapl. 9, 39–51.CrossrefGoogle Scholar

  • Guyenet, P.G. and Bayliss, D.A. (2015). Neural control of breathing and CO2 homeostasis. Neuron 87, 946–961.PubMedCrossrefGoogle Scholar

  • Guyenet, P.G., Bayliss, D.A., Stornetta, R.L., Ludwig, M.G., Kumar, N.N., Shi, Y., Burke, P.G., Kanbar, R., Basting, T.M., Holloway, B.B., et al. (2016). Proton detection and breathing regulation by the retrotrapezoid nucleus. J. Physiol. 594, 1529–1551.PubMedCrossrefGoogle Scholar

  • Hagg, T. and Oudega, M. (2006). Degenerative and spontaneous regenerative processes after spinal cord injury. J. Neurotrauma 23, 264–280.PubMedGoogle Scholar

  • Hägglund, M., Borgius, L., Dougherty, K.J., and Kiehn, O. (2010). Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nat. Neurosci. 13, 246–252.CrossrefPubMedGoogle Scholar

  • Hägglund, M., Dougherty, K.J., Borgius, L., Itohara, S., Iwasato, T., and Kiehn, O. (2013). Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proc. Natl. Acad. Sci. USA 110, 11589–11594.CrossrefGoogle Scholar

  • Han, P., Nakanishi, S.T., Tran, M.A., and Whelan, P.J. (2007). Dopaminergic modulation of spinal neuronal excitability. J. Neurosci. 27, 13192–13204.CrossrefPubMedGoogle Scholar

  • Harkema, S.J. (2008). Plasticity of interneuronal networks of the functionally isolated human spinal cord. Brain Res. Rev. 57, 255–264.CrossrefPubMedGoogle Scholar

  • Harris-Warrick, R.M. (2002). Voltage-sensitive ion channels in rhythmic motor systems. Curr. Opin. Neurobiol. 12, 646–651.CrossrefPubMedGoogle Scholar

  • Harris-Warrick, R.M. (2011). Neuromodulation and flexibility in central pattern generator networks. Curr. Opin. Neurobiol. 21, 685–692.PubMedCrossrefGoogle Scholar

  • Hartmann, P., Ramseir, A., Gudat, F., Mihatsch, M.J., and Polasek, W. (1994). Normal weight of the brain in adults in relation to age, sex, body height and weight. Pathologe 15, 165–170.PubMedGoogle Scholar

  • Heckscher, E.S., Zarin, A.A., Faumont, S., Clark, M.Q., Manning, L., Fushiki, A., Schneider-Mizell, C.M., Fetter, R.D., Truman, J.W., Zwart, M.F., et al. (2015). Even-skipped(+) interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude. Neuron 88, 314–329.CrossrefPubMedGoogle Scholar

  • Herculano-Houzel, S. (2009). The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 1–11.Google Scholar

  • Hernández-Chan, N.G., Góngora-Alfaro, J.L., Álvarez-Cervera, F.J., Solís-Rodríguez, F.A., Heredia-López, F.J., and Arankowsky-Sandoval, G. (2011). Quinolinic acid lesions of the pedunculopontine nucleus impair sleep architecture, but not locomotion, exploration, emotionality or working memory in the rat. Behav. Brain Res. 225, 482–490.CrossrefPubMedGoogle Scholar

  • Hiebert, G.W., Whelan, P.J., Prochazka, A., and Pearson, K.G. (1996). Contribution of hind limb flexor muscle afferents to the timing of phase transitions in the cat step cycle. J. Neurophysiol. 75, 1126–1137.CrossrefGoogle Scholar

  • Higashijima, S., Schaefer, M., and Fetcho, J.R. (2004). Neurotransmitter properties of spinal interneurons in embryonic and larval zebrafish. J. Comp. Neurol. 480, 19–37.PubMedCrossrefGoogle Scholar

  • Hochman, S. (2015). Metabolic recruitment of spinal locomotion: intracellular neuromodulation by trace amines and their receptors. Neural Regen. Res. 10, 1940–1942.CrossrefPubMedGoogle Scholar

  • Hochman, S., Jordan, L.M., and MacDonald, J.F. (1994). N-methyl-D-aspartate receptor-mediated voltage oscillations in neurons surrounding the central canal in slices of rat spinal cord. J. Neurophysiol. 72, 565–577.PubMedCrossrefGoogle Scholar

  • Hodgkin, A. and Huxley, A. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerves. J. Physiol. 117, 500–544.CrossrefGoogle Scholar

  • Hollis, J.B. and Castell, D.O. (1975). Effects of dry swallows and wet swallow of different volumes on esophageal peristalsis. J. Appl. Physiol. 38, 1161–1164.CrossrefGoogle Scholar

  • Holloway, B.B., Viar, K.E., Stornetta, R.L., and Guyenet, P.G. (2015). The retrotrapezoid nucleus stimulates breathing by releasing glutamate in adult conscious mice. Eur. J. Neurosci. 42, 2271–2282.PubMedCrossrefGoogle Scholar

  • Holstege, G., Graveland, G., Bijker-Biemond, C., and Schuddeboom, I. (1983). Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. Brain Behav. Evol. 23, 47–62.CrossrefPubMedGoogle Scholar

  • Hoover, J.E. and Durkovic, R.G. (1992). Retrograde labeling of lumbosacral interneurons following injections of red and green fluorescent microspheres into hindlimb motor nuclei of the cat. Somatosens Mot. Res. 9, 211–226.CrossrefGoogle Scholar

  • Hotta, H. and Watanabe, N. (2015). Gentle mechanical skin stimulation inhibits micturition contractions via the spinal opioidergic system and by decreasing both ascending and descending transmissions of the micturition reflex in the spinal cord. PLoS One 10, e0135185.CrossrefPubMedGoogle Scholar

  • Hounsgaard, J., Hultborn, H., Jespersen, B., and Kiehn, O. (1984). Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. Exp. Brain Res. 55, 391–394.PubMedGoogle Scholar

  • Hounsgaard, J., Hultborn, H., and Kiehn, O. (1986). Transmitter-controlled properties of alpha-motoneurones causing long-lasting motor discharge to brief excitatory inputs. Prog. Brain Res. 64, 39–49.CrossrefPubMedGoogle Scholar

  • Huang, A., Noga, B.R., Carr, P.A., Fedirchuk, B., and Jordan, L.M. (2000). Spinal cholinergic neurons activated during locomotion: localization and electrophysiological characterization. J. Neurophysiol. 83, 3537–3547.PubMedCrossrefGoogle Scholar

  • Hubscher, C.H. and Johnson, R.D. (1996). Responses of medullary reticular formation neurons to input from the male genitalia. J. Neurophysiol. 76, 2474–2482.PubMedCrossrefGoogle Scholar

  • Hubscher, C.H. and Johnson, R.D. (2003). Responses of thalamic neurons to input from the male genitalia. J. Neurophysiol. 89, 2–11.PubMedCrossrefGoogle Scholar

  • Hubscher, C.H., Montgomery, L.R., Fell, J.D., Armstrong, J.E., Poudyal, P., Herrity, A.N., and Harkema, S.J. (2016). Effects of exercise training on urinary tract function after spinal cord injury. Am. J. Physiol. Renal Physiol. 310, F1258–F1268.Google Scholar

  • Huckstepp, R.T., Henderson, L.E., Cardoza, K.P., and Feldman, J.L. (2016). Interactions between respiratory oscillators in adult rats. Elife 5, e14203.PubMedCrossrefGoogle Scholar

  • Hugues, G.M. and Wiersma, C.A.G. (1960). The coordination of swimmeret movements in the crayfish, Procambarus Clarkii (Girard). J. Exptl. Biol. 39, 657–670.Google Scholar

  • Hultborn, H. (1976). Transmission in the pathway of reciprocal Ia inhibition to motoneurones and its control during the tonic stretch reflex. Prog. Brain Res. 44, 235–255.CrossrefPubMedGoogle Scholar

  • Hultborn, H. (2001). State-dependent modulation of sensory feedback. J. Physiol. 533, 5–13.PubMedCrossrefGoogle Scholar

  • Hultborn, H. (2006). Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog. Neurobiol. 78, 215–232.CrossrefPubMedGoogle Scholar

  • Hultborn, H. and Pierrot-Deseilligny, E. (1979). Input-output relations in the pathway of recurrent inhibition to motoneurones in the cat. J. Physiol. 297, 267–287.CrossrefGoogle Scholar

  • Husch, A., Dietz, S.B., Hong, D.N., and Harris-Warrick, R.M. (2015). Adult spinal V2a interneurons show increased excitability and serotonin-dependent bistability. J. Neurophysiol. 113, 1124–1134.CrossrefPubMedGoogle Scholar

  • Huynh, H.K., Willemsen, A.T., Lovick, T.A., and Holstege, G. (2013). Pontine control of ejaculation and female orgasm. J. Sex. Med. 10, 3038–3048.CrossrefPubMedGoogle Scholar

  • Ikeda, K., Kawakami, K., Onimaru, H., Okada, Y., Yokota, S., Koshiya, N., Oku, Y., Iizuka, M., and Koizumi, H. (2017). The respiratory control mechanisms in the brainstem and spinal cord: integrative views of the neuroanatomy and neurophysiology. J. Physiol. Sci. 67, 45–62.PubMedCrossrefGoogle Scholar

  • Inoue, M. (2015). The neural mechanisms underlying swallowing. Brain Nerve 67, 157–168.PubMedGoogle Scholar

  • Inoue, E., Chandler, S.H., and Goldberg, L.J. (1994). Neuropharmacological mechanisms underlying rhythmical discharge in trigeminal interneurons during fictive mastication. J. Neurophysiol. 71, 2061–2073.CrossrefPubMedGoogle Scholar

  • Ionavichute, V.I., Samonina, G.E., and Udel’nov, M.G. (1972). Localization and structural functional organization of the nuclear system of the vagus nerves comprising the (cardiac center) of the medulla oblongata. Usp. Fiziol. Nauk. 3, 3–23.PubMedGoogle Scholar

  • Ivanenko, Y.P., Poppele, R.E., and Lacquaniti, F. (2006). Spinal cord maps of spatiotemporal alpha-motoneuron activation in humans walking at different speeds. J. Neurophysiol. 95, 602–618.CrossrefPubMedGoogle Scholar

  • Ivanenko, Y.P., Gurfinkel, V.S., Selionov, V.A., Solopova, I.A., Sylos-Labini, F., Guertin, P.A., and Lacquaniti, F. (2017). Tonic and rhythmic spinal activity underlying locomotion. Curr. Pharm. Des. 23, 1753–1763.CrossrefPubMedGoogle Scholar

  • Iwagaki, N. and Miles, G.B. (2011). Activation of group I metabotropic glutamate receptors modulates locomotor-related motoneuron output in mice. J. Neurophysiol. 105, 2108–2120.CrossrefGoogle Scholar

  • Jahn, K., Strupp, M., Schneider, E., Dieterich, M., and Brandt, T. (2000). Differential effects of vestibular stimulation on walking and running. Neuroreport 11, 1745–1748.PubMedCrossrefGoogle Scholar

  • Jankowska, E. (1992). Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38, 335–378.CrossrefPubMedGoogle Scholar

  • Jankowska, E., Jukes, M.G., Lund, S., and Lundberg, A. (1967a). The effect of DOPA on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha motoneurones of flexors and extensors. Acta Physiol. Scand. 70, 369–388.CrossrefGoogle Scholar

