Abbott, R.D., Petrovitch, H., White, L.R., Masaki, K.H., Tanner, C.M., Curb, J.D., Grandinetti, A., Blanchette, P.L., Popper, J.S., and Ross, G.W. (2001). Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57, 456–462. PubMedCrossrefGoogle Scholar
Al-Asmakh, M. and Hedin, L. (2015). Microbiota and the control of blood-tissue barriers. Tissue Barriers 3, e1039691. PubMedCrossrefGoogle Scholar
Al-Sadi, R.M. and Ma, T.Y. (2007). IL-1beta causes an increase in intestinal epithelial tight junction permeability. J. Immunol. 178, 4641–4649. PubMedCrossrefGoogle Scholar
Alenghat, T. and Artis, D. (2014). Epigenomic regulation of host-microbiota interactions. Trends Immunol. 35, 518–525. CrossrefPubMedGoogle Scholar
Allen, J.M., Mailing, L.J., Niemiro, G.M., Moore, R., Cook, M.D., White, B.A., Holscher, H.D., and Woods, J.A. (2018). Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757. CrossrefPubMedGoogle Scholar
Alvarez, W. (2016). A Most Improbable Journey (New York, NY, USA: W.W. Norton & Company). Google Scholar
Alvarez, C.S., Badia, J., Bosch, M., Giménez, R., and Baldomà, L. (2016). Outer membrane vesicles and soluble factors released by probiotic Escherichia coli Nissle 1917 and commensal ECOR63 enhance barrier function by regulating expression of tight junction proteins in intestinal epithelial cells. Front. Microbiol. 7, 1981. PubMedGoogle Scholar
Arpaia, N., Campbell, C., Fan, X., Dikiy, S., van der Veeken, J., Liu, H., Cross, J.R., Pfeffer, K., Coffer, P.J., and Rudensky, A.Y. (2013). Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455. PubMedCrossrefGoogle Scholar
Asano, J., Sato, T., Ichinose, S., Kajita, M., Onai, N., Shimizu, S., and Ohteki, T. (2017). Intrinsic autophagy is required for the maintenance of intestinal stem cells and for irradiation-induced intestinal regeneration. Cell Rep. 20, 1050–1060. PubMedCrossrefGoogle Scholar
Astafurov, K., Elhawy, E., Ren, L., Dong, C.Q., Igboin, C., Hyman, L., Griffen, A., Mittag, T., and Danias, J. (2014). Oral microbiome link to neurodegeneration in glaucoma. PLoS One 9, e104416. PubMedCrossrefGoogle Scholar
Bailey, M.T. and Coe, C.L. (1999). Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 35, 146–55. CrossrefPubMedGoogle Scholar
Bao, W., Li, S., Chavarro, J.E., Tobias, D.K., Zhu, Y., Hu, F.B. and Zhang, C. (2015). Low-carbohydrate-diet scores and long-term risk of type 2 diabetes among women with a history of gestational diabetes: a prospective cohort study. Diabetes Care 39, 43–49. PubMedGoogle Scholar
Barrett, E., Ross, R., O’Toole, P., Fitzgerald, G., and Stanton, C. (2012). γ-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113, 411–417. CrossrefPubMedGoogle Scholar
Beamish, L.A., Osornio-Vargas, A.R., and Wine, E. (2011). Air pollution: an environmental factor contributing to intestinal disease. J. Crohns Colitis 5, 279–286. CrossrefPubMedGoogle Scholar
Beckerman, M. (2006). Molecular and Cellular Signaling (Heidelberg, Germany: Springer). Google Scholar
Beilharz, J.E., Kaakoush, N.O., Maniam, J., and Morris, M.J. (2017). Cafeteria diet and probiotic therapy: cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Mol. Psychiatr. 23, 351–361. Google Scholar
Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C., and Brigidi, P. (2012). Aging of the human metaorganism: the microbial counterpart. Age (Dordr) 34, 247–267. PubMedCrossrefGoogle Scholar
Bibi, S., de Sousa Moraes, L.F., Lebow, N., and Zhu, M.J. (2017). Dietary green pea protects against DSS-induced colitis in mice challenged with high-fat diet. Nutrients 9, 509. CrossrefGoogle Scholar
Binjumah, M., Ajarem, J., and Ahmad, M. (2016). Effects of the perinatal exposure of Gum Arabic on the development, behavior and biochemical parameters of mice offspring. Saudi J. Biol. Sci. doi.org/10.1016/j.sjbs.2016.04.008. PubMedGoogle Scholar
Blackburn, E. and Epel, E. (2017). The Telomere Effect: A Revolutionary Approach to Living Younger, Healthier, Longer (New York, NY: Grand Central Publishing). Google Scholar
Block, M.L. and Calderón-Garcidueñas, L. (2009). Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 32, 506–516. CrossrefPubMedGoogle Scholar
Bokulich, N.A., Chung, J., Battaglia, T., Henderson, N., Jay, M., Li, H., Lieber, A.D., Wu, F., Perez-Perez, G.I., Chen, Y., et al. (2016). Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82. PubMedGoogle Scholar
Borre, Y.E., O’Keeffe, G.W., Clarke, G., Stanton, C., Dinan, T.G., and Cryan, J.F. (2014). Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol. Med. 20, 509–518. CrossrefPubMedGoogle Scholar
Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108, 16050–16055. CrossrefGoogle Scholar
Brooks, S.W., Dykes, A.C., and Schreursa, B.G. (2017). A high-cholesterol diet increases 27-hydroxycholesterol and modifies estrogen receptor expression and neurodegeneration in rabbit hippocampus. J. Alzheimers Dis. 56, 185–196. PubMedCrossrefGoogle Scholar
Brown, A.S. (2012). Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev. Neurobiol. 72, 1272–1276. PubMedCrossrefGoogle Scholar
Brun, P., Castagliuolo, I., Leo, V.D., Buda, A., Pinzani, M., Palù, G., and Martines, D. (2007). Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver. Physiol. 292, G518–G525. Google Scholar
Bruzzese, E., Raia, V., Gaudiello, G., Polito, G., Buccigrossi, V., Formicola, V., and Guarino, A. (2004). Intestinal inflammation is a frequent feature of cystic fibrosis and is reduced by probiotic administration. Aliment. Pharmacol. Ther. 20, 813–819. PubMedCrossrefGoogle Scholar
Calame, W., Weseler, A.R., Viebke, C., Flynn, C., and Siemensma, A.D. (2008). Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br. J. Nutr. 100, 1269–1275. CrossrefGoogle Scholar
Campbell, T.C. (2014). Untold nutrition. Nutr. Cancer 66, 1077–1082. CrossrefPubMedGoogle Scholar
Capaldo, C.T. and Nusrat, A. (2009). Cytokine regulation of tight junctions. Biochim. Biophys. Acta 1788, 864–871. CrossrefPubMedGoogle Scholar
