Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 30, Issue 5


Melatonin and its anti-glioma functions: a comprehensive review

Sayantan Maitra
  • Department of Health and Family Welfare, Institute of Pharmacy, Jalpaiguri 735101, Govt. of West Bengal, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Debanjan Bhattacharya
  • Department of Neurosurgery, Winship Cancer Institute of Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stabak Das
  • Department of Health and Family Welfare, Institute of Pharmacy, Jalpaiguri 735101, Govt. of West Bengal, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Subhrajit BhattacharyaORCID iD: https://orcid.org/0000-0003-1326-0699
Published Online: 2019-01-12 | DOI: https://doi.org/10.1515/revneuro-2018-0041


Melatonin (N-acetyl-5-methoxytryptamine) is a naturally synthesized hormone secreted from the pineal gland in a variety of animals and is primarily involved in the regulation of the circadian rhythm, which is the natural cycle controlling sleep in organisms. Melatonin acts on specific receptors and has an important role in overall energy metabolism. This review encompasses several aspects of melatonin activity, such as synthesis, source, structure, distribution, function, signaling and its role in normal physiology. The review highlights the cellular signaling and messenger systems involved in melatonin’s action on the body and their wider implications, the distribution and diverse action of different melatonin receptors in specific areas of the brain, and the pharmacological agonists and antagonists that have specific action on these melatonin receptors. This review also incorporates the antitumor effects of melatonin in considerable detail, emphasizing on melatonin’s role as an adjuvant therapeutic agent in glioma treatment. We conclude that the diminishing levels of melatonin have significant debilitating effects on normal physiology and can also be associated with malignant conditions such as glioma. Based on the review of the available evidence, our study provides a broad platform for a better understanding of the specific roles of melatonin and serves as a starting point for further investigation into the therapeutic effect of melatonin in glioma as an adjuvant therapeutic agent.

Keywords: circadian rhythm; glioma; melatonin; melatonin receptors; STAT3


  • Arendt, J. (1995). Melatonin and the Mammalian Pineal Gland. (London: Chapman & Hall), pp. 1–331.Google Scholar

  • Armstrong, S.M. (1989). Melatonin: the internal zeitgeber of mammals. Pineal Res. 7, 157–202.Google Scholar

  • Axelrod, J. (1974). The pineal gland: a neurochemical transducer. Science 1184, 1341–1348.Google Scholar

  • Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756–760.PubMedCrossrefGoogle Scholar

  • Beier, D., Schulz, J.B., and Beier, C.P. (2011). Chemoresistance of glioblastoma cancer stem cells – much more complex than expected. Mol. Cancer 10, 128.PubMedCrossrefGoogle Scholar

  • Bertuglia, S., Marchiafa, P.L., and Colantuoni, A. (1996). Melatonin prevents ischemia reperfusion injury in the hamster cheek pouch. Cardiovasc. Res. 31, 947–952.PubMedCrossrefGoogle Scholar

  • Blask, D.E., Sauer, L.A., and Dauchy, R.T. (2002). Melatonin as a chronobiotic/anticancer agent: cellular, biochemical, and molecular mechanisms of action and their implications for circadian-based cancer therapy. Curr. Top Med. Chem. 2, 113–132.PubMedCrossrefGoogle Scholar

  • Brat, D.J., Verhaak, R.G., Aldape, K.D., Yung, W.K., Salama, S.R., Cooper, L.A., Rheinbay, E., Miller, C.R., Vitucci, M., Morozova, O., et al. (2015). Cancer genome atlas research network. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481–2498.CrossrefPubMedGoogle Scholar

  • Bravo, R., Matito, S., Cubero, J., Paredes, S.D., Franco, L., Rivero, M., Rodríguez, A.B., and Barriga, C. (2013). Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordr.) 35, 1277–1285.CrossrefPubMedGoogle Scholar

  • Bubenik, G.A. (2002). Gastrointestinal melatonin: localization, function and clinical relevance. Dig Dis Sci. 47, 2336–2348.PubMedCrossrefGoogle Scholar

  • Buscemi, N., Vandermeer, B., Hooton, N., Pandya, R., Tjosvold, L., Hartling, L., Vohra, S., Klassen, T.P., and Baker, G. (2006). Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. Br. Med. J. 332, 385–393.CrossrefGoogle Scholar