  • Jankowska, E., Jukes, M.G., Lund, S., and Lundberg, A. (1967b). The effect of DOPA on the spinal cord. 6. Half-centre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402.CrossrefGoogle Scholar

  • Jean, A. (1972). Localization and activity of medullary swallowing neurones. J. Physiol. 64, 227–268.Google Scholar

  • Jean, A. (2001). Brainstem control of swallowing: neuronal network and cellular mechanisms. Physiol. Rev. 81, 929–969.CrossrefPubMedGoogle Scholar

  • Jean, A. and Car, A. (1979). Inputs to the swallowing medullary neurons from the peripheral afferent fibers and the swallowing cortical area. Brain Res. 178, 567–572.PubMedCrossrefGoogle Scholar

  • Jell, R.M., Elliott, C., and Jordan, L.M. (1985). Initiation of locomotion from the mesencephalic locomotor region: effects of selective brainstem lesions. Brain Res. 328, 121–128.CrossrefPubMedGoogle Scholar

  • Jesionowska, H. and Hemmings, R. (1991). Good-quality semen recovered from a paraplegic man with physostigmine salicylate treatment: a case report. J. Reprod. Med. 36, 167–169.PubMedGoogle Scholar

  • Jiang, Z., Carlin, K.P., and Brownstone, R.M. (1999). An in vitro functionally mature mouse spinal cord preparation for the study of spinal motor networks. Brain Res. 816, 493–499.CrossrefGoogle Scholar

  • Jonas, D., Linzbach, P., and Weber, W. (1979). The use of Midodrin in the treatment of ejaculation disorders following retroperitoneal lymphadenectomy. Eur. Urol. 5, 184–187.PubMedCrossrefGoogle Scholar

  • Jones, R. (2002). Not such as featherbrain. Nat. Rev. Neurosci. 3, 672.CrossrefPubMedGoogle Scholar

  • Jordan, L.M., Liu, J., Hedlund, P.B., Akay, T., and Pearson, K.G. (2008). Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57, 183–191.PubMedCrossrefGoogle Scholar

  • Jordan, L.M., McVagh, J.R., Noga, B.R., Cabaj, A.M., Majczyński, H., Sławińska, U., Provencher, J., Leblond, H., and Rossignol, S. (2014). Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches. Front. Neural Circuits 8, 132.PubMedGoogle Scholar

  • Ju, G., Melander, T., Ceccatelli, S., Hökfelt, T., and Frey, P. (1987). Immunohistochemical evidence for a spinothalamic pathway co-containing CCK- and galanin-like immunoreactivities in the rat. Neurosci 20, 439–456.CrossrefGoogle Scholar

  • Juvin, L., Simmers, J., and Morin, D. (2005). Propriospinal circuitry underlying interlimb coordination in mammalian quadrupedal locomotion. J. Neurosci. 25, 6025–6035.CrossrefPubMedGoogle Scholar

  • Juvin, L., Gratsch, S., Trillaud-Doppia, E., Gariepy, J.F., Buschges, A., and Dubuc, R. (2016). A specific population of reticulospinal neurons controls the termination of locomotion. Cell Rep 15, 2377–2386.CrossrefPubMedGoogle Scholar

  • Kadala, A., Verdier, D., Morquette, P., and Kolta, A. (2015). Ion homeostasis in rhythmogenesis: the interplay between neurons and astroglia. Physiology 30, 371–388.PubMedCrossrefGoogle Scholar

  • Kalat, J.W. (1998). Biological Psychology, 6th ed. (Pacific Grove, USA: Brooks/Cole Publishers), pp. 535.Google Scholar

  • Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., and Hudspeth, A.J. (2012). Principles of Neural Science, 5th ed. (New York, USA: McGraw-Hill), pp. 1709.Google Scholar

  • Kandel, E.R., Dudai, Y., and Mayford, M.R. (2014). The molecular and systems biology of memory. Cell 157, 163–186.PubMedCrossrefGoogle Scholar

  • Kasumacic, N., Lambert, F.M., Coulon, P., Bras, H., Vinay, L., Perreault, M.C., and Glover, J.C. (2015). Segmental organization of vestibulospinal inputs to spinal interneurons mediating crossed activation of thoracolumbar motoneurons in the neonatal mouse. J. Neurosci. 35, 8158–8169.CrossrefPubMedGoogle Scholar

  • Kawahara, K., Kumagai, S., Nakazono, Y., and Miyamoto, Y. (1989). Coupling between respiratory and stepping rhythms during locomotion in decerebrate cats. J. Appl. Physiol. 67, 110–115.PubMedCrossrefGoogle Scholar

  • Kessler, J.P. and Jean, A. (1991). Evidence that activation of N-methyl-d-aspartate (NMDA) and non-NMDA receptors within the nucleus tractus solitarii triggers swallowing. Eur. J. Pharmacol. 201, 59–67.CrossrefPubMedGoogle Scholar

  • Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. Ann. Rev. Neurosci. 29, 279–306.CrossrefGoogle Scholar

  • Kiehn, O. (2016). Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238.PubMedCrossrefGoogle Scholar

  • Kiehn, O. and Kjaerulff, O. (1996). Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J. Neurophysiol. 75, 1472–1482.PubMedCrossrefGoogle Scholar

  • Kiehn, O., Kjaerulff, O., Tresch, M.C., and Harris-Warrick, R.M. (2000). Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res. Bull. 53, 649–659.PubMedCrossrefGoogle Scholar

  • Kiehn, O., Quinlan, K.A., Restrepo, C.E., Lundfald, L., Borgius, L., Talpalar, A.E., and Endo, T. (2008). Excitatory components of the mammalian locomotor CPG. Brain Res. Rev. 57, 56–63.PubMedCrossrefGoogle Scholar

  • Kitrey, N.D., Clement, P., Bernabe, J., Alexandre, L., and Giuliano, F. (2007). Microinjection of the preferential dopamine receptor D3 agonist 7-OH-DPAT into the hypothalamic medial preoptic area induced ejaculation in anesthetized rats. Neuroscience 149, 636–641.CrossrefPubMedGoogle Scholar

  • Kjaerulff, O. and Kiehn, O. (1996). Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study. J. Neurosci. 16, 5777–5794.CrossrefPubMedGoogle Scholar

  • Kjaerulff, O., Barajon, I., and Kiehn, O. (1994). Sulphorhodamine-labelled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. J. Physiol. 478, 265–273.PubMedCrossrefGoogle Scholar

  • Knikou, M. (2010). Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury. J. Neurophysiol. 103, 1304–1314.PubMedCrossrefGoogle Scholar

  • Knikou, M., Angeli, C.A., Ferreira, C.K., and Harkema, S.J. (2009). Flexion reflex modulation during stepping in human spinal cord injury. Exp. Brain Res. 196, 341–351.PubMedCrossrefGoogle Scholar

  • Kogo, M., Mori, A., Koizumi, H., Ishihama, K., Iida, S., Tanaka, S., and Matsuya, T. (2000). Effect of norepinephrine receptors on trigeminal rhythm generation in newborn rats. Brain Res. Bull. 53, 171–174.CrossrefPubMedGoogle Scholar

  • Kohsaka, H., Guertin, P.A., and Nose, A. (2017). Neural circuits underlying fly larval locomotion. Curr. Pharm. Des. 23, 1722–1733.PubMedCrossrefGoogle Scholar

  • Kolta, A., Westberg, K.G., and Lund, J.P. (2000). Identification of brainstem interneurons projecting to the trigeminal motor nucleus and adjacent structures in the rabbit. J. Chem. Neuroanat. 19, 175–195.PubMedCrossrefGoogle Scholar

  • Kozyrev, N. and Coolen, L.M. (2015). Activation of mu or delta opioid receptors in the lumbosacral spinal cord is essential for ejaculatory reflexes in male rats. PLoS One 10, e0121130.CrossrefPubMedGoogle Scholar

  • Kozyrev, N. and Coolen, L.M. (2017). Activation of galanin and cholecystokinin receptors in the lumbosacral spinal cord is required for ejaculation in male rats. Eur. J. Neurosci. 45, 846–858.PubMedCrossrefGoogle Scholar

  • Kriellaars, D.J. (1992). Generation and peripheral control of locomotor rhythm. Manitoba, University of Manitoba, PhD thesis.Google Scholar

  • Kriellaars, D.J., Brownstone, R.M., Noga, B.R., and Jordan, L.M. (1994). Mechanical entrainment of fictive locomotion in the decerebrate cat. J. Neurophysiol. 71, 2074–2086.CrossrefPubMedGoogle Scholar

  • Kristan, W.B. and Weeks, J.C. (1983). Neurons Controlling the Initiation, Generation and Modulation of Leech Swimming. Neural Origin of Rhythmic Movements. A. Roberts and B. Roberts, eds. (Cambridge, UK: Cambridge University Press).Google Scholar

  • Kullander, K., Butt, S.J., Lebret, J.M., Lundfald, L., Restrepo, C.E., Rydstrom, A., Klein, R., and Kiehn, O. (2003). Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299, 1889–1892.CrossrefPubMedGoogle Scholar

  • Kuwana, S., Tsunekawa, N., Yanagawa, Y., Okada, Y., Kuribayashi, J., and Obata, K. (2006). Electrophysiological and morphological characteristics of GABAergic respiratory neurons in the mouse pre-Bötzinger complex. Eur. J. Neurosci. 23, 667–674.CrossrefPubMedGoogle Scholar

  • Kwan, A.C., Dietz, S.B., Webb, W.W., and Harris-Warrick, R.M. (2009). Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord. J. Neurosci. 29, 11601–11613.PubMedCrossrefGoogle Scholar

  • Lafreniere-Roula, M. and McCrea, D.A. (2005). Deletions of rhythmic motoneuron activity during fictive locomotion and scratch provide clues to the organization of the mammalian central pattern generator. J. Neurophysiol. 94, 1120–1135.CrossrefPubMedGoogle Scholar

  • Lalley, P.M. (2008). Opioidergic and dopaminergic modulation of respiration. Respir. Physiol. Neurobiol. 164, 160–167.CrossrefPubMedGoogle Scholar

  • Landry, E.S. and Guertin, P.A. (2004). Differential effects of 5-HT1 and 5-HT2 receptor agonists on hindlimb movements in paraplegic mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 28, 1053–1060.PubMedCrossrefGoogle Scholar

  • Landry, E.S., Lapointe, N.P., Rouillard, C., Levesque, D., Hedlund, P.B., and Guertin, P.A. (2006). Contribution of spinal 5-HT1A and 5-HT7 receptors to locomotor-like movement induced by 8-OH-DPAT in spinal cord-transected mice. Eur. J. Neurosci. 24, 535–546.CrossrefPubMedGoogle Scholar

  • Lange, W. (1975). Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res. 157, 115–125.PubMedGoogle Scholar

  • Langlet, C., Leblond, H., and Rossignol, S. (2005). Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats. J. Neurophysiol. 93, 2474–2488.PubMedCrossrefGoogle Scholar

  • Lanuza, G.M., Gosgnach, S., Pierani, A., Jessell, T.M., and Goulding, M. (2004). Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42, 375–386.CrossrefPubMedGoogle Scholar

  • Lapointe, N.P., Ung, R.V., and Guertin, P.A. (2007). Plasticity in sublesionally located neurons following spinal cord injury. J. Neurophysiol. 98, 2497–2500.PubMedCrossrefGoogle Scholar