Cattaneo, A., Cattane, N., Galluzzi, S., Provasi, S., Lopizzo, N., Festari, C., Ferrari, C., Guerra, U.P., Paghera, B., Muscio, C., et al. (2017). Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol. Aging 49, 60–68. CrossrefPubMedGoogle Scholar
Chandra, J., Kuhn, D.M., Mukherjee, P.K., Hoyer, L.L., McCormick, T. and Ghannoum, M.A. (2001). Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 183, 5385–5394. PubMedCrossrefGoogle Scholar
Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E., and Gewirtz, A.T. (2015). Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96. CrossrefPubMedGoogle Scholar
Chen, S.G., Stribinski, V., Rane, M.J., Demuth, D.R., Gozal, E., Roberts, A.M., Jagadapillai, R., Liu, R., Choe, K., Shivakumar, B., et al. (2016). Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci. Rep. 6, 34477. PubMedCrossrefGoogle Scholar
Choi, J.J., Eum, S.Y., Rampersaud, E., Daunert, S., Abreu, M.T., and Toborek, M. (2013). Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ. Health Perspect. 121, 725. PubMedCrossrefGoogle Scholar
Christ, A., Günther, P., Lauterbach, M.A., Duewell, P., Biswas, D., Pelka, K., Scholz, C.J., Oosting, M., Haendler, K., Baßler, K., et al. (2018). Western diet triggers NLRP3-dependent innate immune reprogramming. Cell 172, 162.e14–175.e14. Google Scholar
Chu, D.M., Antony, K.M., Ma, J., Prince, A.L., Showalter, L., Moller, M., and Aagaard, K.M. (2016). The early infant gut microbiome varies in association with a maternal high-fat diet. Genome Med. 8, 77. PubMedCrossrefGoogle Scholar
Clements, M.P., Byrne, E., Guerrero, L.F.C., Cattin, A.L., Zakka, L., Ashraf, A., Burden, J.J., Khadayate, S., Lloyd, A.C., Marguerat, S., et al. (2017). The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration. Neuron 96, 98.e7–114.e7. Google Scholar
Cohen, M., Appleby, B., and Safar, J.G. (2016). Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer’s disease. Prion 10, 9–17. CrossrefPubMedGoogle Scholar
Collado, M.C., Rautava, S., Aakko, J., Isolauri, E., and Salminen, S. (2016). Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 6, 23129. PubMedCrossrefGoogle Scholar
Conner, T.S., Brookie, K.L., Carr, A.C., Mainvil, L.A., and Vissers, M.C.M. (2017). Let them eat fruit! The effect of fruit and vegetable consumption on psychological well-being in young adults: a randomized controlled trial. PLoS One 12, e0171206. PubMedCrossrefGoogle Scholar
Conradi, S., Malzahn, U., Paul, F., Quill, S., Harms, L., Bergh, F.T., Ditzenbach, A., Georgi, T., Heuschmann, P., and Rosche, B. (2013). Breastfeeding is associated with lower risk for multiple sclerosis. Mult. Scler. 19, 553–558. CrossrefPubMedGoogle Scholar
Crüts, B., van Etten, L., Törnqvist, H., Blomberg, A., Sandström, T., Mills, N.L., and Borm, P.J.A. (2008). Exposure to diesel exhaust induces changes in EEG in human volunteers. Part. Fibre Toxicol. 5, 4. PubMedCrossrefGoogle Scholar
Daley, J. (2016). The Paleo diet may need a rewrite, ancient humans feasted on a wide variety of plants. Smithsonian. Google Scholar
Dalziel, J.E., Young, W., McKenzie, C.M., Haggarty, N.W., and Roy, N.C. (2017). Gastric emptying and gastrointestinal transit compared among native and hydrolyzed whey and casein milk proteins in an aged rat model. Nutrients 9, 1351. CrossrefGoogle Scholar
David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg, D.B., Button, J.E., Wolfe, B.E., Ling, A.V., Devlin, A.S., Varma, Y., Fischbach, M.A., et al. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563. PubMedCrossrefGoogle Scholar
de María, N., Becerril, J.M., Garca-Plazaola, J.I., Hernandez, A.H., de Felipe, M.R., and Fernández-Pascual, M. (1996). New insights on glyphosate mode of action in nodular metabolism: role of shikimate accumulation. J. Agric. Food Chem. 54, 2621–2628. Google Scholar
Desbonnet, L., Clarke, G., Traplin, A., O’Sullivan, O., Crispie, F., Moloney, R.D., Cotter, P.D., Dinan, T.G., and Cryan, J.F. (2015). Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav. Immun. 48, 165–173. PubMedCrossrefGoogle Scholar
De Vuyst, L. and Leroy, F. (2011). Cross-feeding between bifidobacteria and butyrate-producing colon bacteria explains bifidobacterial competitiveness, butyrate production, and gas production. Int. J. Food Microbiol. 149, 73–80. CrossrefPubMedGoogle Scholar
De Vuyst, L., Moens, F., Selak, M., Rivière, A., and Leroy, F. (2014). Summer meeting 2013: growth and physiology of bifidobacteria. J. Appl. Microbiol. 116, 477–491. CrossrefPubMedGoogle Scholar
Donohoe, D.R., Garge, N., Zhang, X., Sun, W., O’Connell, T.M., Bunger, M.K., and Bultman, S.J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526. PubMedCrossrefGoogle Scholar
Douiev, L., Soiferman, D., Alban, C., and Saada, A. (2016). The effects of ascorbate, N-acetylcysteine, and resveratrol on fibroblasts from patients with mitochondrial disorders. J. Clin. Med. 6, pii: E1. PubMedGoogle Scholar
Drabińska, N., Jarocka-Cyrta, E., Markiewicz, L.H., and Krupa-Kozak, U. (2018). The effect of oligofructose-enriched inulin on faecal bacterial counts and microbiota-associated characteristics in celiac disease children following a gluten-free diet: results of a randomized, placebo-controlled trial. Nutrients 10, 201. CrossrefGoogle Scholar
Duff, M. and Ettarh, R.R. (2002). Crypt cell production rate in the small intestine of the zinc-supplemented mouse. Cells Tissues Organs 172, 21–28. CrossrefPubMedGoogle Scholar
Duscha, A., Joerg, S., Berg, J., Holm, J.B., Linker, R.A., Gold, R., and Haghikia, A. (2017). Propionic acid modulates T effector cell balance and function in MS patients. ECTRIMS Online Library 202422. Google Scholar
Eisenstein, M. (2016). Living factories of the future. Nature 531, 401–403. CrossrefPubMedGoogle Scholar
Emery, D.C., Shoemark, D.K., Batstone, T.E., Waterfall, C.M., Coghill, J.A., Cerajewska, T.L., Davies, M., West, N.X., and Allen, S.J. (2017). 16S rRNA next generation sequencing analysis shows bacteria in Alzheimer’s post-mortem brain. Front. Aging Neurosci. 9, 195. PubMedCrossrefGoogle Scholar
