Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 25, Issue 5


MicroRNAs in central nervous system development

Néstor F. Díaz
  • Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mónica S. Cruz-Reséndiz
  • Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Héctor Flores-Herrera
  • Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guadalupe García-López
  • Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anayansi Molina-Hernández
  • Corresponding author
  • Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-05 | DOI: https://doi.org/10.1515/revneuro-2014-0014


During early and late embryo neurodevelopment, a large number of molecules work together in a spatial and temporal manner to ensure the adequate formation of an organism. Diverse signals participate in embryo patterning and organization synchronized by time and space. Among the molecules that are expressed in a temporal and spatial manner, and that are considered essential in several developmental processes, are the microRNAs (miRNAs). In this review, we highlight some important aspects of the biogenesis and function of miRNAs as well as their participation in ectoderm commitment and their role in central nervous system (CNS) development. Instead of giving an extensive list of miRNAs involved in these processes, we only mention those miRNAs that are the most studied during the development of the CNS as well as the most likely mRNA targets for each miRNA and its protein functions.

Keywords: corticogenesis; miR-124; small noncoding RNAs


  • Aboobaker, A.A., Tomancak, P., Patel, N., Rubin, G.M., and Lai, E.C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl. Acad. Sci. USA 102, 18017–18022.CrossrefGoogle Scholar

  • Alvarez-Buylla, A., Kohwi, M., Nguyen, T.M., and Merkle, F.T. (2008). The heterogeneity of adult neural stem cells and the emerging complexity of their niche. Cold Spring Harb. Symp. Quant. Biol. 73, 357–365.CrossrefGoogle Scholar

  • Barbato, C., Ruberti, F., Pieri, M., Vilardo, E., Costanzo, M., Ciotti, M.T., Zona, C., and Cogoni, C. (2010). MicroRNA-92 modulates K+ Cl- co-transporter KCC2 expression in cerebellar granule neurons. J. Neurochem. 113, 591–600.Google Scholar

  • Barca-Mayo, O. and De Pietri Tonelli, D. (2014). Convergent microRNA actions coordinate neocortical development. Cell. MoLi, L.fe Sci. DOI 10.1007/s00018-014-1576-5.CrossrefGoogle Scholar

  • Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.Google Scholar

  • Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.Google Scholar

  • Berezikov, E., Chung, W.J., Willis, J., Cuppen, E., and Lai, E.C. (2007). Mammalian mirtron genes. Mol. Cell. 28, 328–336.CrossrefPubMedGoogle Scholar

  • Bhattacharyya, S.N., Habermacher, R., Martine, U., Closs, E.I., and Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124.Google Scholar

  • Blaesse, P., Airaksinen, M.S., Rivera, C., and Kaila, K. (2009). Cation-chloride cotransporters and neuronal function. Neuron 61, 820–838.Google Scholar

  • Boeri, M., Verri, C., Conte, D., Roz, L., Modena, P., Facchinetti, F., Calabro, E., Croce, C.M., Pastorino, U., and Sozzi, G. (2011). MicroRNA signatures in tissues and plasma predict development and prognosis of computed tomography detected lung cancer. Proc. Natl. Acad. Sci. USA 108, 3713–3718.Google Scholar

  • Borchert, G.M., Lanier, W., and Davidson, B.L. (2006). RNA polymerase III transcribes human microRNAs. Nat. Struct. Mol. Biol. 13, 1097–1101.PubMedCrossrefGoogle Scholar

  • Candiani, S., Moronti, L., De Pietri Tonelli, D., Garbarino, G., and Pestarino, M. (2011). A study of neural-related microRNAs in the developing amphioxus. Evodevo 2, 15.CrossrefGoogle Scholar

  • Cao, X., Pfaff, S.L., and Gage, F.H. (2007). A functional study of miR-124 in the developing neural tube. Genes Dev. 21, 531–536.CrossrefGoogle Scholar

  • Caygill, E.E. and Johnston, L.A. (2008). Temporal regulation of metamorphic processes in Drosophila by the let-7 and miR-125 heterochronic microRNAs. Curr. Biol. 18, 943–950.PubMedCrossrefGoogle Scholar

  • Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., et al. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698.Google Scholar

  • Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949.CrossrefGoogle Scholar

  • Colas, A.R., McKeithan, W.L., Cunningham, T.J., Bushway, P.J., Garmire, L.X., Duester, G., Subramaniam, S., and Mercola, M. (2012). Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes Dev. 26, 2567–2579.CrossrefGoogle Scholar

  • Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc. Natl. Acad. Sci. USA 103, 2422–2427.CrossrefGoogle Scholar

  • Cortez, M.A. and Calin, G.A. (2009). MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 9, 703–711.Google Scholar

  • Cortez, M.A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A.K., and Calin, G.A. (2011). MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 8, 467–477.CrossrefPubMedGoogle Scholar

  • Chalfie, M., Horvitz, H.R., and Sulston, J.E. (1981). Mutations that lead to reiterations in the cell lineages of C. elegans. Cell 24, 59–69.Google Scholar

  • Cheloufi, S., Dos Santos, C.O., Chong, M.M., and Hannon, G.J. (2010). A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589.Google Scholar

  • Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., et al. (2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18, 997–1006.CrossrefPubMedGoogle Scholar

  • Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman. J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.Google Scholar

  • Cheng, L.C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat. Neurosci. 12, 399–408.PubMedGoogle Scholar

  • Choi, P.S., Zakhary, L., Choi, Y.W., Caron, S., Alvarez-Saavedra, E., Miska, E.A., McManus, M., Harfe, B., Giraldez, A.J., Horvitz, H.R., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron 57, 41–55.CrossrefPubMedGoogle Scholar

  • Chung, W.J., Agius, P., Westholm, J.O., Chen, M., Okamura, K., Robine, N., Leslie, C.S., and Lai, E.C. (2011). Computational and experimental identification of mirtrons in Drosophila melanogaster and Caenorhabditis elegans. Genome Res. 21, 286–300.CrossrefGoogle Scholar

  • Darnell, D.K., Kaur, S., Stanislaw, S., Konieczka, J.H., Yatskievych, T.A., and Antin, P.B. (2006). MicroRNA expression during chick embryo development. Dev. Dyn. 235, 3156–3165.Google Scholar

  • Davis, T.H., Cuellar, T.L., Koch, S.M., Barker, A.J., Harfe, B.D., McManus, M.T., and Ullian, E.M. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J. Neurosci. 28, 4322–4330.CrossrefGoogle Scholar

  • Delaloy, C., Liu, L., Lee, J.A., Su, H., Shen, F., Yang, Y.G., Young, W.L., Ivey, K.N., and Gao, F.B. (2010). MicroRNA-9 coordinates proliferation and migration of human embryonic stem cell-derived neural progenitors. Cell Stem Cell. 6, 323–335.CrossrefPubMedGoogle Scholar

  • Doench, J.G. and Sharp, P.A. (2004). Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511.PubMedCrossrefGoogle Scholar

  • Du, T. and Zamore, P.D. (2005). microPrimer: the biogenesis and function of microRNA. Development 132, 4645–4652.Google Scholar

  • Du, Z.W., Ma, L.X., Phillips, C., and Zhang, S.C. (2013). miR-200 and miR-96 families repress neural induction from human embryonic stem cells. Development 140, 2611–2618.Google Scholar

  • Fiore, R., Siegel, G., and Schratt, G. (2008). MicroRNA function in neuronal development, plasticity and disease. Biochim. Biophys. Acta 1779, 471–478.Google Scholar

  • Frank, F., Sonenberg, N., and Nagar, B. (2010). Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822.Google Scholar

  • Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.PubMedGoogle Scholar

  • Gage, F.H., Kempermann, G., Palmer, T.D., Peterson, D.A., and Ray, J. (1998). Multipotent progenitor cells in the adult dentate gyrus. J. Neurobiol. 36, 249–266.CrossrefGoogle Scholar

  • Gao, F.B. (2010). Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 5, 25.PubMedCrossrefGoogle Scholar

  • Ghildiyal, M., Xu, J., Seitz, H., Weng, Z., and Zamore, P.D. (2010). Sorting of Drosophila small silencing RNAs partitions microRNA* strands into the RNA interference pathway. RNA 16, 43–56.CrossrefPubMedGoogle Scholar