  • Lapointe, N.P., Ung, R.V., Rouleau, P., and Guertin, P.A. (2008). Effects of spinal alpha(2)-adrenoceptor and I(1)-imidazoline receptor activation on hindlimb movement induction in spinal cord-injured mice. J. Pharmacol. Exp. Ther. 325, 994–1006.PubMedCrossrefGoogle Scholar

  • Lapointe, N.P., Rouleau, P., Ung, R.V., and Guertin, P.A. (2009). Specific role of dopamine D1 receptors in spinal network activation and rhythmic movement induction in vertebrates. J. Physiol. 587, 1499–1511.CrossrefPubMedGoogle Scholar

  • La Scaleia, V., Sylos-Labini, F., Hoellinger, T., Wang, L., Cheron, G., Lacquaniti, F., and Ivanenko, Y.P. (2014). Control of leg movements driven by EMG activity of shoulder muscles. Front. Hum. Neurosci. 8, 838.PubMedGoogle Scholar

  • Lavrov, I., Musienko, P.E., Selionov, V.A., Zdunowski, S., Roy, R.R., Edgerton, V.R., and Gerasimenko, Y. (2015). Activation of spinal locomotor circuits in the decerebrated cat by spinal epidural and/or intraspinal electrical stimulation. Brain Res. 1600, 84–92.PubMedCrossrefGoogle Scholar

  • Leblond, H., Menard, A., and Gossard, J.P. (2000). Bulbospinal control of spinal cord pathways generating locomotor extensor activities in the cat. J. Physiol. 525, 225–240.CrossrefGoogle Scholar

  • Le Ray, D., Juvin, L., Ryczko, D., and Dubuc, R. (2011). Chapter 4-supraspinal control of locomotion: the mesencephalic locomotor region. Prog. Brain Res. 188, 51–70.PubMedCrossrefGoogle Scholar

  • Lee, S.D., Nakano, H., and Farkas, G.A. (2005). Adenosinergic modulation of ventilation in obese zucker rats. Obes. Res. 13, 545–555.CrossrefPubMedGoogle Scholar

  • Li, X., Murray, K., Harvey, P.J., Ballou, E.W., and Bennett, D.J. (2007a). Serotonin facilitates a persistent calcium current in motoneurons of rats with and without chronic spinal cord injury. J. Neurophysiol. 97, 1236–1246.CrossrefGoogle Scholar

  • Li, X.L., Zhang, W., Zhou, X., Wang, X.Y., Zhang, H.T., Qin, D.X., Zhang, H., Li, Q., Li, M., and Wang, T.H. (2007b). Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 41, 135–143.CrossrefGoogle Scholar

  • Liddell, E.G. and Sherrington, C.S. (1924). Reflexes in response to stretch (Myotatic reflexes). Proc. Roy. Soc. 96, 212–242.CrossrefGoogle Scholar

  • Liu, J. and Jordan, L.M. (2005). Stimulation of the parapyramidal region of the neonatal rat brain stem produces locomotor-like activity involving spinal 5-HT7 and 5-HT2A receptors. J. Neurophysiol. 94, 1392–1404.PubMedCrossrefGoogle Scholar

  • Liu, Y., Harding, M., Pittman, A., Dore, J., Striessnig, J., Rajadhyaksha, A., and Chen, X. (2014). Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J. Neurophysiol. 112, 1119–1130.CrossrefPubMedGoogle Scholar

  • Lo, Y.K., Kuan, Y.C., Culaclii, S., Kim, B., Wang, P.M., Chang, C.W., Massachi, J.A., Zhu, M., Chen, K., Gad, P., et al. (2017). a fully integrated wireless soc for motor function recovery after spinal cord injury. IEEE Trans. Biomed. Circuits Syst. 11, 497–509.PubMedCrossrefGoogle Scholar

  • Lovely, R.G., Gregor, R.J., Roy, R.R., and Edgerton, V.R. (1986). Effects of training on the recovery of full-weight-bearing stepping in the adult spinal cat. Exp. Neurol. 92, 421–435.PubMedCrossrefGoogle Scholar

  • Lu, W.Y., Zhang, M., Neumann, R.S., and Bieger, D. (1997). Fictive oesophageal peristalsis evoked by activation of muscarinic acetylcholine receptors in rat nucleus tractus solitarii. Neurogastroenterol. Motil. 9, 247–256.CrossrefPubMedGoogle Scholar

  • Lu, J., Sherman, D., Devor, M., and Saper, C.B. (2006). A putative flip-flop switch for control of REM sleep. Nature 441, 589–594.PubMedCrossrefGoogle Scholar

  • Luiten, P.G., ter Horst, G.J., Karst, H., and Steffens, A.B. (1985). The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res. 329, 374–378.CrossrefPubMedGoogle Scholar

  • Lund, J.P. (1991). Mastication and its control by the brain stem. Critical Rev. Oral Biol. Med. 2, 33–64.CrossrefGoogle Scholar

  • Lund, J.P., Kolta, A., Westberg, K.G., and Scott, G. (1998). Brainstem mechanism underlying feeding behaviors. Curr. Opin. Neurobiol. 8, 1718–1724.Google Scholar

  • Lundberg, A. (1967). The supraspinal control of transmission in spinal reflex pathways. Electroencephalogr. Clin. Neurophysiol. Suppl 25, 35–46.Google Scholar

  • Lundfald, L., Restrepo, C.E., Butt, S.J., Peng, C.Y., Droho, S., Endo, T., Zeilhofer, H.U., Sharma, K., and Kiehn, O. (2007). Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur. J. Neurosci. 26, 2989–3002.PubMedCrossrefGoogle Scholar

  • Ma, M., Basso, D.M., Walters, P., Stokes, B.T., and Jakeman, L.B. (2001). Behavioral and histological outcomes following graded spinal cord contusion injury in the C57Bl/6 mouse. Exp. Neurol. 169, 239–254.PubMedCrossrefGoogle Scholar

  • Machado, T.A., Pnevmatikakis, E., Paninski, L., Jessell, T.M., and Miri, M. (2015). Primacy of flexor locomotor pattern revealed by ancestral reversion of motor neuron identity. Cell 162, 338–350.PubMedCrossrefGoogle Scholar

  • MacLean, J.N., Schmidt, B.J., and Hochman, S. (1997). NMDA receptor activation triggers voltage oscillations, plateau potentials and bursting in neonatal rat lumbar motoneurons in vitro. Eur. J. Neurosci. 9, 2702–2711.CrossrefPubMedGoogle Scholar

  • Madriaga, M.A., McPhee, L.C., Chersa, T., Christie, K.J., and Whelan, P.J. (2004). Modulation of locomotor activity by multiple 5-HT and dopaminergic receptor subtypes in the neonatal mouse spinal cord. J. Neurophysiol. 92, 1566–1576.PubMedCrossrefGoogle Scholar

  • Maggi, C.A., Giuliani, S., Santicioli, P., Patacchini, R., and Meli, A. (1988). Neural pathways and pharmacological modulation of defecation reflex in rats. Gen. Pharmacol. 19, 517–523.CrossrefPubMedGoogle Scholar

  • Magnuson, D.S. and Trinder, T.C. (1997). Locomotor rhythm evoked by ventrolateral funiculus stimulation in the neonatal rat spinal cord in vitro. J. Neurophysiol. 77, 200–206.CrossrefPubMedGoogle Scholar

  • Mallory, B.S., Roppolo, J.R., and de Groat, W.C. (1991). Pharmacological modulation of the pontine micturition center. Brain Res. 546, 310–320.CrossrefPubMedGoogle Scholar

  • Marder, E. and Bucher, D. (2007). Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Ann. Rev. Physiol. 69, 291–316.CrossrefGoogle Scholar

  • Marini, G. and Sotqui, M.L. (1985). Single unit activity in lateral reticular nucleus during cortically evoked masticatory movements in rabbits. Brain Res. 337, 287–292.PubMedCrossrefGoogle Scholar

  • Martin, R.E. and Sessle, B.J. (1993). The role of the cerebral cortex in swallowing. Dysphagia 8, 195–202.PubMedCrossrefGoogle Scholar

  • Mascaro, M.B. Bittencourt, J.C., Casatti, C.A., and Elias, C.F. (2005). Alternative pathways for catecholamine action in oral motor control. Neurosci. Lett. 386, 34–39.CrossrefPubMedGoogle Scholar

  • Masino, M.A., Abbinanti, M.D., Eian, J., and Harris-Warrick, R.M. (2012). TTX-resistant NMDA receptor-mediated membrane potential oscillations in neonatal mouse Hb9 interneurons. PLoS One 7, e47940.PubMedCrossrefGoogle Scholar

  • Masson, R.L. Jr., Sparkes, M.L., and Ritz, L.A. (1991). Descending projections to the rat sacrocaudal spinal cord. J. Comp. Neurol. 307, 120–130.CrossrefPubMedGoogle Scholar

  • Matthews, P.B.C. (1972). Mammalian Muscle Receptors and their Central Actions (Baltimore, USA: Williams and Wilkins).Google Scholar

  • Matthews, P.B.C. (1991). The human stretch reflex and the motor cortex. Trends Neurosci. 14, 87–90.CrossrefPubMedGoogle Scholar

  • McCormack, M. and Dubrovsky, B. (1979). Impairments in limb actions after dorsal funiculi section in cats. Exp. Brain Res. 37, 31–40.PubMedCrossrefGoogle Scholar

  • McCrea, D.A. and Rybak, I.A. (2008). Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Rev. 57, 134–146.PubMedCrossrefGoogle Scholar

  • McCrea, D.A., Pratt, C.A., and Jordan, L.M. (1980). Renshaw cell activity and recurrent effects on motoneurons during fictive locomotion. J. Neurophysiol. 44, 475–488.PubMedCrossrefGoogle Scholar

  • McEwen, M.L., Van Hartesveldt, C., and Stehouwer, D.J. (1999). The NMDA antagonist, MK-801, alters L-DOPA-induced air-stepping in neonatal rats. Brain Res. Dev. Brain Res. 115, 33–40.CrossrefPubMedGoogle Scholar

  • McKenna, K.E., Chung, S.K., and McVary, K.T. (1991). A model for the study of sexual function in anesthetized male and female rats. Am. J. Physiol. 261, 1276–1285.Google Scholar

  • McLean, D.L., Masino, M.A., Koh, I.Y., Lindquist, W.B., and Fetcho, J.R. (2008). Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. Nat. Neurosci. 11, 1419–1429.CrossrefPubMedGoogle Scholar

  • McMillan, D., de Leon, R., Guertin, P.A., and Dy, C. (2017). the utility of interappendicular connections in bipedal locomotion. Curr. Pharm. Des. 23, 1734–1740.CrossrefPubMedGoogle Scholar

  • Mehrholz, J., Harvey, L.A., Thomas, S., and Elsner, B. (2017). Is body-weight-supported treadmill training or robotic-assisted gait training superior to overground gait training and other forms of physiotherapy in people with spinal cord injury? A systematic review. Spinal Cord 55, 722–729.PubMedCrossrefGoogle Scholar

  • Merrill, E.G. and Fedorko, L. (1984). Monosynaptic inhibition of phrenic motoneurons: a long descending projection from Bötzinger neurons. J. Neurosci. 4, 2350–2353.CrossrefPubMedGoogle Scholar