  • Cagnacci, A. (1996). Melatonin in relation to physiology in adult humans. J. Pineal Res. 21, 200–213.CrossrefPubMedGoogle Scholar

  • Cardinali, D.P. and Pevet, P. (1998). Basic aspects of melatonin action. Sleep Med Rev 3, 175–190.Google Scholar

  • Carlberg, C. (2000). Gene regulation by melatonin. Ann NY Acad Sci 917, 387–396.Google Scholar

  • Carrillo-Vico, A., Garica-Maurino, S., Calvo, S.J., and Guerrero, J.M. (2003). Melatonin counteracts the inhibitory effect of PGE2 on IL-2 production in human lymphocytes via its mt1 membrane receptor. FASEB J. 17, 755–757.CrossrefPubMedGoogle Scholar

  • Carrillo-Vico, A., Clavo, J.R., Abreu, P., Lardone, P.J., Garcia-Maurino, S., Reiter, R.J., and Guerrero, J.M. (2004). Evidence of melatonin synthesis by human lymphocytes and its physiological significance: possible role as intracrine, autocrine, and/or paracrine substance. FASEB J. 18, 537–539.CrossrefPubMedGoogle Scholar

  • Chan, A.S., Lai, F.P., Lo, R.K., Voyno-Yasenetskaya, T.A., Stanbridge, E.J., and Wong, Y.H. (2002). Melatonin MT1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxinsensitive and -insensitive G proteins. Cell Signal 14, 249–257.CrossrefGoogle Scholar

  • Chen, G., Huo, Y., Tan, D.X., Liang, Z., Zhang, W., and Zhang, Y. (2003). Melatonin in Chinese medicinal herbs. Life Sci. 73, 19–26.CrossrefPubMedGoogle Scholar

  • Chen, J., Li, Y., Yu, T.S., McKay, R.M., Burns, D.K., Kernie, S.G., and Parada, L.F. (2012). A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526.CrossrefPubMedGoogle Scholar

  • Chen, B., Liu, J., Chang, Q., Beezhold, K., Lu, Y., and Chen, F. (2013). JNK and STAT3 signaling pathways converge on Akt-mediated phosphorylation of EZH2 in bronchial epithelial cells induced by arsenic. Cell Cycle 12, 112–121.PubMedCrossrefGoogle Scholar

  • Chen, X., Hao, A., Li, X., Du, Z., Li, H., Wang, H., Yang, H., and Fang, Z. (2016). Melatonin inhibits tumorigenicity of glioblastoma stem-like cells via the AKT-EZH2-STAT3 signaling axis. J. Pineal Res. 612, 208–217.Google Scholar

  • Chen, D., Li, Y.P., Yu, Y.X., Zhou, T., Liu, C., Fei, E.K., Gao, F., Mu, C.C., Ren, H.G., and Wang, G.H. (2018). Dendritic cell nuclear protein-1 regulates melatonin biosynthesis by binding to BMAL1 and inhibiting the transcription of N-acetyltransferase in C6 cells. Acta Pharmacol. Sin. 39, 597–606.PubMedCrossrefGoogle Scholar

  • Chowdhury, I., Sengupta, A., and Maitra, SK. (2008). Melatonin: fifty years of scientific journey from the discovery in Bovine pineal gland to Delineation of functions in human. Ind. J. Biochem. Biophys. 45, 289–304.Google Scholar

  • Claustrat, B., Brun, J., and Chazot, G. (2005). The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 9, 11–24.PubMedCrossrefGoogle Scholar

  • Cohen, M., Lippman, M., and Chabner, B. (1978). Role of pineal gland in aetiology and treatment of breast cancer. Lancet 2, 814–816.PubMedGoogle Scholar

  • Colombo, J., Maciel, J.M., Ferreira, L.C., Da Silva, R.F., and Zuccari, D.A. (2016). Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol. Lett. 12, 231–237.CrossrefPubMedGoogle Scholar

  • Conti, A., Conconi, S., Hertens, E., Skwarlo-Sonta, K., Markowska, M., and Maestroni, G.J.M. (2000). Evidence for melatonin synthesis in mouse and human bone marrow cells. J. Pineal Res. 28, 193–202.CrossrefPubMedGoogle Scholar