  • Gil-Perotin, S., Alvarez-Buylla, A., and Garcia-Verdugo, J.M. (2009). Identification and characterization of neural progenitor cells in the adult mammalian brain. Adv. Anat. Embryol. Cell. Biol. 203, 1–101, ix.Google Scholar

  • Gilad, S., Meiri, E., Yogev, Y., Benjamin, S., Lebanony, D., Yerushalmi, N., Benjamin, H., Kushnir, M., Cholakh, H., Melamed, N., et al. (2008). Serum microRNAs are promising novel biomarkers. PLoS One 3, e3148.Google Scholar

  • Greene, N.D. and Copp, A.J. (2012). Could microRNAs be biomarkers for neural tube defects? J. Neurochem. 122, 485–486.CrossrefGoogle Scholar

  • Griffiths-Jones, S., Grocock, R.J., Van Dongen, S., Bateman, A., and Enright, A.J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144.CrossrefGoogle Scholar

  • Gu, H., Li, H., Zhang, L., Luan, H., Huang, T., Wang, L., Fan, Y., Zhang, Y., Liu, X., Wang, W., et al. (2012). Diagnostic role of microRNA expression profile in the serum of pregnant women with fetuses with neural tube defects. J. Neurochem. 122, 641–649.CrossrefGoogle Scholar

  • Han, J., Lee, Y., Yeom, K.H., Nam, J.W., Heo, I., Rhee, J.K., Sohn, S.Y., Cho, Y., Zhang, B.T., and Kim, V.N. (2006). Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901.Google Scholar

  • Hebert, S.S. and De Strooper, B. (2007). Molecular biology. miRNAs in neurodegeneration. Science 317, 1179–1180.Google Scholar

  • Hutchison, M., Berman, K.S., and Cobb, M.H. (1998). Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. J. Biol. Chem. 273, 28625–28632.Google Scholar

  • Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T., and Zamore, P.D. (2001). A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.Google Scholar

  • Ji, F., Lv, X., and Jiao, J. (2013). The role of microRNAs in neural stem cells and neurogenesis. J. Genet. Genomics 40, 61–66.Google Scholar

  • Kapsimali, M., Kloosterman, W.P., De Bruijn, E., Rosa, F., Plasterk, R.H., and Wilson, S.W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol. 8, R173.CrossrefGoogle Scholar

  • Kaspi, H., Chapnik, E., Levy, M., Beck, G., Hornstein, E., and Soen, Y. (2013). Brief report: miR-290-295 regulate embryonic stem cell differentiation propensities by repressing Pax6. Stem Cells 31, 2266–2272.Google Scholar

  • Kim, J., Inoue, K., Ishii, J., Vanti, W.B., Voronov, S.V., Murchison, E., Hannon, G., and Abeliovich, A. (2007). A microRNA feedback circuit in midbrain dopamine neurons. Science 317, 1220–1224.Google Scholar

  • Kloosterman, W.P., Wienholds, E., De Bruijn, E., Kauppinen, S., and Plasterk, R.H. (2006). In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29.CrossrefGoogle Scholar

  • Kozomara, A. and Griffiths-Jones, S. (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157.CrossrefGoogle Scholar

  • Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA 9, 1274–1281.PubMedCrossrefGoogle Scholar

  • Krichevsky, A.M., Sonntag, K.C., Isacson, O., and Kosik, K.S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24, 857–864.CrossrefPubMedGoogle Scholar

  • Kulkarni, M., Ozgur, S., and Stoecklin, G. (2010). On track with P-bodies. Biochem. Soc. Trans. 38, 242–251.CrossrefGoogle Scholar

  • Lagos-Quintana, M., Rauhut, R., Meyer, J., Borkhardt, A., and Tuschl, T. (2003). New microRNAs from mouse and human. RNA 9, 175–179.CrossrefGoogle Scholar

  • Le, M.T., Xie, H., Zhou, B., Chia, P.H., Rizk, P., Um, M., Udolph, G., Yang, H., Lim, B., and Lodish, H.F. (2009). MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol. 29, 5290–5305.CrossrefGoogle Scholar