Engelhart, M.J., Geerlings, M.I., Meijer, J., Kiliaan, A., Ruitenberg, A., van Swieten, J.C., Stijnen, T., Hofman, A., Witteman, J.C., and Breteler, M.M. (2004). Inflammatory proteins in plasma and the risk of dementia: the Rotterdam study. Arch. Neurol. 61, 668–672. CrossrefPubMedGoogle Scholar
Erny, D., Hrabe de Angelis, A.L., Jaitin, D., Wieghofer, P., Staszewski, O., David, E., Keren-Shaul, H., Mahlakoiv, T., Jakobshagen, K., Buch, T., et al. (2015). Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977. PubMedCrossrefGoogle Scholar
Falony, G., Lazidou, K., Verschaeren, A., Weckx, S., Maes, D., and De Vuyst, L. (2009). In vitro kinetic analysis of fermentation of prebiotic inulin-type fructans by Bifidobacterium species reveals four different phenotypes. Appl. Environ. Microbiol. 75, 454–461. CrossrefPubMedGoogle Scholar
Fang, X. (2016). Potential role of gut microbiota and tissue barriers in Parkinson’s disease and amyotrophic lateral sclerosis. Int. J. Neurosci. 126, 771–776. CrossrefPubMedGoogle Scholar
Faraco, G., Brea, D., Garcia-Bonilla, L., Wang, G., Racchumi, G., Chang, H., Buendia, I., Santisteban, M.M., Segarra, S.G., Koizumi, K., et al. (2018). Dietary salt promotes neurovascular and cognitive dysfunction through a gut-initiated TH17 response. Nat. Neurosci. 21, 240–249. CrossrefPubMedGoogle Scholar
Feigin, V.L., Roth, G.A., Naghavi, M., Parmar, P., Krishnamurthi, R., Chugh, S., Mensah, G.A., Norrving, B., Shiue, I., Ng, M., et al. (2016). Global burden of stroke and risk factors in 188 countries, during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet Neurol. 15, 913–924. PubMedCrossrefGoogle Scholar
Fischer, A., Gluth, M., Weege, F., Pape, U.F., Wiedenmann, B., Baumgart, D.C., and Theuring, F. (2014). Glucocorticoids regulate barrier function and claudin expression in intestinal epithelial cells via MKP-1. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G218–G228. Google Scholar
Fond, G., Boukouaci, W., Chevalier, G., Regnault, A., Eberl, G., Hamdani, N., Dickerson, F., Macgregor, A., Boyer, L., Dargel, A., et al. (2015). The ‘psychomicrobiotic’: targeting microbiota in major psychiatric disorders: a systematic review. Pathol. Biol. (Paris) 63, 35–42. PubMedCrossrefGoogle Scholar
Forsyth, C.B., Shannon, K.M., Kordower, J.H., Voigt, R.M., Shaikh, M., Jaglin, J.A., Estes, J.D., Dodiya, H.B., and Keshavarzian, A. (2011). Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 6, e28032. CrossrefPubMedGoogle Scholar
Foster, N. and Macpherson, G.G. (2010). Murine cecal patch M cells transport infectious prions in vivo. J Infect Dis 202, 1916–1919. CrossrefGoogle Scholar
Fox, M., Knapp, L.A., Andrews, P.W., and Fincher, C.L. (2013). Epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden. Evol. Med. Public Health 2013, 173–186. PubMedGoogle Scholar
Franklin, T.B., Russig, H., Weiss, I.C., Gräff, J., Linder, N., Michalon, A., Vizi, S., and Mansuy, I.M. (2010). Epigenetic transmission of the impact of early stress across generations. Biol. Psychiatry 68, 408–415. CrossrefPubMedGoogle Scholar
Frese, S.A., MacKenzie, D.A., Peterson, D.A., Schmaltz, R., Fangman, T., Zhou, Y., Zhang, C., Benson, A.K., Cody, L.A., Mulholland, F., et al. (2013). Molecular characterization of host-specific biofilm formation in a vertebrate gut symbiont. PLoS Genet. 9, e1004057. CrossrefGoogle Scholar
Frontzek, K., Lutz, M.I., Aguzzi, A., Kovacs, G.G., and Budka, H. (2016). Amyloid-β pathology and cerebral amyloid angiopathy are frequent in iatrogenic Creutzfeldt-Jakob disease after dural grafting. Swiss Med. Wkly. 146, w14287. PubMedGoogle Scholar
Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., et al. (2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547. CrossrefPubMedGoogle Scholar
Fung, T.T., Pan, A., Hou, T., Chiuve, S.E., Tobias, D.K., Mozaffarian, D., Willett, W.C., and Hu, F.B. (2015). Long-term change in diet quality is associated with body weight change in men and women. J. Nutr. 145, 1850–1856. CrossrefPubMedGoogle Scholar
Furusawa, Y., Obata, Y., Fukuda, S., Endo, T.A., Nakato, G., Takahashi, D., Nakanishi, Y., Uetake, C., Kato, K., Kato, T., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450. CrossrefPubMedGoogle Scholar
Galleu, A., Riffo-Vasquez, Y., Trento, C., Lomas, C., Dolcetti, L., Cheung, T.S., von Bonin, M., Barbieri, L., Halai, K., Ward, S., et al. (2017). Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci. Transl. Med. 9, eaam7828. PubMedCrossrefGoogle Scholar
Gao, C., Major, A., Rendon, D., Lugo, M., Jackson, V., Shi, Z., Mori-Akiyama, Y., and Versalovic, J. (2015). Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. mBio 6, e01358–15. PubMedGoogle Scholar
Gao, B., Bian, X., Mahbub, R., and Lu, K. (2017). Gender-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ. Health Perspect. 125, 198–206. CrossrefGoogle Scholar
Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., et al. (2010). Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. 7, 1–19. Google Scholar
Gu, Y., Brickman, A.M., Stern, Y., Habeck, C.G., Razlighi, Q.R., Luchsinger, J.A., Manly, J.J., Schupf, N., Mayeux, R., and Scarmeas, N. (2015). Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology 85, 1744–1751. CrossrefGoogle Scholar
Haase, S., Haghikia, A., Gold, R., and Linker, R.A. (2018). Dietary fatty acids and susceptibility to multiple sclerosis. Mult. Sclerosis J. 24, 12–16. CrossrefGoogle Scholar
Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., Hammer, A., Lee, D.H., May, C., Wilck, N., et al. (2015). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829. CrossrefPubMedGoogle Scholar
Hallett, P.J., McLean, J.R., Kartunen, A., Langston, J.W., and Isacson, O. (2012). α-Synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis. 47, 258–267. PubMedCrossrefGoogle Scholar
Hamer, H.M., Jonkers, D.M.A.E., Venema, K., Vanhoutvin, S.A.L.W., Troost, F.J., and Brummer, R.J. (2008). Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119. PubMedGoogle Scholar
