Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 30, Issue 7


Pain in cervical dystonia and the antinociceptive effects of botulinum toxin: what is currently known?

Michał Marciniec
  • Corresponding author
  • Chair and Department of Neurology, Medical University of Lublin, Independent Public Clinical Hospital, No. 4, ul. Jaczewskiego 8, 20-954 Lublin, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Szczepańska-Szerej / Marcin Kulczyński / Klaudia Sapko / Sylwia Popek-Marciniec
  • Department of Cancer Genetics with Cytogenetics Laboratory, Medical University of Lublin, Lublin, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Konrad Rejdak
Published Online: 2019-03-27 | DOI: https://doi.org/10.1515/revneuro-2018-0119


Pain is the most common and disabling non-motor symptom in cervical dystonia (CD). Up to 88.9% of patients report pain at some point in the course of the disease. It is still a matter of debate whether CD-related pain originates only from prolonged muscle contraction. Recent data suggest that the alterations of transmission and processing of nociceptive stimuli play a crucial role in pain development. Botulinum toxin (BT) is the first-line therapy for CD. Despite fully elucidated muscle relaxant action, the antinociceptive effect of BT remains unclear and probably exceeds a simple decompression of the nerve fibers due to the reduction in muscle tone. The proposed mechanisms of the antinociceptive action of BT include inhibition of pain mediator release, inhibition of membrane sodium channels, retrograde axonal transport and impact on the other pain pathways. This article summarizes the current knowledge about the antinociceptive properties of BT and the clinical analgesic efficacy in the treatment of CD patients.

Keywords: botulinum toxins; pain measurement; pain perception; torticollis


  • Albanese, A., Bhatia, K., Bressman, S.B., DeLong, M.R., Fahn, S., Fung, V.S., Hallett, M., Jankovic, J., Jinnah, H.A., Klein, C., et al. (2013a). Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28, 863–873.CrossrefGoogle Scholar

  • Albanese, A., Sorbo, F.D., Comella, C., Jinnah, H.A., Mink, J.W., Post, B., Vidailhet, M., Volkmann, J., Warner, T.T., Leentjens, A.F., et al. (2013b). Dystonia rating scales: critique and recommendations. Mov. Disord. 28, 874–883.CrossrefGoogle Scholar

  • Arnold, M. (2018). Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders. Cephalalgia 38, 1–211.PubMedCrossrefGoogle Scholar

  • Avenali, M., De Icco, R., Tinazzi, M., Defazio, G., Tronconi, L., and Sandrini, G. (2018). Pain in focal dystonias – a focused review to address an important component of the disease. Parkinsonism Relat. Disord. 54, 17–24.CrossrefPubMedGoogle Scholar

  • Barbanti, P., Fabbrini, G., Pauletti, C., Defazio, G., Cruccu, G., and Berardelli, A. (2005). Headache in cranial and cervical dystonia. Neurology 64, 1308–1309.PubMedCrossrefGoogle Scholar

  • Bentivoglio, A.R., Di Stasio, E., Mulas, D., Cerbarano, M.L., Ialongo, T., Laurienzo, A., and Petracca, M. (2017). Long-term abobotulinumtoxin A treatment of cervical dystonia. Neurotox. Res. 32, 291–300.CrossrefPubMedGoogle Scholar

  • Bezerra, M.E. and Rocha-Filho, P.A. (2017). Headache attributed to craniocervical dystonia – a little known headache. Headache 57, 336–343.CrossrefPubMedGoogle Scholar

  • Brashear, A., Lew, M.F., Dykstra, D.D., Comella, C.L., Factor, S.A., and Rodnitzky, R.L. (1999). Safety and efficacy of NeuroBloc (botulinum toxin type B) in type A-responsive cervical dystonia. Neurology 53, 1439–1446.CrossrefPubMedGoogle Scholar

  • Camargo, C.H., Cattai, L., and Teive, H.A. (2015). Pain relief in cervical dystonia with botulinum toxin treatment. Toxins (Basel) 7, 2321–2335.PubMedCrossrefGoogle Scholar