  • Cutando, A., López-Valverde, A., Arias-Santiago, S., De Vicente, J., and De Diego, R.G. (2012). Role of melatonin in cancer treatment. Anticancer Res. 32, 2747–2753.PubMedGoogle Scholar

  • Cuzzocrea, S. and Reiter, R.J. (2002). Pharmacological actions of melatonin in acute and chronic inflammation. Curr. Top Med. Chem 2, 153–165.CrossrefPubMedGoogle Scholar

  • Cuzzocrea, S., Costantino, G., Mazzon, E., and Caputi, A.P. (1999). Regulation of prostaglandin production in carrageenan-induced pleurisy by melatonin. J. Pineal Res. 27, 9–14.PubMedCrossrefGoogle Scholar

  • Cuzzocrea, S., Misko, T.P., Costantino, G., Mazzon, E., Micali, A., Caputi, A.P., Macarthur, H., and Salvemini, D. (2000). Beneficial effects of peroxynitrite decomposition catalyst in a rat model of splanchnic artery occlusion and reperfusion. FASEB J. 14, 1061–1072.CrossrefGoogle Scholar

  • El-Shenawy, S.M., Abdel-Salam, O.M., Baiuomy, A.R., El-Batran, S., and Arbid, M.S. (2002). Studies on the anti-inflammatory and antinociceptive effects of melatonin in the rat. Pharmacol Res. 46, 235–243.CrossrefGoogle Scholar

  • Galano, A., Tan, D.X., and Reiter, R.J. (2011). Melatonin as a natural ally against oxidative stress: a physicochemical examination. J. Pineal Res. 51, 1–16.PubMedCrossrefGoogle Scholar

  • Galli, R., Binda, E., Orfanelli, U., Cipelletti, B., Gritti, A., De Vitis, S., Fiocco, R., Foroni, C., Dimeco, F., and Vescovi, A. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 64, 7011–7021.PubMedCrossrefGoogle Scholar

  • Ghosh, A.K., Naaz, S., Bhattacharjee, B., Ghosal, N., Chattopadhyay, A., Roy, S., Reiter, R.J., and Bandyopadhyay, D. (2017). Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry. Life Sci. 180, 123–136.CrossrefPubMedGoogle Scholar

  • Godson, C. and Reppert, S.M. (1997). The Mel1a melatonin receptor is coupled to parallel signal transduction pathways. Endocrinology 138, 397–404.CrossrefPubMedGoogle Scholar

  • Habtemariam, S., Daglia, M., Sureda, A., Selamoglu, Z., Gulhan, M.F., and Nabavi, S.M. (2017). Melatonin and respiratory diseases: a review. Curr. Top Med. Chem. 17, 467–488.PubMedGoogle Scholar

  • Hardeland, R., Cardinali, D.P., Srinivasan, V., Spence, D.W., Brown, G.M., and Pandi-Perumal, S.R. (2011). Melatonin – a pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93, 350–384.CrossrefPubMedGoogle Scholar

  • Hardeland, R. and Poeggeler, B. (2003). Non-vertebrate melatonin. J. Pineal Res. 34, 233–241.PubMedCrossrefGoogle Scholar

  • Hardeland, R. and Pandi-Perumal, S.R. (2005). Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr. Metab. Lond. 2, 22.PubMedCrossrefGoogle Scholar

  • He, C., Wang, J., Zhang, Z., Yang, M., Li, Y., Tian, X., Ma, T., Tao, J., Zhu, K., Song, Y., et al. (2016). Mitochondria synthesize melatonin to ameliorate its function and improve mice oocyte’s quality under in vitro conditions. Int. J. Mol. Sci. 17, pii: E939.CrossrefGoogle Scholar

  • Hickman, A.B., Klein, D.C., and Dyda, F. (1999). Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 Å resolution suggests a catalytic mechanism. Mol. Cell 3, 23–32.CrossrefPubMedGoogle Scholar

  • Ikegami, T., Azuma, K., Nakamura, M., Suzuki, N., Hattori, A., and Ando, H. (2009). Diurnal expressions of four subtypes of melatonin receptor genes in the optic tectum and retina of goldfish. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 219–224.PubMedCrossrefGoogle Scholar

  • Ishii, H., Tanaka, N., Kobayashi, M., Kato, M., and Sakuma, Y. (2009). Gene structures, biochemical characterization and distribution of rat melatonin receptors. J. Physiol. Sci. 59, 37–47.PubMedCrossrefGoogle Scholar