  • Merton, P.A. (1953). The Spinal Cord. Speculations on the Servo Control of Movements. J.L. Malcolm, J.A. Gray, and G.E. Wolstenhom, eds. (Boston: Little Brown), pp. 247–260.Google Scholar

  • Miller, A.J. (1972). Characteristics of the swallowing reflex induced by peripheral nerve and brain stem stimulation. Exp. Neurol. 34, 210–222.PubMedCrossrefGoogle Scholar

  • Miller, A.J. (1982). Deglutition. Physiol. Rev. 62, 129–184.PubMedCrossrefGoogle Scholar

  • Miller, S. and Scott, P.D. (1977). The spinal locomotor generator. Exp. Brain Res. 30, 387–403.PubMedGoogle Scholar

  • Miller, S., Reitsma, D.J., and van der Meché, F.G. (1973). Functional organization of long ascending propriospinal pathways linking lumbo-sacral and cervical segments in the cat. Brain Res. 62, 169–188.CrossrefGoogle Scholar

  • Miller, S., Van Der Burg, J., and Van Der Meche, F.G.A. (1975). Coordination of movements of the hindlimbs and forelimbs in different forms of locomotion in normal and decerebrate cats. Brain Res. 91, 217–237.PubMedCrossrefGoogle Scholar

  • Minassian, K., Persy, I., Rattay, F., Pinter, M.M., Kern, H., and Dimitrijevic, M.R. (2007). Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum. Mov. Sci. 26, 275–295.CrossrefPubMedGoogle Scholar

  • Minassian, K., Hofstoetter, U.S., Danner, S.M., Mayr, W., Bruce, J.A., McKay, W.B., and Tansey, K.E. (2016). Spinal rhythm generation by step-induced feedback and transcutaneous posterior root stimulation in complete spinal cord-injured individuals. Neurorehabil. Neural Repair 30, 233–243.CrossrefPubMedGoogle Scholar

  • Minassian, K., Hofstoetter, U.S., Dzeladini, F., Guertin, P.A., and Ijspeert, A. (2017). The human central pattern generator for locomotion. Neuroscientist. Mar 1, 107385841769979.PubMedGoogle Scholar

  • Mladinic, M. and Nistri, A. (2013). Microelectrode arraws in combination with in vitro models of spinal cord injury as tools to investigate pathological changes in network activity: facts and promises. Front. Neuroeng. 6, 2.PubMedGoogle Scholar

  • Moore, J.C. (1984). The Golgi tendon organ: a review and update. Am. J. Occup. Ther. 38, 227–236.CrossrefPubMedGoogle Scholar

  • Moore, J.D., Kleinfeld, D., and Wang, F. (2014). How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci. 37, 370–380.PubMedCrossrefGoogle Scholar

  • Moreland, A.J. and Makela, E.H. (2005). SSRIs in the treatment of premature ejaculation. Ann. Pharmacother. 39, 1296–1301.PubMedCrossrefGoogle Scholar

  • Mori, S., Matsui, T., Kuze, B., Asanome, M., Makajima, K., and Matsuyama, K. (1999). Stimulation of a restricted region in the midline cerebellar white matter evokes coordinated quadrupedal locomotion in the decerebrate cat. J. Neurophysiol. 82, 290–300.CrossrefPubMedGoogle Scholar

  • Mori, A., Kogo, M., Ishihama, K., Tanaka, S., Enomoto, A., Koizumi, H., and Matsuya, T. (2002). Effect of serotonin (5-HT) on trigeminal rhythmic activities generated in in vitro brainstem block preparations. J. Dent. Res. 81, 598–602.CrossrefPubMedGoogle Scholar

  • Morquette, P., Lavoie, R., Fhima, M.D., Lamoureux, X., Verdier, D., and Kolta, A. (2012). Generation of the masticatory central pattern and its modulation by sensory feedback. Prog. Neurobiol. 96, 340–355.PubMedCrossrefGoogle Scholar

  • Morquette, P., Verdier, D., Kadala, A., Féthière, J., Philippe, A.G., Robitaille, R., and Kolta, A. (2015). An astrocyte-dependent mechanism for neuronal rhythmogenesis. Nat. Neurosci. 18, 844–854.CrossrefPubMedGoogle Scholar

  • Morris, D.L. and Rui, L. (2009). Recent advances in understanding leptin signaling and leptin resistance. Am. J. Physiol. Endocrinol. Metab. 297, E1247–E1259.Google Scholar

  • Morrison, J., Birder, L., and Craggs, M. (2005). Neural Control. Incontinence. P. Abrams, L. Cardozo, S. Khoury, and A. Wein, eds. (Jersey: Health Publications Ltd.), pp. 363–422.Google Scholar

  • Moshonkina, T.R., Makarovski, A.N., Bogacheva, I.N., Scherbakova, N.A., Savohin, A.A., and Gerasimenko, Y.P. (2012). Effects of spinal cord electrical stimulation in patients with vertebrospinal pathology. Bull. Exp. Biol. Med. 153, 16–20.CrossrefPubMedGoogle Scholar

  • Munro, R.R. (1975). Electromyography of the muscles of mastication. Monogr. Oral Sci. 4, 87–116.CrossrefPubMedGoogle Scholar

  • Munoz-Ortiz, J., Munoz-Ortiz, E., Lopez-Meraz, M.L., Berltran-Parrazal, L., and Morgado-Valle, C. (2016). Pre-Bötzinger complex: generation and modulation of respiratory rhythm. Neurologia 33, 1–7.Google Scholar

  • Murray, M. and Goldberger, M.E. (1974). Restitution of function and collateral sprouting in the cat spinal cord: the partially hemisected animal. J. Comp. Neurol. 158, 19–36.CrossrefGoogle Scholar

  • Murray, K.C., Nakae, A., Stephens, M.J., Rank, M., D’Amico, J., Harvey, P.J., Li, X., Harris, R.L., Ballou, E.W., Anelli, R., et al. (2010). Recovery of motoneuron and locomotor function after spinal cord injury depends on constitutive activity in 5-HT2C receptors. Nat. Med. 16, 694–700.PubMedCrossrefGoogle Scholar

  • Mushahwar, V.K., Gillard, D.M., Gauthier, M.J., and Prochazka, A. (2002). Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. IEEE Trans. Neural. Syst. Rehabil. Eng. 10, 68–81.PubMedCrossrefGoogle Scholar

  • Muybridge, E. (1979). Muybridge’s Complete Human and Animal Locomotion: All 781 Plates from the 1887 Animal Locomotion (Berkeley, CA: Courier Dover Publications).Google Scholar

  • Nadeau, S., Jacquemin, G., Fournier, C., Lamarre, Y., and Rossignol, S. (2010). Spontaneous motor rhythms of the back and legs in a patient with a complete spinal cord transection. Neurorehabil. Neural Repair 24, 377–383.CrossrefGoogle Scholar

  • Nadelhaft, I. and Vera, P.L. (1995). Central nervous system neurons infected by pseudorabies virus injected into the rat urinary bladder following unilateral transection of the pelvic nerve. J. Comp. Neurol. 359, 443–456.CrossrefPubMedGoogle Scholar

  • Nagano, M., Ishimizu, Y., Saitoh, S., Okada, H., and Fukada, H. (2004). The defecation reflex in rats: fundamental properties and the reflex center. Auton. Neurosci. 111, 48–56.PubMedCrossrefGoogle Scholar

  • Nagy, S., Huang, Y.C., Alkema, M.J., and Biron, D. (2015). Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Sci. Rep. 5, 17174.CrossrefPubMedGoogle Scholar

  • Naitou, K., Mamerto, T.P., Pustovit, R.V., Callaghan, B., Rivera, L.R., Chan, A.J., Ringuet, M.T., Pietra, C., and Furness, J.B. (2015a). Site and mechanism of the colokinetic action of the ghrelin receptor agonist, HM01. Neurogastroenterol. Motil. 27, 1764–1771.CrossrefGoogle Scholar

  • Naitou, K., Shiina, T., Sugita, R., Nakamori, H., and Shimizu, Y. (2015b). Characterization of ghrelin-sensitive neurons in the lumbosacral defecation center in rats. Neurogastroenterol. Motil. 27, 147–155.CrossrefGoogle Scholar

  • Naitou, K., Nakamori, H., Shiina, T., Ikeda, A., Nozue, Y., Sano, Y., Yokoyama, T., Yamamoto, Y., Yamada, A., Akimoto, N., et al. (2016). Stimulation of dopamine D2-like receptors in the lumbosacral defaecation centre causes propulsive colorectal contractions in rats. J. Physiol. 594, 4339–4350.PubMedCrossrefGoogle Scholar

  • Naitou, K., Shiina, T., Nakamori, H., Sano, Y., Shimaoka, H., and Shimizu, Y. (2017). Colokinetic effect of somatostatin in the spinal defecation center in rats. J. Physiol. Sci. 68, 243–251.PubMedGoogle Scholar

  • Nakamori, H., Naitou, K., Horii, Y., Shimaoka, H., Horii, K., Sakai, H., Yamada, A., Furue, H., Shiina, T., and Shimizu, Y. (2018). Medullary raphe nuclei activate the lumbosacral defecation center through the descending serotonergic pathway to regulate colorectal motility in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 314, G341–G348.Google Scholar

  • Nakamura, Y. and Katakura, N. (1995). Generation of masticatory rhythm in the brainstem. Neurosci. Res. 23, 1–19.CrossrefPubMedGoogle Scholar

  • Nakamura, Y., Yanagawa, Y., Morrisson, S.F., and Nakamura, K. (2017). Medullary reticular neurons mediate neuropeptide Y-induced metabolic inhibition and mastication. Cell Metab. 25, 322–334.PubMedCrossrefGoogle Scholar

  • Nashold, B.S. Jr., Friedman, H., and Boyarsky, S. (1971). Electrical activation of micturition by spinal cord stimulation. J. Surg. Res. 11, 144–147.PubMedCrossrefGoogle Scholar

  • Nashold, B.S.J., Friedman, H., and Grimes, J. (1981). Electrical stimulation of the conus medullaris to control the bladder in the paraplegic patient. A 10-year review. Applied Neurophysiol. 44, 225–232.Google Scholar

  • Nassour, J., Hénaff, P., Benouezdou, F., and Cheng, G. (2014). Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots. Biol. Cybern. 108, 291–303.CrossrefPubMedGoogle Scholar

  • Nathan, P.W. and Smith, M.C. (1955). Long descending tracts in man. I. Review of present knowledge. Brain 78, 248–303.CrossrefGoogle Scholar

  • Nathan, P.W., Smith, M., and Deacon, P. (1996). Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119, 1809–1833.CrossrefPubMedGoogle Scholar

  • Nelson, A.D., Camilleri, M., Chirapongsathorn, S., Vijayvargiya, P., Valentin, N., Shin, A., Erwin, P.J., Wang, Z., and Murad, M.H. (2017). Comparison of efficacy of pharmacological treatments for chronic idiopathic constipation: a systematic review and network meta-analysis. Gut 66, 1611–1622.CrossrefPubMedGoogle Scholar

  • Nicholas, A.P., Zhang, X., and Hökfelt, T. (1999). An immunohistochemical investigation of the opioid cell column in lamina X of the male rat lumbosacral spinal cord. Neurosci. Lett. 270, 9–12.CrossrefPubMedGoogle Scholar

  • Nishimaru, H., Takizawa, H., and Kudo, N. (2000). 5-Hydroxytryptamine-induced locomotor rhythm in the neonatal mouse spinal cord in vitro. Neurosci. Lett. 280, 187–190.PubMedCrossrefGoogle Scholar