  • Cano, S.J., Warner, T.T., Linacre, J.M., Bhatia, K.P., Thompson, A.J., Fitzpatrick, R., and Hobart, J.C. (2004). Capturing the true burden of dystonia on patients: the Cervical Dystonia Impact Profile (CDIP-58). Neurology 63, 1629–1633.CrossrefPubMedGoogle Scholar

  • Castelao, M., Marques, R.E., Duarte, G.S., Rodrigues, F.B., Ferreira, J., Sampaio, C., Moore, A.P., and Costa, J. (2017). Botulinum toxin type A therapy for cervical dystonia. Cochrane Database Syst. Rev. 12, 1–91.Google Scholar

  • Charles, D., Brashear, A., Hauser, R.A., Li, H.I., Boo, L.M., and Brin, M.F. (2012). Efficacy, tolerability, and immunogenicity of onabotulinumtoxina in a randomized, double-blind, placebo-controlled trial for cervical dystonia. Clin. Neuropharmacol. 35, 208–214.CrossrefGoogle Scholar

  • Charles, P.D., Adler, C.H., Stacy, M., Comella, C., Jankovic, J., Adams, A.M, Schwartz, M., and Brin, M.F. (2014). Cervical dystonia and pain: characteristics and treatment patterns from CD PROBE (Cervical Dystonia Patient Registry for Observation of OnabotulinumtoxinA Efficacy). J. Neurol. 261, 1309–1319.CrossrefPubMedGoogle Scholar

  • Charles, P.D., Manack Adams, A., Davis, T., Bradley, K., Schwartz, M., Brin, M.F., and Patel, A.T. (2016). Neck pain and cervical dystonia: treatment outcomes from CD PROBE (Cervical Dystonia Patient Registry for Observation of OnabotulinumtoxinA Efficacy). Pain Pract. 16, 1073–1082.PubMedCrossrefGoogle Scholar

  • Comella, C.L., Jankovic, J., Shannon, K.M., Tsui, J., Swenson, M., Leurgans, S., and Fan, W. (2005). Comparison of botulinum toxin serotypes A and B for the treatment of cervical dystonia. Neurology 65, 1423–1429.CrossrefGoogle Scholar

  • Comella, C.L., Jankovic, J., Truong, D.D., Hanschmann, A., and Grafe, S. (2011). Efficacy and safety of incobotulinumtoxinA (NT 201, XEOMIN®, botulinum neurotoxin type A, without accessory proteins) in patients with cervical dystonia. J. Neurol. Sci. 308, 103–109.PubMedCrossrefGoogle Scholar

  • Comella, C.L., Fox, S.H., Bhatia, K.P., Perlmutter, J.S., Jinnah, H.A., Zurowski, M., McDonald, W.M., Marsh, L., Rosen, A.R., Waliczek, T., et al. (2015). Development of the comprehensive cervical dystonia rating scale: methodology. Mov. Disord. Clin. Pract. 2, 135–141.CrossrefPubMedGoogle Scholar

  • Conte, A., McGovern, E.M., Narasimham, S., Beck, R., Killian, O., O’Riordan, S., Reilly, R.B., and Hutchinson, M. (2017a). Temporal discrimination: mechanisms and relevance to adult-onset dystonia. Front. Neurol. 8, 625.CrossrefGoogle Scholar

  • Conte, A., Ferrazzano, G., Belvisi, D., Manzo, N., Suppa, A., Fabbrini, G., and Berardelli, A. (2017b). Does the somatosensory temporal discrimination threshold change over time in focal dystonia? Neural. Plast. 2017, 9848070.Google Scholar

  • Czekóová, K., Zemánková, P., Shaw, D.J., and Bareš, M. (2017). Social cognition and idiopathic isolated cervical dystonia. J. Neural. Transm. (Vienna) 124, 1097–1104.PubMedCrossrefGoogle Scholar