  • Jung, B. and Ahmad, N (2006). Melatonin in cancer management progress and promise. Cancer Res. 66, 9789–9793.PubMedCrossrefGoogle Scholar

  • Karasek, M. (2006). Melatonin in Human Physiology and Pathology. Frontiers in Chronobiology Research. F. Columbus, ed. (NY, USA: Nova Science/Hauppage), pp. 1–43.Google Scholar

  • Karasek, M. and Winczyk, K. (2006). Melatonin in humans. J. Physiol. Pharmacol. 57, 19–39.PubMedGoogle Scholar

  • Kim, E., Kim, M., Woo, D.H., Shin, Y., Shin, J., Chang, N., Oh, Y.T., Kim, H., Rheey, J., Nakano, I., et al. (2013). Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852.PubMedCrossrefGoogle Scholar

  • Klein, D.C. and Moore, R.Y. (1979). Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus. Brain Res. 174, 245–262.PubMedCrossrefGoogle Scholar

  • Konopka, G. and Bonni, A. (2003). Signaling pathways regulating gliomagenesis. Curr. Mol. Med. 31, 73–84.Google Scholar

  • Lee, H.Y., Byeon, Y., Lee, K., Lee, H.J., and Back, K. (2014). Cloning of Arabidopsis serotonin N-acetyltransferase and its role with caffeic acid O-methyltransferase in the biosynthesis of melatonin in vitro despite their different subcellular localizations. J. Pineal Res. 57, 418–426.PubMedCrossrefGoogle Scholar

  • Lerner, A.B., Case, J.D., Takahashi, Y., Lee, F., and Mori, W. (1958). Isolation of melatonin, the pineal factor that lightens melanocytes. J. Am. Chem. Soc. 8, 2587.Google Scholar

  • Lissoni, P., Barni, S., Ardizzoia, A., Tancini, G., Conti, A., and Maestroni, G. (1994). A randomized study with the pineal hormone melatonin versus supportive care alone in patients with brain metastases due to solid neoplasms. Cancer 73, 699–701.PubMedCrossrefGoogle Scholar

  • Liu, C., Fukuhara, C., Wessel III, J.H., Iuvone, P.M., and Tosini, G. (2004). Localization of Aanat mRNA in the rat retina by fluorescence in situ hybridization and laser capture microdissection. Cell Tissue Res. 315, 197–201.CrossrefGoogle Scholar

  • Louis, D.N., Ohgaki, H., Wiestler, O.D., and Cavenee, W.K. (2016). WHO Classification of Tumours of the Central Nervous System, Revised 4th ed. (Lyon, France: International Agency for Research on Cancer (IARC)), pp. 10–122.Google Scholar

  • Luchetti, F., Betti, M., Canonico, B., Arcangeletti, M., Ferri, P., Galli, F., and Papa, S. (2009). ERK MAPK activation mediates the antiapoptotic signaling of melatonin in UVB-stressed U937 cells. Free Radic. Biol. Med. 46, 339–351.PubMedCrossrefGoogle Scholar

  • Martin, X.D., Malina, H.Z., Brennan, M.C., Hendrikson, P.H., and Lichter, P.R. (1992). The ciliary body-the third organ found to synthesize idoleamines in humans. Eur. J. Ophthalmol. 2, 67–72.CrossrefGoogle Scholar

  • Martin, M., Macias, M., Escames, G., Leon, J., and Acuna-Castroviejo, D. (2000). Melatonin but not vitamins C and E maintains glutathione homeostasis in tert-butyl hydroperoxide-induced mitochondrial oxidative stress. FASEB J. 14, 1677–1679.CrossrefGoogle Scholar

  • Martin, V., Herrera, F., Carrera-Gonzalez, P., García-Santos, G., Antolín, I., Rodriguez-Blanco, J., and Rodriguez, C. (2006). Intracellular signaling pathways involved in the cell growth inhibition of glioma cells by melatonin. Cancer Res. 66, 1081–1088.CrossrefPubMedGoogle Scholar

  • Martín, V., García-Santos, G., Rodriguez-Blanco, J., Casado-Zapico, S., Sanchez-Sanchez, A., Antolín, I., and Rodriguez, C. (2010) Melatonin sensitizes human malignant glioma cells against TRAIL-induced cell death. Cancer Lett. 287, 216–223.CrossrefPubMedGoogle Scholar