Hamilton, M.K., Boudry, G., Lemay, D.G., and Raybould, H.E. (2015). Changes in intestinal barrier function and gut microbiota in high-fat diet fed rats are dynamic and region-dependent. Am. J. Physiol. Gastrointest. Liver Physiol. 308, G40. Google Scholar
He, F.J. and MacGregor, G.A. (2009). A comprehensive review on salt and health and current experience of worldwide salt reduction programmes. J. Hum. Hypertens. 23, 363–384. CrossrefPubMedGoogle Scholar
Henry, A.G., Brooksa, A.S., and Pipernob, D.R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). Google Scholar
Henry, A.G., Brooks, A.S., and Piperno, D.R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69, 44–54. PubMedCrossrefGoogle Scholar
Hering, N.A., Richter, J.F., Fromm, A., Wieser, A., Hartmann, S., Günzel, D., Bücker, R., Fromm, M., Schulzke, J.D., and Troeger, H. (2014). TcpC protein from E. coli Nissle improves epithelial barrier function involving PKCζ and ERK1/2 signaling in HT-29/B6 cells. Mucosal Immunol. 7, 369–378. CrossrefGoogle Scholar
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., et al. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514. Google Scholar
Hirsch, E.C., Vyas, S., and Hunot, S. (2009). Neuroinflammation in Parkinson’s disease. Parkinsonism Relat. Disord. 18 (Suppl 1), S210–S212. Google Scholar
Hoban, A.E., Stilling, R.M., Ryan, F.J., Shanahan, F., Dinan, T.G., Claesson, M.J., Clarke, G., and Cryan, J.F. (2016). Regulation of prefrontal cortex myelination by the microbiota. Transl. Psychiatry 6, e774. CrossrefPubMedGoogle Scholar
Höhn, P., Gabbert, H., and Wagner, R. (1978). Differentiation and aging of the rat intestinal mucosa. II. Morphological, enzyme histochemical and disc electrophoretic aspects of the aging of the small intestinal mucosa. Mech. Ageing Dev. 7, 217–226. CrossrefPubMedGoogle Scholar
Hsu, H.T., Mace, E.M., Carisey, A.F., Viswanath, D.I., Christakou, A.E., Wiklund, M., Önfelt, B., and Orange, J.S. (2016). NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing. J. Cell Biol. 215, 875–889. PubMedCrossrefGoogle Scholar
Hufnagel, D.A., Tükel, Ç., and Chapman, M.R. (2013). Disease to dirt: the biology of microbial amyloids. PLoS Pathog. 9, e1003740. PubMedCrossrefGoogle Scholar
Jakobsdottir, G., Xu, J., Molin, G., Ahrné, S., and Nyman, M. (2013). High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 8, e80476. CrossrefPubMedGoogle Scholar
Jennis, M., Cavanaugh, C.R., Leo, G.C., Mabus, J.R., Lenhard, J., and Hornby, P.J. (2017). Microbiota- derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol. Motil. e13178. doi: 10.1111/nmo.13178. [Epub ahead of print]. Google Scholar
Karav, S., Le Parc, A., de Moura Bell, J.M.L.N., Frese, S.A., Kirmiz, N., Block, D.E., Barile, D., and Mills, D.A. (2016). Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated bifidobacteria. Appl. Environ. Microbiol. 82, 3622–3630. CrossrefPubMedGoogle Scholar
Keelan, M., Walker, K., Thomson, A.B. (1985). Intestinal morphology, marker enzymes and lipid content of brush border membranes from rabbit jejunum and ileum: effect of aging. Mech Ageing Dev. 31, 49–68. PubMedCrossrefGoogle Scholar
Kessler, D. (2013). Antibiotics and the meat we eat. NY Times 27. Google Scholar
Khan, S.Y., Awad, E.M., Oszwald, A., Mayr, M., Yin, X., Waltenberger, B., Stuppner, H., Lipovac, M., Uhrin, P., and Breuss, J.M. (2017). Premature senescence of endothelial cells upon chronic exposure to TNFα can be prevented by N-acetyl cysteine and plumericin. Sci. Rep. 7, 39501. PubMedCrossrefGoogle Scholar
Kim, S.W., Ehrman, J., Ahn, M.R., Kondo, J., Lopez, A.A.M., Oh, Y.S., Kim, H.X., Crawley, S.W., Goldenring, J.R., Tyska, M.J., et al. (2017). Shear stress induces non-canonical autophagic flux in intestinal epithelial monolayers. Mol. Biol. Cell. 28, 3043–3056. CrossrefGoogle Scholar
Kish, L., Hotte, N., Kaplan, G.G., Vincent, R., Tso, R., Gänzle, M., Rioux, K.P., Thiesen, A., Barkema, H.W., Wine, E., et al. (2013). Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome. PLoS One 8, e62220. CrossrefPubMedGoogle Scholar
Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., Britt, E.B., Fu, X., Wu, Y., Li, L., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585. CrossrefPubMedGoogle Scholar
Krabbe, K.S., Reichenberg, A., Yirmiya, R., Smed, A., Pedersen, B.K., and Bruunsgaard, H. (2005). Low-dose endotoxemia and human neuropsychological functions. Brain Behav. Immun. 19, 453–460. CrossrefPubMedGoogle Scholar
Kraehenbuhl, J.P. and Neutra, M.R. (2000). Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–332. PubMedCrossrefGoogle Scholar
Kruis, W., Frič, P., Pokrotnieks, J., Lukáš, M., Fixa, B., Kaščák, M., Kamm, M.A., Weismueller, J., Beglinger, C., Stolte, M., et al. (2004). Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623. PubMedCrossrefGoogle Scholar
Kumar, D.K., Choi, S.H., Washicosky, K.J., Eimer, W.A., Tucker, S., Ghofrani, J., Lefkowitz, A., McColl, G., Goldstein, L.E., Tanzi, R.E., et al. (2016). Amyloid-β peptide protects against microbial infection in mouse and worm models of Alzheimer’s disease. Sci. Transl. Med. 8, 340ra72. PubMedCrossrefGoogle Scholar
Lawrence, E. (1998). How salmonella survive the stomach. Nature. doi:10.1038/news981015–6. Google Scholar
Lecerf, J.M. and de Lorgeril, M. (2011). Dietary cholesterol: from physiology to cardiovascular risk. Br. J. Nutr. 106, 6–14. PubMedCrossrefGoogle Scholar
Levesque, S., Taetzsch, T., Lull, M.E., Kodavanti, U., Stadler, K., Wagner, A., Johnson, J.A., Duke, L., Kodavanti, P., Surace, M.J., et al. (2011). Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ. Health Perspect. 119, 1149–1155. PubMedCrossrefGoogle Scholar
Li, N., Sioutas, C., Cho, A., Schmitz, D., Misra, C., Sempf, J., Wang, M., Oberley, T., Froines, J., and Nel, A. (2003). Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111, 455–460. CrossrefPubMedGoogle Scholar
Li, Y., Innocentin, S., Withers, D.R., Roberts, N.A., Gallagher, A.R., Grigorieva, E.F., Wilhelm, C., and Veldhoen, M. (2011). Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640. CrossrefPubMedGoogle Scholar