  • Nishimaru, H., Restrepo, C.E., and Kiehn, O. (2006). Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. J. Neurosci. 26, 5320–5328.CrossrefPubMedGoogle Scholar

  • Nissen, U.V., Mochida, H., and Glover, J.C. (2005). Development of projection-specific interneurons and projection neurons in the embryonic mouse and rat spinal cord. J. Comp. Neurol. 483, 30–47.PubMedCrossrefGoogle Scholar

  • Noga, B.R., Shefchyk, S.J., Jamal, J., and Jordan, L.M. (1987). The role of Renshaw cells in locomotion: antagonism of their excitation from motor axon collaterals with intravenous mecamylamine. Exp. Brain Res. 66, 99–105.PubMedGoogle Scholar

  • Noga, B.R., Kriellars, D.J., and Jordan, L.M. (1991). The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions. J. Neurosci. 11, 1691–1700.PubMedCrossrefGoogle Scholar

  • Noga, B.R., Kriellars, D.J., Brownstone, R.M., and Jordan, L.M. (2003). Mechanism for activation of locomotor centers in the spinal cord by stimulation of the mesencephalic locomotor region. J. Neurophysiol. 90, 1464–1478.PubMedCrossrefGoogle Scholar

  • Norreel, J.C., Pflieger, J.F., Pearlstein, E., Simeoni-Alias, J., Clarac, F., and Vinay, L. (2003). Reversible disorganization of the locomotor pattern after neonatal spinal cord transection in the rat. J. Neurosci. 23, 1924–1932.PubMedCrossrefGoogle Scholar

  • Nozaki, S., Iriki, A., and Nakamura, Y. (1986). Localization of central rhythm generator involved in cortically induced rhythmical masticatory jaw-opening movement in the guinea pig. J. Neurophysiol. 55, 806–825.PubMedCrossrefGoogle Scholar

  • Nurse, M.A. and Nigg, B.M. (2001). The effect of changes in foot sensation on plantar pressure and muscle activity. Clin. Biomech. 16, 719–727.CrossrefGoogle Scholar

  • Oka, T., Iwakiri, H., and Mori, S. (1993). Pontine-induced generalized suppression of postural muscle tone in a reflexively standing acute decerebrate cat. Neurosci. Res. 17, 127–140.CrossrefGoogle Scholar

  • Okusawa, S., Kohsaka, H., and Nose, A. (2014). Serotonin and downstream leucokinin neurons modulate larval turning behavior in Drosophila. J. Neurosci. 34, 2544–2558.CrossrefPubMedGoogle Scholar

  • Ollivier-Lanvin, K., Krupka, A.J., AuYong, N., Miller, K., Prilutsky, B.I., and Lemay, M.A. (2011). Electrical stimulation of the sural cutaneous afferent nerve controls the amplitude and onset of the swing phase of locomotion in the spinal cat. J. Neurophysiol. 105, 2297–2308.PubMedCrossrefGoogle Scholar

  • Omer, A. and Quigley, E.M.M. (2017). An update on prucalopride in the treatment of chronic constipation. Therap. Adv. Gastroenterol. 10, 877–887.CrossrefPubMedGoogle Scholar

  • Orsal, D., Cabelguen, J.M., and Perret, C. (1990). Interlimb coordination during fictive locomotion in the thalamic cat. Exp. Brain Res. 82, 536–546.PubMedGoogle Scholar

  • Panchin, Y.V., Perrins, R.J., and Roberts, A. (1991). The action of acetylcholine on the locomotor central pattern generator for swimming in Xenopus embryos. J. Exp. Biol. 161, 527–531.PubMedGoogle Scholar

  • Pang, M.Y. and Yang, J.F. (2000). The initiation of the swing phase in human infant stepping: importance of hip position and leg loading. J. Physiol. 528, 389–404.PubMedCrossrefGoogle Scholar

  • Pearson, K.G. (1995). Proprioceptive regulation of locomotion. Curr. Opin. Neurobiol. 5, 786–791.PubMedCrossrefGoogle Scholar

  • Pearson, K.G. (2004). Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143, 123–129.PubMedCrossrefGoogle Scholar

  • Pearson, K.G. (2008). Role of sensory feedback in the control of stance duration in walking cats. Brain Res. Rev. 57, 222–227.PubMedCrossrefGoogle Scholar

  • Pearson, K. and Duysens, J. (1976). Function of Segmental Reflexes in the Control of Stepping in Cockroaches and C. Neural Control of Locomotion. M. Herman, S. Grillner, P.S.G. Stein, and D. Stuart, eds. (New York: Plenum Press), pp. 519–538.Google Scholar

  • Pearson, K.G. and Rossignol, S. (1991). Fictive motor patterns in chronic spinal cats. J. Neurophysiol. 66, 1874–1887.CrossrefPubMedGoogle Scholar

  • Pearson, K.G. and Collins, D.F. (1993). Reversal of the influence of group Ib afferents from plantaris on activity in medial gastrocnemius muscle during locomotor activity. J. Neurophysiol. 70, 1009–1017.CrossrefPubMedGoogle Scholar

  • Peña, F. and Ramirez, J.M. (2004). Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J. Neurosci. 24, 7549–7556.CrossrefPubMedGoogle Scholar

  • Pena, F. and Aguileta, M.A. (2007). Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo. Neurosci. Lett. 415, 288–293.CrossrefPubMedGoogle Scholar

  • Perreault, M.C., Angel, M.J., Guertin, P., and McCrea, D.A. (1995). Effects of stimulation of hindlimb flexor group II afferents during fictive locomotion in the cat. J. Physiol. 487, 211–220.CrossrefGoogle Scholar

  • Perreault, M.C., Shefchyk, S.J., Jimenez, I., and McCrea, D.A. (1999). Depression of muscle and cutaneous afferent-evoked monosynaptic field potentials during fictive locomotion in the cat. J. Physiol. 521, 691–703.CrossrefGoogle Scholar

  • Perret, C. (1983). Centrally generated pattern of motoneuron activity during locomotion in the cats. Symp. Soc. Exp. Biol. 37, 405–422.PubMedGoogle Scholar

  • Perret, C. and Cabelguen, J.M. (1980). Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res. 187, 333–352.CrossrefPubMedGoogle Scholar

  • Perret, C., Cabelguen, J.M., and Orsal, D. (1998). Analysis of the Pattern of Actvity in ‘Knee Flexor’ Motoneurons during Locomotion in the Cat. Stance and Motion: Facts and Concepts. V.S. Gurfinkle, M.E. Ioffe, J. Massion, and J.P. Roll, eds. (New York, USA: Plenum Press), pp. 133–141.Google Scholar

  • Peyron, M.A., Blanc, O., Lund, J.P., and Woda, A. (2004). Influence of age on adaptability of human mastication. J. Neurophysiol. 92, 773–779.PubMedCrossrefGoogle Scholar

  • Philippson, M. (1905). L’autonomie et la centralisation dans le système nerveux des animaux [Autonomy and centralization in the animal nervous system]. Trav. Lab. Physiol. Inst. Solvay (Bruxelles) 7, 1–208.Google Scholar

  • Pikov, V., Bullara, L., and McCreery, D.B. (2007). Intraspinal stimulation for bladder voiding in cats before and after chronic spinal cord injury. J. Neural Eng. 4, 356–368.PubMedCrossrefGoogle Scholar

  • Pokrovskii, V.M. (2005). Integration of the heart rhythmogenesis levels: heart rhythm generator in the brain. J. Integr. Neurosci. 4, 161–168.CrossrefPubMedGoogle Scholar

  • Pomerantz, S.M., Hepner, B.C., and Wertz, J.M. (1993). Serotonergic influences on male sexual behavior of rhesus monkeys: effects of serotonin agonists. Psychopharmacology 111, 47–54.PubMedCrossrefGoogle Scholar

  • Pozos, R.S. and Iaizzo, P.A. (1991). Shivering and pathological and physiological clonic oscillations of the human ankle. J. Appl. Physiol. 71, 1929–1932.CrossrefPubMedGoogle Scholar

  • Pratt, C.A. and Jordan, L.M. (1987). Ia inhibitory interneurons and Renshaw cells as contributors to the spinal mechanisms of fictive locomotion. J. Neurophysiol. 57, 56–71.CrossrefPubMedGoogle Scholar

  • Pratt, C.A., Buford, J.A., and Smith, J.L. (1996). Adaptive control for backward quadrupedal walking V. Mutable activation of bifunctional thigh muscles. J. Neurophysiol. 75, 832–842.CrossrefPubMedGoogle Scholar

  • Prentice, S.D. and Drew, T. (2001). Contributions of the reticulospinal system to the postural adjustments occurring during voluntary gait modifications. J. Neurophysiol. 85, 679–698.PubMedCrossrefGoogle Scholar

  • Prochazka, A., Clarac, F., Loeb, G.E., Rothwell, J.C., and Wolpaw, J.R. (2000). What do reflex and voluntary mean? Modern views on an ancient debate. Exp. Brain Res. 130, 417–432.CrossrefPubMedGoogle Scholar

  • Puskar, Z. and Antal, M. (1997). Localization of last-order premotor interneurons in the lumbar spinal cord of rats. J. Comp. Neurol. 389, 377–389.CrossrefPubMedGoogle Scholar

  • Radhakrishna, M., Steuer, I., Prince, F., Roberts, M., Mongeon, D., Kia, M., Dyck, S., Matte, G., Vaillancourt, M., and Guertin, P.A. (2017). Double-blind, placebo-controlled, randomized phase I/IIa study (safety and efficacy) with buspirone/levodopa/carbidopa (SpinalonTM) in subjects with complete AIS A or motor-complete AIS B spinal cord injury. Curr. Pharm. Des. 23, 1789–1804.CrossrefGoogle Scholar

  • Ramirez, J.M., Schwarzacher, S.W., Pierrefiche, O., Olivera, B.M., and Richter, D.W. (1998). Selective lesioning of the cat pre-Bötzinger complex in vivo eliminates breathing but not gasping. J. Physiol. 507, 895–907.CrossrefGoogle Scholar

  • Rankin, J. and Dempsey, J.A. (1967). Respiratory muscles and the mechanisms of breathing. Am. J. Phys. Med. 46, 198–244.PubMedGoogle Scholar

  • Ratnovsky, A. (2008). Mechanics of respiratory muscles. Respir. Physiol. Neurobiol. 163, 82–89.CrossrefPubMedGoogle Scholar

  • Reed, W.R. and Magnuson, D.S. (2013). Cervical response among ascending ventrolateral funiculus pathways of the neonatal rat. Brain Res. 1491, 136–146.CrossrefPubMedGoogle Scholar

  • Reith, C.A. and Sillar, K.T. (1998). A role for slow NMDA receptor-mediated, intrinsic neuronal oscillations in the control of fast fictive swimming in Xenopus laevis larvae. Eur. J. Neurosci. 10, 1329–1340.CrossrefPubMedGoogle Scholar

  • Reitz, A., Knapp, P.A., Müntener, M., and Schurch, B. (2004). Oral nitric oxide donors: a new pharmacological approach to detrusor-sphincter dyssynergia in spinal cord injured patients? Eur. Urol. 45, 516–520.Google Scholar

  • Ren, J., Chew, D.J., Biers, S., and Thiruchelvam, N. (2016). Electrical nerve stimulation to promote micturition in spinal cord injury patients: A review of current attempts. Neurourol. Urodyn. 35, 365–370.PubMedCrossrefGoogle Scholar