  • Defazio, G., Jankovic, J., Giel, J.L., and Papapetropoulos, S. (2013). Descriptive epidemiology of cervical dystonia. Tremor Other Hyperkinet. Mov. 3, 193.Google Scholar

  • Defazio, G., Esposito, M., Abbruzzese, G., Scaglione, C.L., Fabbrini, G., Ferrazzano, G., Peluso, S., Pellicciari, R., Gigante, A.F, Cossu, G., et al. (2017). The Italian Dystonia Registry: rationale, design and preliminary findings. Neurol. Sci. 38, 819–825.CrossrefPubMedGoogle Scholar

  • Defazio, G., Albanese, A., Pellicciari, R., Scaglione, C.L., Esposito, M., Morgante, F., Abbruzzese, G., Bentivoglio, A.R., Bono, F., Moja, M.C., et al. (2019). Expert recommendations for diagnosing cervical, oromandibular, and limb dystonia. Neurol. Sci. 40, 89–95.PubMedCrossrefGoogle Scholar

  • Dressler, D., Paus, S., Seitzinger, A., Gebhardt, B., and Kupsch, A. (2013). Long-term efficacy and safety of incobotulinumtoxinA injections in patients with cervical dystonia. J. Neurol. Neurosurg. Psychiatry 84, 1014–1019.CrossrefPubMedGoogle Scholar

  • Drinovac, V.V., Bach-Rojecky, L., and Lacković, Z. (2016). Antinociceptive action of botulinum toxin type A in carrageenan-induced mirror pain. J. Neural. Transm. (Vienna) 123, 1403–1413.CrossrefPubMedGoogle Scholar

  • Drinovac, V.V., Filipović, B., Bach-Rojecky, L., and Lacković, Z. (2018). Role of central versus peripheral opioid system in antinociceptive and anti-inflammatory effect of botulinum toxin type A in trigeminal region. Eur. J. Pain. 22, 583–591.PubMedCrossrefGoogle Scholar

  • Fan, C., Chu, X., Wang, L., Shi, H., and Li, T. (2017). Botulinum toxin type A reduces TRPV1 expression in the dorsal root ganglion in rats with adjuvant-arthritis pain. Toxicon 133, 116–122.PubMedCrossrefGoogle Scholar

  • Fernandez, H.H., Pappert, E.J., Comella, C.L., Evidente, V.G., Truong, D.D., Verma, A., and Jankovic, J. (2013). Efficacy and safety of incobotulinumtoxin A in subjects previously treated with botulinum toxin versus toxin-naïve subjects with cervical dystonia. Tremor Other Hyperkinet. Mov. 3, 140.Google Scholar

  • Foley, J.A., Vinke, R.S., Limousin, P., and Cipolotti, L. (2017). Relationship of cognitive function to motor symptoms and mood disorders in patients with isolated dystonia. Cogn. Behav. Neurol. 30, 16–22.PubMedCrossrefGoogle Scholar

  • Hallett, M. (2018). Mechanism of action of botulinum neurotoxin: unexpected consequences. Toxicon 147, 73–76.CrossrefPubMedGoogle Scholar

  • Hawker, G.A., Mian, S., Kendzerska, T., and French, M. (2011). Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 11, 240–252.Google Scholar

  • Jost, W.H., Hefter, H., Stenner, A., and Reichel, G. (2013). Rating scales for cervical dystonia: a critical evaluation of tools for outcome assessment of botulinum toxin therapy. J. Neural. Transm. (Vienna) 120, 487–496.PubMedCrossrefGoogle Scholar

  • Kaji, R., Shimizu, H., Takase, T., Osawa, M., and Yanagisawa, N. (2013). A double-blind comparative study to evaluate the efficacy and safety of NerBloc® (rimabotulinumtoxinB) administered in a single dose to patients with cervical dystonia. Brain Nerve 65, 203–211.Google Scholar

  • Kuyper, D.J., Parra, V., Aerts, S., Okun, M.S., and Kluger, B.M. (2011). Nonmotor manifestations of dystonia: a systematic review. Mov. Disord. 26, 1206–1217.PubMedCrossrefGoogle Scholar