Li, W., Li, V.W., Hutnik, M., and Chiou, A.S. (2012). Tumor angiogenesis as a target for dietary cancer prevention. J. Oncol. 2012, 879623. PubMedGoogle Scholar
Lin, R., Jiang, Y., Zhao, X.Y., Guan, Y., Qian, W., Fu, X.C., Ren, H.Y., and Hou, X.H. (2014). Four types of bifidobacteria trigger autophagy response in intestinal epithelial cells. J. Dig. Dis. 15, 597–605. PubMedCrossrefGoogle Scholar
Liu, H.Y., Roos, S., Jonsson, H., Ahl, D., Dicksved, J., Lindberg, J.E., and Lundh, T. (2015). Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol. Rep. 3, e12355. CrossrefPubMedGoogle Scholar
Lo Cicero, A., Delevoye, C., Gilles-Marsens, F., Loew, D., Dingli, F., Guéré, C., André, N., Vié, K., van Niel, G., and Raposo, G. (2015). Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat. Commun. 6, 7506. CrossrefPubMedGoogle Scholar
Lundmark, K., Westermark, G.T., Olsén, A., and Westermark, P. (2005). Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc. Natl. Acad. Sci. USA 102, 6098–6102. CrossrefGoogle Scholar
Ma, C., Han, M., Heinrich, B., Fu, Q., Zhang, Q., Sandhu, M., Agdashian, D., Terabe, M., Berzofsky, J.A., Fako, V., et al. (2018). Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931. CrossrefPubMedGoogle Scholar
Maes, M., Kubera, M., and Leunis, J.C. (2008). The gut-brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from Gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett. 29, 117–124. Google Scholar
Maguire, G. (2016). Exosomes: smart nanospheres for drug delivery naturally produced by stem cells. Fabrication and Self-Assembly of Nanobiomaterials, Edition: 1, Chapter 7. A. Grumezescu, ed. (Amsterdam: Elsevier), pp. 179–209. Google Scholar
Maguire, G. (2017). Amyotrophic lateral sclerosis as a protein level, non-genomic disease: therapy with S2RM exosome released molecules. World J. Stem Cells 9, 187–202. PubMedCrossrefGoogle Scholar
Man, A.L., Bertelli, E., Rentini, S., Regoli, M., Briars, G., Marini, M., Watson, A.J. and Nicoletti, C. (2015). Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin. Sci. (Lond) 129, 515–527. CrossrefPubMedGoogle Scholar
Marriott, B.P., Olsho, L., Hadden, L., and Connor, P. (2010). Intake of added sugars and selected nutrients in the United States, national Health and Nutrition Examination Survey (NHANES) 2003–2006. Crit. Rev. Food Sci. Nutr. 50, 228–258. PubMedCrossrefGoogle Scholar
Masaki, T., Qu, J., Cholewa-Waclaw, J., Burr, K., Raaum, R., and Rambukkana, A. (2013). Reprogramming adult Schwann cells to stem cell-like cells by leprosy bacilli promotes dissemination of infection. Cell 152, 51–67. PubMedCrossrefGoogle Scholar
Mayer, E.A. (2011). Gut feelings: the emerging biology of gut-brain communication. Nat. Rev. Neurosci. 12. Doi: 10.1038/nrn3071. PubMedGoogle Scholar
McDougall, J. (2002). Misinformation on plant proteins (with response). Circulation 106, e148. Google Scholar
McDougall, C. and McDougall, J. (2013). Plant-based diets are not nutritionally deficient (and response). Perm J. 17, 93. Google Scholar
McNulty, N.P., Yatsunenko, T., Hsiao, A., Faith, J.J., Muegge, B.D., Goodman, A.L., Henrissat, B., Oozeer, R., Cools-Portier, S., Gobert, G., et al. (2011). The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3, 106ra106. PubMedGoogle Scholar
Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature 454, 428–435. CrossrefPubMedGoogle Scholar
Melamed, Y., Kisleva, M.E., Geffenb, E., Lev-Yadunc, S., and Goren-Inbard, N. (2016). The plant component of an Acheulian diet at Gesher Benot Ya‘aqov, Israel. Proc. Natl. Acad. Sci. USA 113, 14674–14679. CrossrefGoogle Scholar
Mesnage, R., Defarge, N., de Vendômois, J.S., and Séralini, G.-E. (2014). Major pesticides are more toxic to human cells than their declared active principles. Biomed. Res. Int. 2014, 179691. PubMedGoogle Scholar
Mimee, M., Nadeau, P., Hayward, A., Carim, S., Flanagan, S., Jerger, L., Collins, J., McDonnell, S., Swartwout, R., Citorik, R.J., et al. (2018). An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918. CrossrefPubMedGoogle Scholar
Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., et al. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028. CrossrefGoogle Scholar
Mizushima, N. and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728–741. CrossrefPubMedGoogle Scholar
Möller, W., Häussinger, K., Winkler-Heil, R., Stahlhofen, W., Meyer, T., Hofmann, W., and Heyder, J. (1985). Mucociliary and long-term particle clearance in the airways of healthy nonsmoker subjects. J. Appl. Physiol. 97, 2200–2206. Google Scholar
Monk, J.M., Lepp, D., Wu, W., Graf, D., McGillis, L.H., Hussain, A., Carey, C., Robinson, L.E., Liu, R., Tsao, R., et al. (2017). Chickpea-supplemented diet alters the gut microbiome and enhances gut barrier integrity in c57bl/6 male mice. J. Funct. Foods. 38, 663–674. CrossrefGoogle Scholar
Monsanto Technology LLC, Missouri. Glyphosate formulations and their use for the inhibition of 5-enolpyruvylshikimate-3-phosphate synthase. 2010. US Patent number 7771736 B2. Google Scholar
Moreira, A.P., Texeira, T.F., Ferreira, A.B., Peluzio Mdo, C., and Alfenas Rde, C. (2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br. J. Nutr. 108, 801–809. PubMedCrossrefGoogle Scholar
Morris, G., Berk, M., Carvalho, A., Caso, J.R., Sanz, Y., Walder, K., and Maes, M. (2016). The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol. Neurobiol. [Epub ahead of print]. PubMedGoogle Scholar
Mujcic, R. and Oswald, A.J. (2016). Evolution of well-being and happiness after increases in consumption of fruit and vegetables. AJPH Res. 106, 1504. CrossrefGoogle Scholar
Mutlu, E.A., Engen, P.A., Soberanes, S., Urich, D., Forsyth, C.B., Nigdelioglu, R., Chiarella, S.E., Radigan, K.A., Gonzalez, A., Jakate, S., et al. (2011). Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice. Part Fibre Toxicol. 8, 19. PubMedCrossrefGoogle Scholar
Noonan, S.C. and Savage, G.P. (1999). Oxalate content of foods and its effect on humans. Asia Pacific J. Clin. Nutr. 8, 64–74. CrossrefGoogle Scholar