  • Martín, V., Sanchez-Sanchez, A.M., Herrera, F., Gomez-Manzano, C., Fueyo, J., Alvarez-Vega, M.A., Antolín, I., and Rodriguez, C. (2013). Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br. J. Cancer 10810, 2005–2012.Google Scholar

  • Martín-Renedo, J., Mauriz, J.L., Jorquera, F., Ruiz-Andrés, O., González, P., and González-Gallego, J. (2008). Melatonin induces cell cycle arrest and apoptosis in hepatocarcinoma HepG2 cell line. J. Pineal Res. 45, 532–540.CrossrefPubMedGoogle Scholar

  • Mauriz, J.L., Collado, P.S., Veneroso, C., Reiter, R.J., and González-Gallego, J. (2013). A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J. Pineal Res. 54, 1–14.PubMedCrossrefGoogle Scholar

  • Mayo, J.C., Sainz, R.M., Tan, D.X., Hardeland, R., Leon, J., Rodriguez, C., and Reiter, R.J. (2005). Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J. Neuroimmunol. 165, 139–149.CrossrefPubMedGoogle Scholar

  • Mediavilla, M.D., Sánchez-Barceló, E.J., Tan, D.X., Manchester, L., and Reiter, R.J. (2010). Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem. 36, 4462–4480.Google Scholar

  • Meng, X., Li, Y., Li, S., Zhou, Y., Gan, R.Y., Xu, D.P., and Li, H.B. (2017). Dietary sources and bioactivities of melatonin. Nutrients 9, pii: E367.CrossrefGoogle Scholar

  • Morin, D., Simon, N., Depres-Brummer, P., Lévi, F., Tillement, J.P., and Urien, S. (1997). Melatonin high affinity binding to alpha-1-acid glycoprotein in human serum. Pharmacology 54, 271–275.PubMedCrossrefGoogle Scholar

  • Nosjean, O., Ferro, M., Coge, F., Beauverger, P., Henlin, J.M., Lefoulon, F., Fauchere, J.L., Delagrange, P., Canet, E., and Boutin, J.A. (2000). Identification of the melatonin-binding site MT3 as the quinone reductase 2. J. Biol. Chem. 275, 31311–31317.CrossrefPubMedGoogle Scholar

  • Pandi-Perumal, S.R., Srinivasan, V., Maestoni, G.J.M., Cardinali, D.P., Poeggeler, B., and Hardeland, R. (2006). Melatonin: nature’s most versatile signal? FEBS J. 273, 2813–2838.PubMedCrossrefGoogle Scholar

  • Pardridge, W.M. and Mietus, L.J. (1980). Transport of albumin-bound melatonin through the blood–brain barrier. J. Neurochem. 34, 1761–1763.PubMedCrossrefGoogle Scholar

  • Paredes, S.D., Korkmaz, A., and Manchester, L.C. (2004). Macchia MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front. Neuroendocrinol. 25, 177–195.CrossrefPubMedGoogle Scholar

  • Park, H.J., Kim, H.J., Ra, J., Hong, S.J., Baik, H.H., Park, H.K., Yim, S.V., Nah, S.S., Cho, J.J., and Chung, J.H. (2007). Melatonin inhibits lipopolysaccharide-induced CC chemokine subfamily gene expression in human peripheral blood mononuclear cells in a microarray analysis. J. Pineal Res. 43, 121–129.CrossrefGoogle Scholar

  • Pearson, J.R.D. and Regad, T. (2017). Targeting cellular pathways in glioblastoma multiforme. Signal Transduct. Targeted Ther. 2, 17040.CrossrefGoogle Scholar

  • Reiter, R.J. (1981). The mammalian pineal gland: structure and function. Am. J. Anat. 162, 287–313.CrossrefPubMedGoogle Scholar

  • Reiter, R.J. (1991). Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 12, 151–180.CrossrefPubMedGoogle Scholar

  • Reiter, R.J. and Tan, D.X. (2002). Melatonin: an antioxidant in edible plants. Ann. NY Acad. Sci. 957, 341–344.CrossrefGoogle Scholar

  • Reiter, R.J., Calvo, J.R., Karbownik, M., Qi, W., and Tan, D.X. (2000a). Melatonin and its relation to the immune system and inflammation. Ann. NY Acad. Sci. 917, 376–386.Google Scholar