  • Le, M.T.N., Teh, C., Shyh-Chang, N., Korzh, V., Lodish, H.F., and Lim, B. (2010). Function of miR-125b in zebrafish neurogenesis. Int. J. Biol. Life Sci. Eng. 4, 635–640.Google Scholar

  • Le, M.T., Shyh-Chang, N., Khaw, S.L., Chin, L., Teh, C., Tay, J., O’Day, E., Korzh, V., Yang, H., Lal, A., et al. (2011). Conserved regulation of p53 network dosage by microRNA-125b occurs through evolving miRNA-target gene pairs. PLoS Genet. 7, e1002242.Google Scholar

  • Lee, R.C. and Ambros, V. (2001). An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864.Google Scholar

  • Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.Google Scholar

  • Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.Google Scholar

  • Lewis, B. P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P., and Burge, C.B. (2003). Prediction of mammalian microRNA targets. Cell 115, 787–798.Google Scholar

  • Lichner, Z., Pall, E., Kerekes, A., Pallinger, E., Maraghechi, P., Bosze, Z., and Gocza, E. (2011). The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation 81, 11–24.Google Scholar

  • Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, S.P., and Johnson, J.M. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.Google Scholar

  • Liu, N., Okamura, K., Tyler, D.M., Phillips, M.D., Chung, W.J., and Lai, E.C. (2008). The evolution and functional diversification of animal microRNA genes. Cell Res. 18, 985–996.CrossrefPubMedGoogle Scholar

  • Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C. (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056.Google Scholar

  • Maiorano, N.A. and Mallamaci, A. (2009). Promotion of embryonic cortico-cerebral neuronogenesis by miR-124. Neural Dev. 4, 40.Google Scholar

  • Makeyev, E.V., Zhang, J., Carrasco, M.A., and Maniatis, T. (2007). The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell. 27, 435–448.CrossrefGoogle Scholar

  • Marcelis, C.L., Hol, F.A., Graham, G.E., Rieu, P.N., Kellermayer, R., Meijer, R.P., Lugtenberg, D., Scheffer, H., Van Bokhoven, H., Brunner, H.G., et al. (2008). Genotype-phenotype correlations in MYCN-related Feingold syndrome. Hum. Mutat. 29, 1125–1132.CrossrefGoogle Scholar

  • Marson, A., Levine, S.S., Cole, M.F., Frampton, G.M., Brambrink, T., Johnstone, S., Guenther, M.G., Johnston, W.K., Wernig, M., Newman, J., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134, 521–533.Google Scholar

  • Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M., and Horvitz, H.R. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol. 5, R68.CrossrefGoogle Scholar

  • Miska, E.A., Alvarez-Saavedra, E., Abbott, A.L., Lau, N.C., Hellman, A.B., McGonagle, S.M., Bartel, D.P., Ambros, V.R., and Horvitz, H.R. (2007). Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet. 3, e215.CrossrefGoogle Scholar

  • Mogilyansky, E. and Rigoutsos, I. (2013). The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20, 1603–1614.Google Scholar

  • Nan, Y., Han, L., Zhang, A., Wang, G., Jia, Z., Yang, Y., Yue, X., Pu, P., Zhong, Y., and Kang, C. (2010). miRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res. 1359, 14–21.Google Scholar

  • Nielsen, J.A., Lau, P., Maric, D., Barker, J.L., and Hudson, L.D. (2009). Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci. 10, 98.PubMedCrossrefGoogle Scholar

  • Olguin, P., Oteiza, P., Gamboa, E., Gomez-Skarmeta, J.L., and Kukuljan, M. (2006). RE-1 silencer of transcription/neural restrictive silencer factor modulates ectodermal patterning during Xenopus development. J. Neurosci. 26, 2820–2829.CrossrefGoogle Scholar

  • Olsen, P.H. and Ambros, V. (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680.Google Scholar

  • Papagiannakopoulos, T. and Kosik, K.S. (2009). MicroRNA-124: micromanager of neurogenesis. Cell Stem Cell 4, 375–376.PubMedCrossrefGoogle Scholar

  • Qureshi, I.A. and Mehler, M.F. (2012). Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat. Rev. Neurosci. 13, 528–541.PubMedCrossrefGoogle Scholar