  • Rexed, B. (1952). The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96, 414–495.Google Scholar

  • Riddle, D.L., Blumenthal, T., Meyer, B.J., and Priess, J.R. (1997). C. elegans II. 2nd ed. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press).Google Scholar

  • Rigaud, M., Gemes, G., Barabas, M.E., Chernoff, D.I., Abram, S.E., Stucky, C.L., and Hogan, Q.H. (2008). Species and strain differences in rodent sciatic nerve anatomy: implications for studies of neuropathic pain. Pain 136, 188–201.PubMedCrossrefGoogle Scholar

  • Riley, A.J. and Riley, E.J. (1982). Partial ejaculatory incompetence: the therapeutic effect of midodrine, an orally active selective alpha-adrenoceptor agonist. Eur. Urol. 8, 155.CrossrefPubMedGoogle Scholar

  • Robertson, R.M. and Pearson, K.G. (1985). Neural circuits in the flight system of the locust. J. Neurophysiol. 53, 110–128.PubMedCrossrefGoogle Scholar

  • Roseberry, T.K., Lee, A.M., Lalive, A.L., Wibrecht, L., Bonci, A., and Kreitzer, A.C. (2016). Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164, 526–537.CrossrefPubMedGoogle Scholar

  • Rossi, S., Santarnecchi, E., Valenza, G., and Ulivelli, M. (2016). The heart side of brain neuromodulation. Phil. Trans. R. Soc. A 374, 20150187.CrossrefGoogle Scholar

  • Rossignol, S., Giroux, N., Chau, C., Marcoux, J., Brustein, E., and Reader, T.A. (2001). Pharmacological aids to locomotor training after spinal injury in the cat. J. Physiol. 533, 65–74.CrossrefGoogle Scholar

  • Rossignol, S., Dubuc, R., and Gossard, J.P. (2006). Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154.CrossrefPubMedGoogle Scholar

  • Rostad, H. (1973). Extrinsic and central nervous control of colonic motility. A survey of previous and new concepts based on experimental results. J. Oslo City Hosp. 23, 65–75.PubMedGoogle Scholar

  • Rouzade-Dominguez, M.L., Miselis, R., and Valentino, R.J. (2003). Central representation of bladder and colon revealed by dual transsynaptic tracing in the rat: substrates for pelvic visceral coordination. Eur. J. Neurosci. 18, 3311–3324.PubMedCrossrefGoogle Scholar

  • Rubio-Casillas, A., Rodríguez-Quintero, C.M., Rodríguez-Manzo, G., and Fernández-Guasti, A. (2015). Unraveling the modulatory actions of serotonin on male rat sexual responses. Neurosci. Biobehav. Rev. 55, 234–246.PubMedCrossrefGoogle Scholar

  • Rybak, I.A., Shevtsova, N.A., Lafreniere-Roula, M., and McCrea, D.A. (2006). Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. 577, 617–639.PubMedCrossrefGoogle Scholar

  • Rybak, I.A., Dougherty, K.J., and Shevtsova, N.A. (2015). Organization of the mammalian locomotor CPG: Review of computational model and circuit architectures based on genetically identified spinal interneurons(1,2,3). eNeuro 2, 1–20.Google Scholar

  • Ryczko, D. and Dubuc, R. (2013). The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19, 4448–4470.PubMedCrossrefGoogle Scholar

  • Ryczko, D., Cone, J.J., Alpert, M.H., Goetz, L., Auclair, F., Dube, C., Parent, M., Roitman, M.F., Alford, S., and Dubuc, R. (2016). A descending dopamine pathway conserved from basal vertebrates to mammals. Proc. Natl. Acad. Sci. USA 113, E2440–E2449.Google Scholar

  • Sacco, E., Pinto, F., and Bassi, P. (2008). Emerging pharmacological targets in overactive bladder therapy: experimental and clinical evidences. Int. Urogynecol. J. 19, 583–598.CrossrefGoogle Scholar

  • Sandler, V.M., Puil, E., and Schwarz, D.W.F. (1998). Intrinsic response properties of busting neurons in the nucleus principalis trigemini of the gerbil. Neuroscience 83, 891–904.CrossrefGoogle Scholar

  • Sanger, G.J., Broad, J., Callaghan, B., and Furness, J.B. (2017). Ghrelin and motilin control systems in GI physiology and therapeutics. Handb. Exp. Pharmacol. 239, 379–416.PubMedGoogle Scholar

  • Sasaki, M. (2002). Bladder contractility-related neurons in Barrington’s nucleus: axonal projections to the spinal cord in the cat. J. Comp. Neurol. 449, 355–363.CrossrefGoogle Scholar

  • Sasaki, M. (2005). Role of Barrington’s nucleus in micturition. J. Comp. Neurol. 493, 21–26.PubMedCrossrefGoogle Scholar

  • Schmidt, R.A. (1986). Advances in genitourinary neurostimulation. Neurosurgery 18, 1041–1052.Google Scholar

  • Schmidt, B.J. and Jordan, L.M. (2000). The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res. Bull. 53, 689–710.CrossrefPubMedGoogle Scholar

  • Schmidt, B.J., Hochman, S., and MacLean, J.N. (1998). NMDA receptor-mediated oscillatory properties: potential role in rhythm generation in the mammalian spinal cord. Ann. NY Acad. Sci. 860, 189–202.CrossrefGoogle Scholar

  • Schomburg, E.D., Petersen, N., Barajon, I., and Hultborn, H. (1998). Flexor reflex afferents reset the step cycle during fictive locomotion in the cat. Exp. Brain Res. 122, 339–350.CrossrefGoogle Scholar

  • Schroder, H.D. (1985). Anatomical and pathoanatomical studies on the spinal efferent systems innervating pelvic structures. 1. Organization of spinal nuclei in animals. 2. The nucleus X-pelvic motor system in man. J. Auton. Nerv. Syst. 14, 23–48.PubMedCrossrefGoogle Scholar

  • Schurch, B., Stöhrer, M., Kramer, G., Schmid, D.M., Gaul, G., and Hauri, D. (2000). Botulinum-A toxin for treating detrusor hyperreflexia in spinal cord injured patients: a new alternative to anticholinergic drugs? Preliminary results. J. Urol. 164, 692–697.PubMedCrossrefGoogle Scholar

  • Schwarzacher, S.W., Rüb, U., and Deller, T. (2011). Neuroanatomical characteristics of the human pre-Bötzinger complex and its involvement in neurodegenerative brainstem diseases. Brain 134, 24–35.CrossrefPubMedGoogle Scholar

  • Selionova, V.A., Ivanenko, Y.P., Solopova, I.A., and Gurfinkel, V.S. (2009). Tonic central and sensory stimuli facilitate involuntary air-stepping in humans. J. Neurophysiol. 101, 2847–2858.CrossrefPubMedGoogle Scholar

  • Selverston, A.I. (2010). Invertebrate central pattern generator circuits. Phil. Trans. R. Soc. B. 365, 2329–2345.CrossrefGoogle Scholar

  • Shafei, M.N. and Nasimi, A. (2011). Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: role of the pontine Kolliker-Fuse nucleus. Brain Res. 1385, 135–143.PubMedCrossrefGoogle Scholar

  • Shafton, A.D., Sanger, G.J., Witherington, J., Brown, J.D., Muir, A., Butler, S., Abberley, L., Shimizu, Y., and Furness, J.B. (2009). Oral administration of a centrally acting ghrelin receptor agonist to conscious rats triggers defecation. Neurogastroenterol. Motil. 21, 71–77.CrossrefPubMedGoogle Scholar

  • Shapkova, E.Y. (2004). Spinal Locomotor Capabality Revealed by Electrical Stimulation of the Lumbar Enlargement in Paraplegic Patients. Progress in Motor Control. M. Latash and M. Levin, eds. (Champaign, IL: Human Kinetics), pp. 253–289.Google Scholar

  • Shapkova, E.Y. and Schomburg, E.D. (2001). Two types of motor modulation underlying human stepping by spinal cord electrical stimulation (SCES). Acta Physiol. Pharmacol. Bulg. 26, 155–157.PubMedGoogle Scholar

  • Shaw, A.C., Jackson, A.W., Holmes, T., Thurman, S., Davis, G.R., and McClellan, A.D. (2010). Descending brain neurons in larval lamprey: spinal projection patterns and initiation of locomotion. Exp. Neurol. 224, 527–541.PubMedCrossrefGoogle Scholar

  • Shefchyk, S.J. and Jordan, L.M. (1985). Excitatory and inhibitory postsynaptic potentials in α-motoneurons produced during fictive locomotion by stimulation of the mesencephalic locomotor region. J. Neurophysiol. 53, 1345–1355.CrossrefPubMedGoogle Scholar

  • Shefchyk, S., McCrea, D., Kriellaars, D., Fortier, P., and Jordan, L. (1990). Activity of interneurons within the L4 spinal segment of the cat during brainstem-evoked fictive locomotion. Exp. Brain Res. 80, 290–295.Google Scholar

  • Sherrington, C.S. (1910). Flexion-reflex of the limb, crossed extension-reflex, and reflex stepping and standing. J. Physiol. 40, 28–121.PubMedCrossrefGoogle Scholar

  • Shik, M.L., Severin, F.V., and Orlovskii, G.N. (1966). Control of walking and running by means of electrical stimulation of the midbrain. Biofizika 11, 659–666.PubMedGoogle Scholar

  • Shik, M.L., Severin, F.V., and Orlovsky, G.N. (1969). Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalogr. Clin. Neurophysiol. 26, 549.PubMedGoogle Scholar

  • Shimizu, Y., Chang, E.C., Shafton, A.D., Ferens, D.M., Sanger, G.J., Witherington, J., and Furness, J.B. (2006). Evidence that stimulation of ghrelin receptors in the spinal cord initiates propulsive activity in the colon of the rat. J. Physiol. 576, 329–338.CrossrefPubMedGoogle Scholar

  • Sigvardt, K.A., Grillner, S., Wallén, P., and Van Dongen, P.A. (1985). Activation of NMDA receptors elicits fictive locomotion and bistable membrane properties in the lamprey spinal cord. Brain Res. 336, 390–395.PubMedCrossrefGoogle Scholar

  • Silva, J.N., Tanabe, F.M., Moreira, T.S., and Takakura, A.C. (2016). Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats. Respir. Physiol. Neurobiol. 227, 9–22.PubMedCrossrefGoogle Scholar

  • Sivertsen, M.S., Glover, J.C., and Perreault, M.C. (2014). Organization of pontine reticulospinal inputs to motoneurons controlling axial and limb muscles in the neonatal mouse. J. Neurophysiol. 112, 1628–1643.PubMedCrossrefGoogle Scholar

  • Sivertsen, M.S., Glover, J.C., and Perreault, M.C. (2016). Pontine reticulospinal projections in the neonatal mouse: internal organization and axon trajectories. J. Comp. Neurol. 524, 1270–1291.CrossrefPubMedGoogle Scholar

  • Skinner, R.D., Kinjo, N., Henderson, V., and Garcia-Rill, E. (1990). Locomotor projections from the pedunculopontine nucleus to the spinal cord. Neuroreport 1, 183–186.PubMedCrossrefGoogle Scholar