O’Mahony, S., Clarke, G., Borre, Y., Dinan, T., and Cryan, J. (2015). Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 32–48. PubMedCrossrefGoogle Scholar
Ong, I.M., Gonzalez, J.G., McIlwain, S.J., Sawin, E.A., Schoen, A.J., Adluru, N., Alexander, A.L., and John-Paul, J.Y. (2018). Gut microbiome populations are associated with structure-specific changes in white matter architecture. Transl. Psychiatry 8, 6. PubMedCrossrefGoogle Scholar
Ornish, D. (2004). Was Dr Atkins right? J. Am. Diet Assoc. 104, 537–542. CrossrefGoogle Scholar
Ornish, D., Lin, J., Chan, J.M., Epel, E., Kemp, C., Weidner, G., Marlin, R., Frenda, S.J., Magbanua, M.J.M., Daubenmier, J., et al. (2013). Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 14, p1112–p1120. PubMedCrossrefGoogle Scholar
Ou, J., Carbonero, F., Zoetendal, E.G., DeLany, J.P., Wang, M., Newton, K., Gaskins, H.R., and O’Keefe, S.J. (2013). Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120. PubMedCrossrefGoogle Scholar
Oz, S., Okay, E., Karadenizli, A., Cekmen, M.B., and Ozdogan, H.K. (2007). N-Acetylcysteine improves intestinal barrier in partially hepatectomized rats. ANZ J. Surg. 77, 173–176. PubMedCrossrefGoogle Scholar
Padler-Karavani, V., Yu, H., Cao, H., Chokhawala, H., Karp, F., Varki, N., Chen, X., and Varki, A. (2008). Diversity in specificity, abundance and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease. Glycobiology 18, 818–830. PubMedCrossrefGoogle Scholar
Pallebage-Gamarallage, M.M., Lam, V., Takechi, R., Galloway, S., and Mamo, J.C.L. (2011). A diet enriched in docosahexanoic acid exacerbates brain parenchymal extravasation of Apo B lipoproteins induced by chronic ingestion of saturated fats. Int. J. Vasc. Med. 2012, 647689. PubMedGoogle Scholar
Pavlov, V.A. and Tracey, K.J. (2015). Neural circuitry and immunity. Immunol. Res. 63, 38–57. CrossrefPubMedGoogle Scholar
Perez-Muñoz, M.E., Arrieta, M.-C., Ramer-Tait, A.E., and Walter, J. (2017). A critical assessment of the ‘sterile womb’ and ‘in utero colonization’ hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5, 48. CrossrefGoogle Scholar
Perlmutter, D. (2016). Dr. David Perlmutter’s whole life plan. PBS TV. Google Scholar
Phillips, J.G.P. (1910). The treatment of melancholia by the lactic acid bacillus. Br. J. Psychiatry 56, 422-NP. Google Scholar
Pluznick, J.L. (2017). Microbial short-chain fatty acids and blood pressure regulation. Curr. Hypertens. Rep. 19, 25. PubMedCrossrefGoogle Scholar
Pritchard, C., Mayers, A., and Baldwin, D. (2013). Changing patterns of neurological mortality in the 10 major developed countries 1979–2010. Public Health. 127, 357–368. CrossrefPubMedGoogle Scholar
Pupillo, E., Bianchi, E., Chiò, A., Casale, F., Zecca, C., Tortelli, R., and Beghi, E. (2017). Amyotrophic lateral sclerosis and food intake. Amyotroph. Lateral Scler. Frontotemporal. Degener. 21, 1–8. Google Scholar
Rajilić-Stojanović, M. and de Vos, W.M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 38, 996–1047. CrossrefPubMedGoogle Scholar
Rannikko, E.H., Weber, S.S., and Kahle, P.J. (2015). Exogenous α-synuclein induces toll-like receptor 4 dependent inflammatory responses in astrocytes. BMC Neurosci 16, 57.CrossrefPubMedGoogle Scholar
Rao, A.V., Bested, A.C., Beaulne, T.M., Katzman, M.A., Iorio, C., Berardi, J.M., and Logan, A.C. (2009). A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 1, 6. PubMedCrossrefGoogle Scholar
Ridlon, J.M., Kang, D.J., Hylemon, P.B., and Bajaj, J.S. (2014). Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30, 332. CrossrefPubMedGoogle Scholar
Rieber, N. and Belohradsky, B.H. (2010). AHR activation by tryptophan – pathogenic hallmark of Th17-mediated inflammation in eosinophilic fasciitis, eosinophilia-myalgia-syndrome and toxic oil syndrome? Immunol. Lett. 128, 154–155. Google Scholar
Ritz, B.R., Paul, K.C., and Bronstein, J.M. (2016). Of pesticides and men: a California story of genes and environment in Parkinson’s disease. Curr. Environ. Health Rep. 3, 40–52. CrossrefGoogle Scholar
Rivière, A., Moens, F., Selak, M., Maes, D., Weckx, S., and De Vuyst, L. (2014). The ability of bifidobacteria to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain dependent. Appl. Environ. Microbiol. 80, 204–217. PubMedCrossrefGoogle Scholar
Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Stein, R., Dick, L., Hwang, D., and Goldberg, A.L. (1994). Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761–771. CrossrefPubMedGoogle Scholar
Rodgers, A.B., Morgan, C.P., Leu, N.A., and Bale, T.L. (2015). Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc. Natl. Acad. Sci. USA 112, 13699–13704. CrossrefGoogle Scholar
Rose, S., Bennuri, S.C., Davis, J.E., Wynne, R., Slattery, J.C., Tippett, M., Delhey, L., Melnyk, S., Kahler, S.G., MacFabe, D.F., et al. (2018). Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl. Psychiatry 8, 42. PubMedCrossrefGoogle Scholar
Rubio-Tapia, A., Kyle, R.A., Kaplan, E.L., Johnson, D.R., Page, W., Erdtmann, F., Brantner, T.L., Kim, W.R., Phelps, T.K., Lahr, B.D., et al. (2009). Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 137, 88–93. PubMedCrossrefGoogle Scholar
Russell, W.R., Gratz, S.W., Duncan, S.H., Holtrop, G., Ince, J., Scobbie, L., Duncan, G., Johnstone, A.M., Lobley, G.E., Wallace, R.J., et al. (2011). High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072. CrossrefPubMedGoogle Scholar
Sajid, A., Kashif, N., Kifayat, N., and Ahmad, S. (2016). Detection of antibiotic residues in poultry meat. Pak. J. Pharm. Sci. 29, 1691–1694. PubMedGoogle Scholar
Salim, S.Y., Kaplan, G.G., and Madsen, K.L. (2014). Air pollution effects on the gut microbiota: a link between exposure and inflammatory disease. Gut Microb. 5, 215–219.CrossrefGoogle Scholar
Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 167, 1469–1480.e12. CrossrefGoogle Scholar
Samraj, A.N., Läubli, H., Varki, N., and Varki, A. (2014). Involvement of a non-human sialic acid in human cancer. Front Oncol. 4, 33. PubMedGoogle Scholar