  • Rabinowits, G., Gercel-Taylor, C., Day, J.M., Taylor, D.D., and Kloecker, G.H. (2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clin. Lung Cancer 10, 42–46.PubMedCrossrefGoogle Scholar

  • Rajasekharan, S. and Kennedy, T.E. (2009). The netrin protein family. Genome Biol. 10, 239.CrossrefPubMedGoogle Scholar

  • Raman, M., Earnest, S., Zhang, K., Zhao, Y., and Cobb, M.H. (2007). TAO kinases mediate activation of p38 in response to DNA damage. EMBO J. 26, 2005–2014.CrossrefGoogle Scholar

  • Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G. (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906.Google Scholar

  • Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513–520.Google Scholar

  • Roese-Koerner, B., Stappert, L., Koch, P., Brustle, O., and Borghese, L. (2013). Pluripotent stem cell-derived somatic stem cells as tool to study the role of microRNAs in early human neural development. Curr. Mol. Med. 13, 707–722.Google Scholar

  • Ruby, J.G., Jan, C.H., and Bartel, D.P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86.Google Scholar

  • Sarver, A.L., Li, L., and Subramanian, S. (2010). MicroRNA miR-183 functions as an oncogene by targeting the transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 70, 9570–9580.CrossrefGoogle Scholar

  • Saurat, N., Andersson, T., Vasistha, N.A., Molnar, Z., and Livesey, F.J. (2013). Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 8, 14.PubMedCrossrefGoogle Scholar

  • Schaefer, A., O’Carroll, D., Tan, C.L., Hillman, D., Sugimori, M., Llinas, R., and Greengard, P. (2007). Cerebellar neurodegeneration in the absence of microRNAs. J. Exp. Med. 204, 1553–1558.CrossrefGoogle Scholar

  • Sempere, L.F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., and Ambros, V. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 5, R13.CrossrefGoogle Scholar

  • Seo, S., Lim, J.W., Yellajoshyula, D., Chang, L.W., and Kroll, K.L. (2007). Neurogenin and NeuroD direct transcriptional targets and their regulatory enhancers. EMBO J. 26, 5093–5108.PubMedCrossrefGoogle Scholar

  • Smirnova, L., Grafe, A., Seiler, A., Schumacher, S., Nitsch, R., and Wulczyn, F.G. (2005). Regulation of miRNA expression during neural cell specification. Eur. J. Neurosci. 21, 1469–1477.PubMedCrossrefGoogle Scholar

  • Suter, D.M., Tirefort, D., Julien, S., and Krause, K.H. (2009). A Sox1 to Pax6 switch drives neuroectoderm to radial glia progression during differentiation of mouse embryonic stem cells. Stem Cells 27, 49–58.CrossrefGoogle Scholar

  • Takayama, C. and Inoue, Y. (2007). Developmental localization of potassium chloride co-transporter 2 (KCC2) in the Purkinje cells of embryonic mouse cerebellum. Neurosci. Res. 57, 322–325.PubMedCrossrefGoogle Scholar

  • Taylor, D.D. and Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol. 110, 13–21.PubMedCrossrefGoogle Scholar

  • Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R. (2006). Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524.CrossrefGoogle Scholar

  • Visvanathan, J., Lee, S., Lee, B., Lee, J.W., and Lee, S.K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes Dev. 21, 744–749.Google Scholar

  • Weston, M.D., Pierce, M.L., Rocha-Sanchez, S., Beisel, K.W., and Soukup, G.A. (2006). MicroRNA gene expression in the mouse inner ear. Brain Res. 1111, 95–104.Google Scholar

  • Wienholds, E. and Plasterk, R.H. (2005). MicroRNA function in animal development. FEBS Lett. 579, 5911–5922.Google Scholar

  • Wienholds, E., Kloosterman, W.P., Miska, E., Alvarez-Saavedra, E., Berezikov, E., De Bruijn, E., Horvitz, H.R., Kauppinen, S., and Plasterk, R.H. (2005). MicroRNA expression in zebrafish embryonic development. Science 309, 310–311.Google Scholar

  • Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862.Google Scholar

  • Wu, L. and Belasco, J.G. (2005). Micro-RNA regulation of the mammalian lin-28 gene during neuronal differentiation of embryonal carcinoma cells. Mol. Cell. Biol. 25, 9198–9208.CrossrefGoogle Scholar

  • Wu, M.F. and Wang, S.G. (2008). Human TAO kinase 1 induces apoptosis in SH-SY5Y cells. Cell. Biol. Int. 32, 151–156.Google Scholar

  • Yang, J.S. and Lai, E.C. (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell. 43, 892–903.PubMedCrossrefGoogle Scholar

  • Yang, J.S., Maurin, T., Robine, N., Rasmussen, K.D., Jeffrey, K.L., Chandwani, R., Papapetrou, E.P., Sadelain, M., O’Carroll, D., and Lai, E.C. (2010). Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168.Google Scholar

  • Yekta, S., Shih, I.H., and Bartel, D.P. (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596.Google Scholar

  • Yoo, A.S., Staahl, B.T., Chen, L., and Crabtree, G.R. (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646.Google Scholar

  • Yu, J.Y., Chung, K.H., Deo, M., Thompson, R.C., and Turner, D.L. (2008). MicroRNA miR-124 regulates neurite outgrowth during neuronal differentiation. Exp. Cell. Res. 314, 2618–2633.Google Scholar

  • Yu, B., Ma, H., Du, Z., Hong, Y., Sang, M., Liu, Y., and Shi, Y. (2011). Involvement of calmodulin and actin in directed differentiation of rat cortical neural stem cells into neurons. Int. J. Mol. Med. 28, 739–744.PubMedGoogle Scholar

  • Zeng, Y., Wagner, E.J., and Cullen, B.R. (2002). Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell. 9, 1327–1333.PubMedCrossrefGoogle Scholar

  • Zhang, X., Huang, C.T., Chen, J., Pankratz, M.T., Xi, J., Li, J., Yang, Y., Lavaute, T.M., Li, X.J., Ayala, M., et al. (2010). Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 7, 90–100.CrossrefGoogle Scholar

  • Zhang, Z., Li, S., and Cheng, S.Y. (2013). The miR-183 approximately 96 approximately 182 cluster promotes tumorigenesis in a mouse model of medulloblastoma. J. Biomed. Res. 27, 486–494.Google Scholar

  • Zhao, C., Sun, G., Li, S., and Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat. Struct. Mol. Biol. 16, 365–371.PubMedGoogle Scholar

About the article

Corresponding author: Anayansi Molina-Hernández, Departamento de Biología Celular, Instituto Nacional de Perinatología, Montes Urales 800, Colonia Lomas de Virreyes, Miguel Hidalgo, CP 11000, México, e-mail: ;

Received: 2014-02-17

Accepted: 2014-05-13

Published Online: 2014-06-05

Published in Print: 2014-10-01

Citation Information: Reviews in the Neurosciences, Volume 25, Issue 5, Pages 675–686, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0014.

Export Citation

©2014 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Berenice Márquez-Valadez, Rocío Valle-Bautista, Guadalupe García-López, Néstor Fabián Díaz, and Anayansi Molina-Hernández
Frontiers in Endocrinology, 2018, Volume 9
Anaïs Soula, Mélissa Valere, María-José López-González, Vicky Ury-Thiery, Alexis Groppi, Marc Landry, Macha Nikolski, and Alexandre Favereaux
Life Science Alliance, 2018, Volume 1, Number 5, Page e201800018
Karina H. Solís, Laura I. Méndez, Guadalupe García-López, Néstor F. Díaz, Wendy Portillo, Mónica De Nova-Ocampo, and Anayansi Molina-Hernández
Frontiers in Neuroscience, 2017, Volume 11
Adel Derghal, Mehdi Djelloul, Jérôme Trouslard, and Lourdes Mounien
Frontiers in Neuroscience, 2017, Volume 11
Yoori Choi, Do won Hwang, Mee Young Kim, Joo Yeon Kim, Woong Sun, and Dong Soo Lee
Frontiers in Molecular Neuroscience, 2016, Volume 9

Comments (0)

Please log in or register to comment.
Log in