  • Sławińska, U., Rossignol, S., Bennett, D.J., Schmidt, B.J., Frigon, A., Fouad, K., and Jordan, L.M. (2012). Comment on ‘Restoring voluntary control of locomotion after paralyzing spinal cord injury’. Science 338, 328.Google Scholar

  • Sławińska, U., Miazga, K., and Jordan, L.M. (2014). 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons. Front. Neural Circuits 8, 95.PubMedGoogle Scholar

  • Smith, J.C., Ellenberger, H.H., Ballanyi, K., Richter, D.W., and Feldman, J.L. (1991). Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254, 726–729.CrossrefPubMedGoogle Scholar

  • Smith, J.C., Abdala, A.P.L., Rybak, I.A., and Paton, J.F.R. (2009). Structural and functional architecture of respiratory networks in the mammalian brainstem. Phil. Trans. R. Soc. B. 364, 2577–2587.CrossrefGoogle Scholar

  • Smith, J.C., Abdala, A.P.L., Borgmann, A., Rybak, I.A., and Paton, J.F.R. (2013). Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 36, 152–162.PubMedCrossrefGoogle Scholar

  • Snoeren, E.M., Veening, J.G., Olivier, B., and Oosting, R.S. (2014). Serotonin 1A receptors and sexual behavior in male rats: a review. Pharmacol. Biochem. Behav. 121, 102–114.CrossrefPubMedGoogle Scholar

  • Sqalli-Houssaini, Y. and Cazalets, J.R. (2000). Noradrenergic control of locomotor networks in the in vitro spinal cord of the neonatal rat. Brain Res. 852, 100–109.CrossrefPubMedGoogle Scholar

  • Staerman, F., Bryckaert, P.E., Youinou, Y., Colin, J., Brandt, B., and Lardennois, B. (2001). Pharmacologic stimulation of ejaculation with midodrine hydrochloride (Gutron) for medically assisted reproduction in spinal injury. Prog. Urol. 11, 1264.PubMedGoogle Scholar

  • Stafford, S.A., Bowery, N.G., Tang, K., and Coote, J.H. (2006). Activation by p-chloroamphetamine of the spinal ejaculatory pattern generator in anaesthetized male rats. Neurosci. 140, 1031–1040.CrossrefGoogle Scholar

  • Stanek, E., Cheng, S., Takatoh, J., Bao-Xia, H., and Fan, W. (2014). Monosynaptic premotor circuits tracing reveals neural substrates for oro-motor coordinatin. eLife 3, e02511.CrossrefGoogle Scholar

  • Staudt, M.D., Truitt, W.A., McKenna, K.E., de Oliveira, C.V., Lehman, M.N., and Coolen, L.M. (2012). A pivotal role of lumbar spinothalamic cells in the regulation of ejaculation via intraspinal connections. J. Sex. Med. 9, 2256–2265.PubMedCrossrefGoogle Scholar

  • Stecina, K., Fedirchuk, B., and Hultborn, H. (2013). Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract. J. Physiol. 591, 5433–5443.CrossrefPubMedGoogle Scholar

  • Steeves, J.D. and Jordan, L.M. (1980). Localization of a descending pathway in the spinal cord which is necessary for controlled treadmill locomotion. Neurosci. Lett. 20, 283–288.PubMedCrossrefGoogle Scholar

  • Stein, R.B. and Capaday, C. (1988). The modulation of human reflexes during functional motor tasks. Trends Neurosci. 11, 328–332.CrossrefPubMedGoogle Scholar

  • Stein, P.S.G. and Smith, J.L. (1997). Neural and Biomechanical Control Strategies for Different forms of Vertebrate Hindlimb Motor tasks. Neurons, Networks, and Motor Behavior. P.S.G. Stein, S. Grillner, A.I. Selverston, and D.G. Stuart, eds. (Cambridge, USA: MIT Press), pp. 61–73.Google Scholar

  • Stokke, M.F., Nissen, U.V., Glover, J.C., and Kiehn, O. (2002). Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rats. J. Comp. Neurol. 446, 349–359.PubMedCrossrefGoogle Scholar

  • Stuart, D.G. and Hultborn, H. (2008). Thomas Graham Brown (1882–1965), Anders Lundberg (1920–), and the neural control of stepping. Brain Res. Rev. 59, 74–95.CrossrefGoogle Scholar

  • Sugaya, K., Roppolo, J.R., Yoshimura, N., Card, J.P., and de Groat, W.C. (1997). The central neural pathways involved in micturition in the neonatal rat as revealed by the injection of pseudorabies virus into the urinary bladder. Neurosci. Lett. 223, 197–200.CrossrefPubMedGoogle Scholar

  • Sugaya, K., Nishijima, S., Miyazato, M., and Ogawa, Y. (2005). Central nervous control of micturition and urine storage. J. Smooth Muscle Res. 41, 117–132.CrossrefPubMedGoogle Scholar

  • Sugaya, K., Nishijima, S., Kadekawa, K., Ashitomi, K., Ueda, T., and Yamamoto, H. (2014). Spinal mechanism of micturition reflex inhibition by naftopidil in rats. Life Sci. 116, 106–111.PubMedCrossrefGoogle Scholar

  • Sugaya, K., Nishijima, S., Kadekawa, K., Ashitomi, K., Ueda, T., Yamamoto, H., and Hattori, T. (2017). Action of naftopidil on spinal serotonergic neurotransmission for inhibition of the micturition reflex in rats. Neurourol. Urodyn. 36, 604–609.PubMedCrossrefGoogle Scholar

  • Sultan, F. and Braitenberg, V. (1993). Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J. Hirnforsch. 34, 79–92.PubMedGoogle Scholar

  • Sylos-Labini, F., Ivanenko, Y.P., Maclellan, M.J., Cappellini, G., Poppele, R.E., and Lacquaniti, F. (2014). Locomotor-like leg movements evoked by rhythmic arm movements in humans. PLoS One 9, e90775.CrossrefPubMedGoogle Scholar

  • Székely, G., Czéh, G., and Voros, G. (1969). The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp. Brain Res. 9, 53–72.PubMedGoogle Scholar

  • Taccola, G., Marchetti, C., and Nistri, A. (2003). Effect of metabotropic glutamate receptor activity on rhythmic discharges of the neonatal rat spinal cord in vitro. Exp. Brain Res. 153, 388–393.CrossrefPubMedGoogle Scholar

  • Takaki, M., Neya, T., and Nakayama, S. (1983). Role and localization of a region in the pons which has a descending inhibitory influence on sympathetically mediated inhibition of the recto-rectal reflex of guinea pigs. Pflüger’s Arch. 398, 120–125.CrossrefGoogle Scholar

  • Takakusaki, K. (2017). Functional neuroanatomy for posture and gait control. J. Mov. Disord. 10, 1–17.CrossrefPubMedGoogle Scholar

  • Talpalar, A.E. and Kiehn, O. (2010). Glutamatergic mechanisms for speed control and network operation in the rodent locomotor CPG. Front. Neural Circuits. 4, 3.Google Scholar

  • Talpalar, A.E., Endo, T., Löw, P., Borgius, L., Hägglund, M., Dougherty, K.J., Ryge, J., Hnasko, T.S., and Kiehn, O. (2011). Identification of minimal neuronal networks involved in flexor-extensor alternation in the mammalian spinal cord. Neuron 71, 1071–1084.CrossrefPubMedGoogle Scholar

  • Talpalar, A.E., Bouvier, J., Borgius, L., Fortin, G., Pierani, A., and Kiehn, O. (2013). Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500, 85–88.PubMedCrossrefGoogle Scholar

  • Tan, U. (2010). Uner Tan syndrome: History, clinical evaluations, genetics, and the dynamics of human quadrupedalism. Open Neurol. J. 4, 78–89.CrossrefPubMedGoogle Scholar

  • Tanaka, S., Kogo, M., Chandler, S.H., and Matsuya, T. (1999). Localization of oral-motor rhythmogenic circuits in the isolated rat brainstem preparation. Brain Res. 821, 190–199.PubMedCrossrefGoogle Scholar

  • Tanaka-Gomi, N., Yasuda, K., Nakamura, M., Hasumi-Nakayama, Y., Umemura, T., Tanaka, S., and Furusawa, K. (2007). Postnatal changes in 5HT and NK1 receptors in rat trigeminal motor nucleus and surroundings. Int. J. Dev. Neurosci. 25, 427–432.PubMedCrossrefGoogle Scholar

  • Tankachan, S., Fuller, P.M., and Lu, J. (2012). Movement- and behavioral state-dependent activity of pontine reticulospinal neurons. Neuroscience 221, 125–139.CrossrefPubMedGoogle Scholar

  • Tateno, F., Sakakibara, R., Kishi, M., Tsuyusaki, Y., Furukawa, R., Yoshimatsu, Y., and Suzuki, Y. (2012). Brainstem stroke and increased anal tone. Low Urin. Tract Symptoms 4, 161–163.PubMedCrossrefGoogle Scholar

  • Tazerart, S., Vinay, L., and Brocart, F. (2008). The persistent sodium current generates pacemaker activities in the central pattern generator for locomotion and regulates the locomotor rhythm. J. Neurosci. 28, 8577–8589.PubMedCrossrefGoogle Scholar

  • Tell, F. and Jean, A. (1991). Activation of N-methyl-d-aspartate receptors induces endogenous rhythmic bursting activities in nucleus tractus solitarii neurons: an intracellular study on adult rat brainstem slices. Eur. J. Neurosci. 3, 1353–1365.CrossrefPubMedGoogle Scholar

  • Thomas, G.D. (2011). Neural control of the circulation. Adv. Physiol. Ed 35, 28–32.CrossrefGoogle Scholar

  • Tillakaratne, N.J., de Leon, R.D., Hoang, T.X., Roy, R.R., Edgerton, V.R., and Tobin, A.J. (2002). Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J. Neurosci. 22, 3130–3143.PubMedCrossrefGoogle Scholar

  • Tresch, M.C., Saltiel, P., and Bizzi, E. (1999). The construction of movement by the spinal cord. Nat. Neurosci. 2, 162–167.PubMedCrossrefGoogle Scholar

  • Troyer, A. and Boriek, A.M. (2011). Mechanics of the respiratory muscles. Compr. Physiol. 1, 1273–1300.PubMedGoogle Scholar

  • Truitt, W.A. and Coolen, L.M. (2002). Identification of a potential ejaculation generator in the spinal cord. Science 297, 1566–1569.CrossrefPubMedGoogle Scholar

  • Trulsson, M. (2007). Force encoding by human periodontal mechanoreceptors during mastication. Arch. Oral Biol. 52, 357–360.CrossrefPubMedGoogle Scholar

  • Tsuboi, A., Kolta, A., Chen, C.C., and Lund, J.P. (2003). Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns. Eur. J. Neurosci. 17, 229–238.PubMedCrossrefGoogle Scholar

  • Tsuruyama, K., Hsiao, C.F., and Chandler, S.H. (2013). Participation of a persistent sodium current and calcium-activated nonspecific cationic current to burst generation in trigeminal principal sensory neurons. J. Neurophysiol. 110, 1903–1914.CrossrefPubMedGoogle Scholar

  • Umemura, T., Ohta, H., Yokota, A., Yarimizu, S., and Nishizawa, S. (2016). Urinary retention associated with stroke. J. UOEH. 38, 263–269.PubMedCrossrefGoogle Scholar

  • Umezaki, T., Matsuse, T., and Shin, T. (1998). Medullary swallowing-related neurons in the anesthetized cat. Neuroreport 9, 1793–1798.CrossrefPubMedGoogle Scholar