  • Lew, M.F., Adornato, B.T., Duane, D.D., Dykstra, D.D., Factor, S.A., Massey, J.M., Brin, M.F., Jankovic, J., Rodnitzky, R.L., Singer, C., et al. (1997). Botulinum toxin type B: a double-blind, placebo-controlled, safety and efficacy study in cervical dystonia. Neurology 49, 701–707.CrossrefPubMedGoogle Scholar

  • Marino, M.J., Terashima, T., Steinauer, J.J., Eddinger, K.A., Yaksh, T.L., and Xu, Q. (2014). Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain 155, 674–684.PubMedCrossrefGoogle Scholar

  • Misra, V.P., Trosch, R.M., Maisonobe, P., and Om, S. (2018). Spectrum of practice in the routine management of cervical dystonia with abobotulinumtoxinA: findings from three prospective open-label observational studies. J. Clin. Mov. Disord. 5, 4.PubMedCrossrefGoogle Scholar

  • Morgante, F., Matinella, A., Andrenelli, E., Ricciardi, L., Allegra, C., and Terranova, C. (2018). Pain processing in functional and idiopathic dystonia: an exploratory study. Mov Disord. 33, 1340–1348.PubMedCrossrefGoogle Scholar

  • Novak, I., Campbell, L., Boyce, M., and Fung, V.S. (2010). Botulinum toxin assessment, intervention and aftercare for cervical dystonia and other causes of hypertonia of the neck: international consensus statement. Eur. J. Neurol. 17, 94–108.PubMedCrossrefGoogle Scholar

  • Paracka, L., Wegner, F., Blahak, C., Abdallat, M., Saryyeva, A., Dressler, D., Karst, M., and Krauss, J.K. (2017). Sensory alterations in patients with isolated idiopathic dystonia: an exploratory quantitative sensory testing analysis. Front. Neurol. 8, 553.CrossrefPubMedGoogle Scholar

  • Park, J. and Chung, M.E. (2018). Botulinum toxin for central neuropathic pain. Toxins (Basel) 10, 224.CrossrefGoogle Scholar

  • Park, J. and Park, H.J. (2017). Botulinum toxin for the treatment of neuropathic pain. Toxins (Basel). 9, 260.CrossrefGoogle Scholar

  • Poewe, W., Deuschl, G., Nebe, A., Feifel, E., Wissel, J., Benecke, R., Kessler, K.R., Ceballos-Baumann, A.O., Ohly, A., Oertel, W., et al. (1998). What is the optimal dose of botulinum toxin A in the treatment of cervical dystonia? Results of a double blind, placebo controlled, dose ranging study using Dysport. J. Neurol. Neurosurg. Psychiatry 64, 13–17.CrossrefPubMedGoogle Scholar

  • Ranoux, D., Gury, C., Fondarai, J., Mas, J.L., and Zuber, M. (2002). Respective potencies of Botox and Dysport: a double blind, randomised, crossover study in cervical dystonia. J. Neurol. Neurosurg. Psychiatry 72, 459–462.PubMedGoogle Scholar

  • Reichel, G. (2011). Cervical dystonia: a new phenomenological classification for botulinum toxin therapy. Basal Ganglia 1, 5–12.CrossrefGoogle Scholar

  • Relja, M. and Miletić, V. (2017). When movement disorders hurt: addressing pain in hyperkinetic disorders. Parkinsonism Relat. Disord. 44, 110–113.PubMedCrossrefGoogle Scholar

  • Safarpour, Y. and Jabbari, B. (2018). Botulinum toxin treatment of movement disorders. Curr. Treat. Options Neurol. 20, 4.CrossrefPubMedGoogle Scholar

  • Scontrini, A., Conte, A., Defazio, G., Fiorio, M., Fabbrini, G., Suppa, A., Tinazzi, M., and Berardelli, A. (2009). Somatosensory temporal discrimination in patients with primary focal dystonia. J. Neurol. Neurosurg. Psychiatry 80, 1315–1319.PubMedCrossrefGoogle Scholar