Samsel, A. and Seneff, S. (2013). Glyphosate, pathways to modern diseases II: celiac sprue and gluten intolerance. Interdiscip. Toxicol. 6, 159–184. PubMedCrossrefGoogle Scholar
Samsel, S. and Seneff, S. (2015). Glyphosate, pathways to modern diseases III: manganese, neurological diseases, and associated pathologies. Surg. Neurol. Int. 6, 45. CrossrefPubMedGoogle Scholar
Sanders, M.E. and Klaenhammer, T.R. (2011). Invited review: the scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J. Dairy Sci. 84, 319–331. Google Scholar
Sarkar, A., Lehto, S.M., Harty, S., Dinan, T.G., Cryan, J.F., and Burnet, P.W. (2016). Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 39, 763–781. CrossrefPubMedGoogle Scholar
Sasaki, S. (2011). Autophagy in spinal cord motor neurons in sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 70, 349–359. CrossrefPubMedGoogle Scholar
Scher, J.U., Ubeda, C., Artacho, A., Attur, M., Isaac, S., Reddy, S.M., Marmon, S., Neimann, A., Brusca, S., Patel, T., et al. (2015). Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139. PubMedCrossrefGoogle Scholar
Schnorr, S.L., Candela, M., Rampelli, S., Centanni, M., Consolandi, C., Basaglia, G., Turroni, S., Biagi, E., Peano, C., Severgnini, M., et al. (2014). Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654. CrossrefPubMedGoogle Scholar
Schroeder, B.O. and Bäckhed, F. (2016). Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 22, 1079–1089. PubMedCrossrefGoogle Scholar
Schwartz, M. and Shechter, R. (2010). Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol. 6, 405–410. CrossrefPubMedGoogle Scholar
Schwerdtfeger, L.A., Ryan, E.P., and Tobet, S.A. (2016). An organotypic slice model for ex vivo study of neural, immune, and microbial interactions of mouse intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 310, G240–G248. Google Scholar
Scott, K.P., Antoine, J.-M., Midtvedt, T., and van Hemert, S. (2015). Manipulating the gut microbiota to maintain health and treat disease. Microb. Ecol. Health Dis. 26, 25877. PubMedGoogle Scholar
Seneff, S., Morley, W.A., Hadden, M.J., and Michener, M.C. (2017). Does glyphosate acting as a glycine analogue contribute to ALS? J. Bioinfo. Proteomics Rev. 3, 1–21. Google Scholar
Shahripour, R.B., Harrigan, M.R., and Alexandrov, A.V. (2014). N-Acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav. 4, 108–122.PubMedCrossrefGoogle Scholar
Sharon, G., Sampson, T.R., Geschwind, D.H., and Mazmanian, S.K. (2016). The central nervous system and the gut microbiome. Cell 167, 915–932. PubMedCrossrefGoogle Scholar
Sherwin, E., Dinan, T.G., and Cryan, J.F. (2017). Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann. N. Y. Acad. Sci. 1420, 5–25. Google Scholar
Singh, V., Roth, S., Llovera, G., Sadler, R., Garzetti, D., Stecher, B., Dichgans, M., and Liesz, A. (2016). Microbiota dysbiosis controls the neuroinflammatory response after stroke. J. Neurosci. 36, 7428–7440. PubMedCrossrefGoogle Scholar
Sjöström, A.E., Sandblad, L., Uhlin, B.E., and Wai, S.N. (2015). Membrane vesicle-mediated release of bacterial RNA. Sci. Rep. 5, 15329. PubMedCrossrefGoogle Scholar
Skull, A. (2005). Madhouse: A Tragic Tale of Megalomania and Modern Medicine (New Haven, CT: Yale University Press). Google Scholar
Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-y, M., Glickman, J.N., and Garrett, W.S. (2013). The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573. CrossrefPubMedGoogle Scholar
Söderholm, J.D., and Perdue, M.H. (2001). Stress and intestinal barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G7–G13.Google Scholar
Stępień-Pyśniak, D., Marek, A., Banach, T., Adaszek, Ł., Pyzik, E., Wilczyński, J., and Winiarczyk, S. (2016). Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet. Hung. 64, 148–163. PubMedCrossrefGoogle Scholar
Stokholm, J., Blaser, M.J., Thorsen, J., Rasmussen, M.A., Waage, J., Vinding, R.K., Schoos, A.M.M., Kunøe, A., Fink, N.R., Chawes, B.L., et al. (2018). Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141. PubMedCrossrefGoogle Scholar
Ströhle, A. and Hahn, A. (2011). Diets of modern hunter-gatherers vary substantially in their carbohydrate content depending on ecoenvironments: results from an ethnographic analysis. Nutr. Res. 31, 429–435. PubMedCrossrefGoogle Scholar
Su, F.C., Goutman, S.A., Chernyak, S., Mukherjee, B., Callaghan, B.C., Batterman, S., and Feldman, E.L. (2016). Association of environmental toxins with amyotrophic lateral sclerosis. JAMA Neurol. 73, 803–811. CrossrefPubMedGoogle Scholar
Sullivan, C.J., Pendleton, E.D., Sasmor, H.H., Hicks, W.L., Farnum, J.B., Muto, M., Amendt, E.M., Schoborg, J.A., Martin, R.W., Clark, L.G., et al. (2016). A cell-free expression and purification process for rapid production of protein biologics. Biotechnol. J. 11, 238–248. PubMedCrossrefGoogle Scholar
Sun, J.C., Ugolini, S., and Vivier, E. (2014). Immunological memory within the innate immune system. EMBO J. 33, 1295–1303. Google Scholar
Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L.P., and Lochs, H. (2005). Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389. PubMedCrossrefGoogle Scholar
Talaei, M., Wang, Y.L., Yuan, J.M., Pan, A., and Koh, W.P. (2017). Meat, dietary heme iron and risk of type 2 diabetes: the Singapore Chinese Health Study. Am. J. Epidemiol. 186, 824–833. PubMedCrossrefGoogle Scholar
Tam, N.K., Uyen, N.Q., Hong, H.A., Duc, L.H., Hoa, T.T., Serra, C.R., Henriques, A.O., and Cutting, S.M. (2006). The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188, 2692–2700. PubMedCrossrefGoogle Scholar
Tan, J., McKenzie, C., Potamitis, M., Thorburn, A.N., Mackay, C.R., and Macia, L. (2014). The role of short-chain fatty acids in health and disease. Adv. Immunol. 121, 91–119. PubMedCrossrefGoogle Scholar
Tangvoranuntakul, P., Gagneux, P., Diaz, S., Bardor, M., Varki, N., Varki, A., and Muchmore, E. (2003). Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid. Proc. Natl. Acad. Sci. USA 100, 12045–12050. CrossrefGoogle Scholar