  • Reiter, R.J., Tan, D.X., Osuna, C., and Gitto, E. (2000b). Actions of melatonin in the reduction of oxidative stress. A review. J. Biomed. Sci. 7, 444–458.CrossrefGoogle Scholar

  • Reiter, R.J., Tan, D.X., Burkhardt, S., and Manchester, L.C. (2001). Melatonin in plants. Nutr. Rev. 59, 286–290.PubMedGoogle Scholar

  • Reiter, R.J., Rosales-Corral, S.A., Manchester, L.C., and Tan, D.X. (2013). Peripheral reproductive organ health and melatonin: ready for prime time. Int. J. Mol. Sci. 14, 7231–7272.CrossrefPubMedGoogle Scholar

  • Reiter, R.J., Mayo, J.C., Tan, D.X., Sainz, R.M., Alatorre-Jimenez, M., and Qin, L. (2016). Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61, 253–278.CrossrefPubMedGoogle Scholar

  • Reuss, D.E., Sahm, F., Schrimpf, D., Wiestler, B., Capper, D., Koelsche, C., Schweizer, L., Korshunov, A., Jones, DT., Hovestadt, V., et al. (2015). ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol. 129, 133–146.CrossrefPubMedGoogle Scholar

  • Rondanelli, M., Faliva, M.A., Perna, S., and Antoniello, N. (2013). Update on the role of melatonin in the prevention of cancer tumorigenesis and in the management of cancer correlates, such as sleep–wake and mood disturbances: review and remarks. Aging Clin. Exp. Res. 25, 499–510.CrossrefPubMedGoogle Scholar

  • Sahm, F., Reuss, D., Koelsche, C., Capper, D., Schittenhelm, J., Heim, S., Jones, D.T., Pfister, S.M., Herold-Mende, C., Wick, W., et al. (2014). Farewell to oligoastrocytoma: in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol. 128, 551–559.PubMedCrossrefGoogle Scholar

  • Sherry, M.M., Reeves, A., Wu, J.K., and Cochran, B.H. (2009). STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem. Cells 2710, 2383–2392.Google Scholar

  • Sidaway, P. (2017). CNS cancer: glioblastoma subtypes revisited. Nat. Rev. Clin. Oncol. 14, 587.PubMedCrossrefGoogle Scholar

  • Slominiski, A., Wortsman, J., and Tobin, D.J. (2005). The cutaneous serotonergic/melatonergic system; securing a place under the sun. FASEB J. 19, 176–194.CrossrefGoogle Scholar

  • Srinivasan, V., Cardinali, D.P., Pandi-Perumal, S.R., and Brown, G.M. (2011). Melatonin agonists for treatment of sleep and depressive disorders. Journal of Experimental and Integrative Medicine. 13, 149–158.Google Scholar

  • Suva, M.L., Riggi, N., Janiszewska, M., Radovanovic, I., Provero, P., Stehle, J.C., Baumer, K., Le Bitoux, M.A., Marino, D., Cironi, L., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Res. 69, 9211–9218.PubMedCrossrefGoogle Scholar

  • Tamura, H., Takasaki, A., Taketani, T., Tanabe, M., Kizuka, F., Lee, L., Tamura, I., Maekawa, R., Aasada, H., Yamagata, Y., et al. (2012). The role of melatonin as an antioxidant in the follicle. J. Ovarian Res. 5, 5.PubMedCrossrefGoogle Scholar

  • Tan, D.X., Manchester, L.C., Terron, M.P., Flores, L.J., Tamura, H., and Reiter, R.J. (2007). Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. J. Pineal Res. 43, 317–320.CrossrefPubMedGoogle Scholar

  • Tan, D.X., Hardeland, R., Manchester, L.C., Korkmaz, A., Ma, S., Rosales-Corral, S., and Reiter, R.J. (2012). Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 63, 577–597.CrossrefPubMedGoogle Scholar

  • Tan, D.X., Manchester, L.C., Esteban-Zubero, E., Zhou, Z., and Reiter, R.J. (2015). Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20, 18886–18906.CrossrefPubMedGoogle Scholar

  • Tan, D.X., Manchester, L.C., Qin, L, and Reiter, R.J. (2016). Melatonin: a mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci. 17, pii: E2124.CrossrefGoogle Scholar