  • Shin, M.C., Wakita, M., Xie, D.J., Yamaga, T., Iwata, S., Torii, Y., Harakawa, T., Ginnaga, A., Kozaki, S., and Akaike, N. (2012). Inhibition of membrane Na+ channels by A type botulinum toxin at femtomolar concentrations in central and peripheral neurons. J. Pharmacol. Sci. 118, 33–42.CrossrefPubMedGoogle Scholar

  • Shrestha, M. and Chen, A. (2018). Modalities in managing postherpetic neuralgia. Korean J. Pain 31, 235–243.CrossrefPubMedGoogle Scholar

  • Simpson, D.M., Hallett, M., Ashman, E.J., Comella, C.L., Green, M.W., Gronseth, G.S., Armstrong, M.J., Gloss, D., Potrebic, S., Jankovic, J., et al. (2016). Practice guideline update summary: botulinum neurotoxin for the treatment of blepharospasm, cervical dystonia, adult spasticity, and headache. Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 86, 1818–1826.PubMedCrossrefGoogle Scholar

  • Smit, M., Kuiper, A., Han, V., Jiawan, V.C.R., Douma, G., van Harten, B., Oen, J.M.T.H., Pouwels, M.E., Dieks, H.J.G., Bartels, A.L., et al. (2016). Psychiatric co-morbidity is highly prevalent in idiopathic cervical dystonia and significantly influences health-related quality of life: results of a controlled study. Parkinsonism Relat. Disord. 30, 7–12.CrossrefPubMedGoogle Scholar

  • Stacy, M. (2008). Epidemiology, clinical presentation, and diagnosis of cervical dystonia. Neurol. Clin. 26, 23–42.PubMedCrossrefGoogle Scholar

  • Tater, P. and Pandey, S. (2018). Botulinum toxin in movement disorders. Neurol. India 66, 79–89.CrossrefGoogle Scholar

  • Tinazzi, M., Valeriani, M., Squintani, G., Corrà, F., Recchia, S., Defazio, G., and Berardelli, A. (2012). Nociceptive pathway function is normal in cervical dystonia: a study using laser-evoked potentials. J. Neurol. 259, 2060–2066.PubMedCrossrefGoogle Scholar

  • Torres, J.A.K.L. and Rosales, R.L. (2017). Nonmotor symptoms in dystonia. Int Rev Neurobiol. 134, 1335–1371.CrossrefPubMedGoogle Scholar

  • Trosch, R., Misra, P., Maisonobe, P., and Om, S. (2016). Geographic differences in pain perception in patients with cervical dystonia. Neurology 86, 33.Google Scholar

  • Williams, L., McGovern, E., Kimmich, O., Molloy, A., Beiser, I., Butler, J.S., Molloy, F., Logan, P., Healy, D.G., Lynch, T., et al. (2017). Epidemiological, clinical and genetic aspects of adult onset isolated focal dystonia in Ireland. Eur. J. Neurol. 24, 73–81.PubMedCrossrefGoogle Scholar

  • Yun, J.Y., Kim, J.W., Kim, H.T., Chung, S.J., Kim, J.M., Cho, J.W., Lee, J.Y., Lee, H.N., You, S., Oh, E., et al. (2015). Dysport and Botox at a ratio of 2.5:1 units in cervical dystonia: a double-blind, randomized study. Mov. Disord. 30, 206–213.CrossrefGoogle Scholar

  • Zhang, Y. and Smith, C.P. (2015). Botulinum toxin to treat pelvic pain. Toxicon 147, 129–133.Google Scholar

About the article

Received: 2018-12-29

Accepted: 2019-01-25

Published Online: 2019-03-27

Published in Print: 2019-10-25

Citation Information: Reviews in the Neurosciences, Volume 30, Issue 7, Pages 771–779, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0119.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in