Tao, F., Gonzalez-Flecha, B., and Kobzik, L. (2003). Reactive oxygen species in pulmonary inflammation by ambient particulates. Free Radic. Biol. Med. 35, 327–340. PubMedCrossrefGoogle Scholar
Tayeb-Fligelman, E., Tabachnikov, O., Moshe, A., Goldshmidt-Tran, O., Sawaya, M.R., Coquelle, N., Colletier, J.P., and Landau, M. (2017). The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science 355, 831–833. PubMedCrossrefGoogle Scholar
Thiéfin, G. and Beaugerie, L. (2004). Toxic effects of nonsteroidal antiinflammatory drugs on the small bowel, colon, and rectum. Joint Bone Spine. 72, 286–294. PubMedGoogle Scholar
Thorburn, A.N., Macia, L., and Mackay, C.R. (2014). Diet, metabolites, and ‘Western-lifestyle’ inflammatory diseases. Immunity 40, 833–842, CrossrefPubMedGoogle Scholar
Tikka, T.M. and Koistinaho, J.E. (2001). Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia. J. Immunol. 166, 7527–7533. PubMedCrossrefGoogle Scholar
Tillisch, K., Labus, J., Kilpatrick, L., Jiang, Z., Stains, J., Ebrat, B., Guyonnet, D., Legrain–Raspaud, S., Trotin, B., Naliboff, B., et al. (2013). Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144, 1394–1401. PubMedCrossrefGoogle Scholar
Trebichavsky, I., Splichal, I., Rada, V., and Splichalova, A. (2010). Modulation of natural immunity in the gut by Escherichia coli Nissle 1917. Nutr. Rev. 68, 459–464. PubMedCrossrefGoogle Scholar
Underwood, M.A. (2014). Intestinal dysbiosis: novel mechanisms by which gut microbes trigger and prevent disease. Prev. Med. 65, 133–137. CrossrefPubMedGoogle Scholar
Val-Laillet, D., Guérin, S., Coquery, N., Nogret, I., Formal, M., Romé, V., Le Normand, L., Meurice, P., Randuineau, G., Guilloteau, P., et al. (2018). Oral sodium butyrate impacts brain metabolism and hippocampal neurogenesis, with limited effects on gut anatomy and function in pigs. FASEB J. 32, 2160–2171. PubMedCrossrefGoogle Scholar
Vanuytsel, T., van Wanrooy, S., Vanheel, H., Vanormelingen, C., Verschueren, S., Houben, E., Salim Rasoel, S., Tόth, J., Holvoet, L., Farré, R., et al. (2014). Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63, 1293–1299. PubMedCrossrefGoogle Scholar
Vinolo, M.A., Rodrigues, H.G., Hatanaka, E., Sato, F.T., Sampaio, S.C., and Curi, R. (2011). Suppressive effect of short chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 22, 849–855. CrossrefPubMedGoogle Scholar
Voigt, R.M., Forsyth, C.B., Green, S.J., Mutlu, E., Engen, P., Vitaterna, M.H., Turek, F.W., and Keshavarzian, A. (2014). Circadian disorganization alters intestinal microbiota. PLoS One 9, e97500. PubMedCrossrefGoogle Scholar
Wagner, V.E., Dey, N., Guruge, J., Hsiao, A., Ahern, P.P., Semenkovich, N.P., Blanton, L.V., Cheng, J., Griffin, N., Stappenbeck, T.S., et al. (2016). Effects of a gut pathobiont in a gnotobiotic mouse model of childhood undernutrition. Sci. Transl. Med. 8, 366ra164. CrossrefGoogle Scholar
Walker, L.C., Schelle, J., and Jucker, M. (2016). The prion-like properties of amyloid-β assemblies: implications for Alzheimer’s disease. Cold Spring Harb. Perspect. Med. 6. pii: a024398. doi: 10.1101/cshperspect.a024398. CrossrefGoogle Scholar
Wang, D., Ho, L., Faith, J., Ono, K., Janle, E.M., Lachcik, P.J., Cooper, B.R., Jannasch, A.H., D’Arcy, B.R., Williams, B.A., et al. (2015). Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol. Nutr. Food Res. 59, 1025–1040. PubMedCrossrefGoogle Scholar
Warren, P.M., Pepperman, M.A., and Montgomery, R.D. (1978). Age changes in small-intestinal mucosa. Lancet 2, 849–850. PubMedGoogle Scholar
Weaver, I.C. (2007). Epigenetic programming by maternal behavior and pharmacological intervention. Nature versus nurture: let’s call the whole thing off. Epigenetics 2, 22–28. PubMedCrossrefGoogle Scholar
Wróblewski, R., Jalnäs, M., Van Decker, G., Björk, J., Wroblewski, J., and Roomans, G.M. (2002). Effects of irradiation on intestinal cells in vivo and in vitro. Histol. Histopathol. 17, 165–177. PubMedGoogle Scholar
Wu, S., Yi, J., Zhang, Y., Zhou, J., and Sun, J. (2015). Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 3, e12356. CrossrefGoogle Scholar
Wyss-Coray, T. and Rogers, J. (2011). Inflammation in Alzheimer disease – a brief review of the basic science and clinical literature. Cold Spring Harb. Perspect. Med 2, a006346. Google Scholar
Xu, H., Gelyana, E., Rajsombath, M., Yang, T., Li, S., and Selkoe, D. (2016). Environmental enrichment potently prevents microglia-mediated neuroinflammation by human amyloid β-protein oligomers. J. Neurosci. 36, 9041–9056. CrossrefPubMedGoogle Scholar
Yin, L., Gupta, R., Vaught, L., Grosche, A., Okunieff, P., and Vidyasagar, S. (2016a). An amino acid-based oral rehydration solution (AA-ORS) enhanced intestinal epithelial proliferation in mice exposed to radiation. Sci. Rep. 6, 37220. CrossrefGoogle Scholar
Yin, L., Vijaygopal, P., Menon, R., Vaught, L.A., Zhang, M., Zhang, L., Okunieff, P., and Vidyasagar, S. (2016b). An amino acid mixture mitigates radiation-induced gastrointestinal toxicity. Sci. Rep. 6, 37220. Google Scholar
Yoshimoto, S., Loo, T.M., Atarashi, K., Kanda, H., Sato, S., Oyadomari, S., Iwakura, Y., Oshima, K., Morita, H., Hattori, M., et al. (2013). Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97. CrossrefPubMedGoogle Scholar
Yuan, A.H. and Hochschild, A. (2017). A bacterial global regulator forms a prion. Science 355, 198–201. CrossrefPubMedGoogle Scholar
Zhang, R., Miller, R.G., Gascon, R., Champion, S., Katz, J., Lancero, M., Narvaez, A., Honrada, R., Ruvalcaba, D., and McGrath, M.S. (2009). Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J. Neuroimmunol. 206, 121–124. PubMedCrossrefGoogle Scholar
Zhang, Y.G., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Ther. 39, 322–336. CrossrefPubMedGoogle Scholar
Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sánchez, M.S., Vázquez, C., Peiró, C., Egido, J. and Mas, S. (2017). High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic. Biol. Med. 104, 165–177. CrossrefPubMedGoogle Scholar
Comments (0)