  • Ung, R.V., Landry, E.S., Rouleau, P., Lapointe, N.P., Rouillard, C., and Guertin, P.A. (2008). Role of spinal 5-HT2 receptor subtypes in quipazine-induced hindlimb movements after a low-thoracic spinal cord transection. Eur. J. Neurosci. 28, 2231–2242.PubMedCrossrefGoogle Scholar

  • Ung, R.V., Rouleau, P., and Guertin, P.A. (2012). Functional and physiological effects of treadmill training induced by buspirone, carbidopa, and L-DOPA in clenbuterol-treated paraplegic mice. Neurorehabil. Neural Repair. 26, 385–394.CrossrefPubMedGoogle Scholar

  • van den Brand, R., Heutschi, J., Barraud, Q., DiGiovanna, J., Bartholdi, K., Huerlimann, M., Friedli, L., Vollenweider, I., Moraud, E.M., Duis, S., et al. (2012). Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336, 1182–1185.CrossrefPubMedGoogle Scholar

  • Vargas, V.M., Torres, D., Corona, F., Vergara, M., Gomez, L.E., Delgado-Lezama, R., and Cueva-Rolon, R. (2004). Cholinergic facilitation of erection and ejaculation in spinal cord-transected rats. Int. J. Impot. Res. 16, 86–90.PubMedCrossrefGoogle Scholar

  • Veening, J.G. and Coolen, L.M. (2014). Neural mechanisms of sexual behavior in the male rat: emphasis on ejaculation-related circuits. Pharmacol. Biochem. Behav. 121, 170–183.CrossrefPubMedGoogle Scholar

  • Viala, D. and Buser, P. (1969). The effects of DOPA and 5-HTP on rhythmic efferent discharges in hind limb nerves in the rabbit. Brain Res. 12, 437–443.PubMedCrossrefGoogle Scholar

  • Vitton, V., Grimaud, J.C., Bouvier, M., and Abysique, A. (2006). Supraspinal control of external anal sphincter motility: effects of vesical distension in humans and cats. Neurogastroenterol. Motil. 18, 1031–1040.PubMedCrossrefGoogle Scholar

  • Vizzard, M.A., Erickson, V.L., Card, J.P., Roppolo, J.R., and de Groat, W.C. (1995). Transneuronal labeling of neurons in the adult rat brainstem and spinal cord after injection of pseudorabies virus into the urethra. J. Comp. Neurol. 355, 629–640.CrossrefPubMedGoogle Scholar

  • Wallen, P. and Grillner, S. (1987). N-methyl-d-aspartate receptor-induced, inherent oscillatory activity in neurons active during fictive locomotion in the lamprey. J. Neurosci. 7, 2745–2755.PubMedCrossrefGoogle Scholar

  • Wang, Y.T. and Bieger, D. (1991). Role of solitarial GABAergic mechanism in control of swallowing. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 267, 639–646.Google Scholar

  • Watson, C., Paxinos, G., and Kayalioglu, G. (2009). The Spinal Cord – A Christopher and Dana Reeve Foundation Text and Atlas (New York, USA: Elsevier Inc.).Google Scholar

  • Watson, C., Paxinos, G., and Puelles, L. (2012). The Mouse Nervous System (New York: Elsevier Inc.).Google Scholar

  • Whelan, P.J., Hiebert, G.W., and Pearson, K.G. (1995). Stimulation of the group I extensor afferents prolongs the stance phase in walking cats. Exp. Brain Res. 103, 20–30.Google Scholar

  • Wieder, J.A., Brackett, N.L., Lynne, C.M., Green, J.T., and Aballa, T.C. (2000). Anesthetic block of the dorsal penile nerve inhibits vibratory-induced ejaculation in men with SCI. Urology 55, 915–917.CrossrefPubMedGoogle Scholar

  • Wienecke, J., Enríquez Denton, M., Stecina, K., Kirkwood, P.A., and Hultborn, H. (2015). Modulation of spontaneous locomotor and respiratory drives to hindlimb motoneurons temporally related to sympathetic drives as revealed by Mayer waves. Front. Neural. Circuits 9, 1.PubMedGoogle Scholar

  • Williams, R.W. and Herrup, K. (1988). The control of neuron number. Annu. Rev. Neurosci. 11, 423–453.CrossrefPubMedGoogle Scholar

  • Wilson, D.M. (1961). The central nervous control of flight in a locust. J. Exp. Biol. 38, 471–490.Google Scholar

  • Wilson, D.M. and Wyman, R.J. (1965). Motor output patterns during random and rhythmic stimulation of locust thoracic ganglia. Biophys. J. 5, 121–143.CrossrefPubMedGoogle Scholar

  • Wilson, J.M., Hartley, R., Maxwell, D.J., Todd, A.J., Lieberam, I., Kaltschmidt, J.A., Yoshida, Y., Jessell, T.M., and Brownstone, R.M. (2005). Conditional rhythmicity of ventral spinal interneurons defined by expression of the Hb9 homeodomain protein. J. Neurosci. 25, 5710–5719.PubMedCrossrefGoogle Scholar

  • Winter, D.A. (1991). Changes in gait with aging. Can. J. Sport Sci. 16, 165–167.PubMedGoogle Scholar

  • Witts, E.C., Nascimento, F., and Miles, G.B. (2015). Adenosine-mediated modulation of ventral horn interneurons and spinal motoneurons in neonatal mice. J. Neurophysiol. 114, 2305–2315.PubMedCrossrefGoogle Scholar

  • Wolpaw, J.R. (2010). What can the spinal cord teach us about learning and memory? Neuroscientist 16, 532–549.CrossrefPubMedGoogle Scholar

  • Woolf, C.J. and McMahon, S.B. (1985). Injury-induced plasticity of the flexor reflex in chronic decerebrate rats. Neuroscience 16, 395–404.PubMedCrossrefGoogle Scholar

  • Wright, A.J. and Haddad, M. (2017). Electroneurostimulation for the management of bladder bowel dysfunction in childhood. Eur. J. Paediatr. Neurol. 21, 67–74.PubMedCrossrefGoogle Scholar

  • Xu, C., Yaici, E.D., Conrath, M., Blanchard, P., Leclerc, P., Benoît, G., Vergé, D., and Giuliano, F. (2005). Galanin and neurokinin-1 receptor immunoreactive [corrected] spinal neurons controlling the prostate and the bulbospongiosus muscle identified by transsynaptic labeling in the rat. Neuroscience 134, 1325–1341.CrossrefPubMedGoogle Scholar

  • Xu, C., Giuliano, F., Yaici, E.D., Conrath, M., Trassard, O., Benoit, G., and Vergé, D. (2006). Identification of lumbar spinal neurons controlling simultaneously the prostate and the bulbospongiosus muscles in the rat. Neuroscience 138, 561–573.PubMedCrossrefGoogle Scholar

  • Yaksh, T.L. (1999). Spinal Drug Delivery (Amsterdam, Netherlands: Elsevier Inc.).Google Scholar

  • Yamanaka, K., Takagishi, M., Kim, J., Gouraud, S.S., and Waki, H. (2018). Bidirectional cardiovascular responses evoked by microstimulation of the amygdala in rats. J. Physiol. Sci. 68, 233–242.CrossrefPubMedGoogle Scholar

  • Yang, C.F. and Feldman, J.L. (2018). Efferent projections of excitatory and inhibitory preBötzinger complex neurons. J. Comp. Neurol. 526, 1389–1402.CrossrefPubMedGoogle Scholar

  • Yang, Z., Lv, Q., Wang, Z., Dong, X., Yang, R., and Zhao, W. (2017). Identification of crucial genes associated with rat traumatic spinal cord injury. Mol. Med. Rep. 15, 1997–2006.CrossrefPubMedGoogle Scholar

  • Yeh, S.Y., Huang, W.H., Wang, W., Ward, C.S., Chao, E.S., Wu, Z., Tang, B., Tang, J., Sun, J.J., Esther van der Heijden, M., et al. (2017). Respiratory network stability and modulatory response to substance P require Nalcn. Neuron 94, 294–303.CrossrefPubMedGoogle Scholar

  • Yonezawa, A., Yoshizumi, M., Ebiko, M., Ise, S.N., Watanabe, C., Mizoguchi, H., Kimura, Y., and Sakurada, S. (2008). Ejaculatory response induced by a 5-HT2 receptor agonist m-CPP in rats: Differential roles of 5-HT2 receptor subtypes. Pharmacolo. Biochem. Behav. 88, 367–373.CrossrefGoogle Scholar

  • Yoshiyama, M. and de Groat, W.C. (2005). Supraspinal and spinal α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and N-methyl-D-aspartate glutamatergic control of the micturition reflex in the urethane anesthetized rat. Neuroscience 132, 1017–1026.CrossrefPubMedGoogle Scholar

  • Zhang, C. and Lewis, T.J. (2017). Robust phase-waves in chains of half-center oscillators. J. Math. Biol. 74, 1627–1656.PubMedCrossrefGoogle Scholar

  • Zhang, X., Douglas, K.L., Jin, H., Eldaif, B.M., Nassar, R., Fraser, M.O., and Dolber, P.C. (2008a). Sprouting of substance P-expressing primary afferent central terminals and spinal micturition reflex NK1 receptor dependence after spinal cord injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, 2084–2096.CrossrefGoogle Scholar

  • Zhang, Y., Narayan, S., Geiman, E., Lanuza, G.M., Velasquez, T., Shanks, B., Akay, T., Dyck, J., Pearons, K., Gosgnach, S., et al. (2008b). V3 spinal neurons establish a robust and balanced locomotor rhythm during walking. Neuron 60, 84–96.CrossrefGoogle Scholar

  • Zhang, D., Zhu, X., Lan, L., and Zhu, K. (2009). Mathematical study on ionic mechanism of lamprey central pattern generator model. Int. J. Neural Syst. 19, 409–424.CrossrefPubMedGoogle Scholar

  • Zhang, J., Lanuza, G.M., Britz, O., Wang, Z., Siembab, V.C., Zhang, Y., Velasquez, T., Alvarez, F.J., Frank, E., and Goulding, M. (2014). V1 and V2b interneurons secure the alternating flexor-extensor motor activity mice require for limbed locomotion. Neuron 82, 138–150.CrossrefPubMedGoogle Scholar

  • Zhong, G., Droho, S., Crone, S.A., Dietz, S., Kwan, A.C., Webb, W.W., Sharma, K., and Harris-Warrick, R.M. (2010). Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord. J. Neurosci. 30, 170–182.CrossrefPubMedGoogle Scholar

  • Zhong, G., Sharma, K., and Harris-Warrick, R.M. (2011). Frequency-dependent recruitment of V2a interneurons during fictive locomotion in the mouse spinal cord. Nat. Commun. 2, 274.CrossrefPubMedGoogle Scholar

  • Ziskind-Conhaim, L., Wu, L., and Wiesner, E.P. (2008). Persistent sodium current contributes to induced voltage oscillations in locomotor-related hb9 interneurons in the mouse spinal cord. J. Neurophysiol. 100, 2254–2264.CrossrefPubMedGoogle Scholar

About the article

Received: 2017-11-27

Accepted: 2018-03-30

Published Online: 2018-12-13

Published in Print: 2019-01-28


Citation Information: Reviews in the Neurosciences, Volume 30, Issue 2, Pages 107–164, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0102.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in