  • Tanaka, T., Yasui, Y., Tanaka, M., Tanaka, T., Oyama, T., and Rahman, K.M. (2009). Melatonin suppresses AOM/DSS-induced large bowel oncogenesis in rats. Chem. Biol. Interact. 177, 128–136.PubMedCrossrefGoogle Scholar

  • Tel-Missiry, M. and Abd El-Aziz, A. (2000). Influence of melatonin on proliferation and antioxidant system in Ehrlich ascites carcinoma cells. Cancer Lett. 151, 119–125.CrossrefPubMedGoogle Scholar

  • Tricoire, H., Moller, M., Chemineau, P., and Malpaux, B. (2003). Origin of cerebrospinal fluid melatonin and possible function in the integration of photoperiod. Reproduction (Suppl.) 61, 311–321.Google Scholar

  • Tungkum, W., Jumnongprakhon, P., Tocharus, C., Govitrapong, P., and Tocharus, J. (2017). Melatonin suppresses methamphetamine-triggered endoplasmic reticulum stress in C6 cells glioma cell lines. J. Toxicol. Sci. 42, 63–71.CrossrefPubMedGoogle Scholar

  • Vanecek, J. (1998). Cellular mechanism of melatonin action. Physiol. Rev. 78, 687–721.CrossrefGoogle Scholar

  • Venegas, C., García, J.A., Escames, G., Ortiz, F., López, A., Doerrier, C., García-Corzo, L., López, L.C., Reiter, R.J., and Acuña-Castroviejo, D. (2012). Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J. Pineal Res. 52, 217–227.PubMedCrossrefGoogle Scholar

  • Vijayalaxmi, Thomas, R.C., Reiter, R.J., and Herman, T.S. (2002). Melatonin: from basic research to cancer treatment clinics. J. Clin. Oncol. 20, 2575–2601.CrossrefPubMedGoogle Scholar

  • Yonei, Y., Hattori, A., Tsutsui, K., Okawa, M., and Ishizuka, B. (2010). Effects of melatonin basics studies and clinical applications. Anti-Aging. Med. 7, 85–91.Google Scholar

  • Yu, G.M., Kubota, H., Okita, M., and Maeda, T. (2017). The anti-inflammatory and antioxidant effects of melatonin on LPS stimulated bovine mammary epithelial cells. PLoS One 12, e0178525.CrossrefPubMedGoogle Scholar

  • Zawilska, J.B., Skene, D.J., and Arendt, J. (2009). Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol. Rep. 61, 383–410.CrossrefPubMedGoogle Scholar

  • Zhang, Y., Yu, X., Chen, L., Zhang, Z., Feng, S. (2017). EZH2 overexpression is associated with poor prognosis in patients with GBM. Oncotarget 8, 565–573.Google Scholar

  • Zheng, X., Pang, B., Gu, G., Gao, T., Zhang, R., Pang, Q., and Liu, Q. (2017). Melatonin inhibits glioblastoma stem-like cells through suppression of EZH2-NOTCH1 signaling axis. Int. J. Biol. Sci. 132, 245–253.Google Scholar

  • Zimmermann, R.C., McDougle, C.J., Schumacher, M., Olcese, J., Mason, J.W., Heninger, G.R., and Price, L.H. (1993). Effects of acute tryptophan depletion on nocturnal melatonin secretion in humans. J. Clin. Endocrinol. Metab. 76, 1160–1164.PubMedGoogle Scholar

About the article

aSayantan Maitra and Debanjan Bhattacharya: These authors contributed equally to this work.

Received: 2018-04-25

Accepted: 2018-09-07

Published Online: 2019-01-12

Published in Print: 2019-07-26

Citation Information: Reviews in the Neurosciences, Volume 30, Issue 5, Pages 527–541, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0041.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Jiajia Wang, Xiaoxiao Wang, Yufeng He, Lijie Jia, Chung S. Yang, Russel J. Reiter, and Jinsong Zhang
Cells, 2019, Volume 8, Number 8, Page 903
Lingyun Zhang, Yufeng He, Ximing Wu, Guangshan Zhao, Ke Zhang, Chung S. Yang, Russel J. Reiter, and Jinsong Zhang
Cells, 2019, Volume 8, Number 7, Page 745

Comments (0)

Please log in or register to comment.
Log in