Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board Member: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Eichenbaum, Howard / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2016: 2.546
5-year IMPACT FACTOR: 3.191

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.249
Source Normalized Impact per Paper (SNIP) 2016: 0.983

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 26, Issue 2 (Apr 2015)

Issues

Schwann cell transplantation for spinal cord injury repair: its significant therapeutic potential and prospectus

Haruo Kanno
  • Corresponding author
  • The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Damien D. Pearse
  • The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL33136, USA
  • Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hiroshi Ozawa
  • Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eiji Itoi
  • Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mary Bartlett Bunge
  • The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL33136, USA
  • Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-01-10 | DOI: https://doi.org/10.1515/revneuro-2014-0068

Abstract

Transplantation of Schwann cells (SCs) is a promising therapeutic strategy for spinal cord repair. The introduction of SCs into the injured spinal cord has been shown to reduce tissue loss, promote axonal regeneration, and facilitate myelination of axons for improved sensorimotor function. The pathology of spinal cord injury (SCI) comprises multiple processes characterized by extensive cell death, development of a milieu inhibitory to growth, and glial scar formation, which together limits axonal regeneration. Many studies have suggested that significant functional recovery following SCI will not be possible with a single therapeutic strategy. The use of additional approaches with SC transplantation may be needed for successful axonal regeneration and sufficient functional recovery after SCI. An example of such a combination strategy with SC transplantation has been the complementary administration of neuroprotective agents/growth factors, which improves the effect of SCs after SCI. Suspension of SCs in bioactive matrices can also enhance transplanted SC survival and increase their capacity for supporting axonal regeneration in the injured spinal cord. Inhibition of glial scar formation produces a more permissive interface between the SC transplant and host spinal cord for axonal growth. Co-transplantation of SCs and other types of cells such as olfactory ensheathing cells, bone marrow mesenchymal stromal cells, and neural stem cells can be a more effective therapy than transplantation of SCs alone following SCI. This article reviews some of the evidence supporting the combination of SC transplantation with additional strategies for SCI repair and presents a prospectus for achieving better outcomes for persons with SCI.

Keywords: axonal regeneration; clinical trial; neuroprotection; transplantation

References

  • Barakat, D.J., Gaglani, S.M., Neravetla, S.R., Sanchez, A.R., Andrade, C.M., Pressman, Y., Puzis, R., Garg, M.S., Bunge, M.B., and Pearse, D.D. (2005). Survival, integration, and axon growth support of glia transplanted into the chronically contused spinal cord. Cell Transplant. 14, 225–240.PubMedCrossrefGoogle Scholar

  • Blakemore, W.F. and Crang, A.J. (1985). The use of cultured autologous Schwann cells to remyelinate areas of persistent demyelination in the central nervous system. J. Neurol. Sci. 70, 207–223.CrossrefGoogle Scholar

  • Bradbury, E.J. and Carter, L.M. (2011). Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull. 84, 306–316.CrossrefPubMedGoogle Scholar

  • Brockes, J.P., Fields, K.L., and Raff, M.C. (1979). Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118.PubMedCrossrefGoogle Scholar

  • Brook, G.A., Plate, D., Franzen, R., Martin, D., Moonen, G., Schoenen, J., Schmitt, A.B., Noth, J., and Nacimiento, W. (1998). Spontaneous longitudinally orientated axonal regeneration is associated with the Schwann cell framework within the lesion site following spinal cord compression injury of the rat. J. Neurosci. Res. 53, 51–65.CrossrefGoogle Scholar

  • Bunge, M.B. (2008). Novel combination strategies to repair the injured mammalian spinal cord. J. Spinal Cord Med. 31, 262–269.Google Scholar

  • Bunge, M.B. and Pearse, D.D. (2003). Transplantation strategies to promote repair of the injured spinal cord. J. Rehabil. Res. Dev. 40, 55–62.CrossrefGoogle Scholar

  • Bunge, M.B. and Wood, P.M. (2012). Realizing the maximum potential of Schwann cells to promote recovery from spinal cord injury. Handb. Clin. Neurol. 109, 523–540.Google Scholar

  • Cao, Q., Xu, X.M., Devries, W.H., Enzmann, G.U., Ping, P., Tsoulfas, P., Wood, P.M., Bunge, M.B., and Whittemore, S.R. (2005). Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J. Neurosci. 25, 6947–6957.CrossrefGoogle Scholar

  • Casella, G.T., Bunge, R.P., and Wood, P.M. (1996). Improved method for harvesting human Schwann cells from mature peripheral nerve and expansion in vitro. Glia 17, 327–338.CrossrefPubMedGoogle Scholar

  • Chau, C.H., Shum, D.K., Li, H., Pei, J., Lui, Y.Y., Wirthlin, L., Chan, Y.S., and Xu, X.M. (2004). Chondroitinase ABC enhances axonal regrowth through Schwann cell-seeded guidance channels after spinal cord injury. FASEB J. 18, 194–196.PubMedGoogle Scholar

  • Deng, L.X., Hu, J., Liu, N., Wang, X., Smith, G.M., Wen, X., and Xu, X.M. (2011). GDNF modifies reactive astrogliosis allowing robust axonal regeneration through Schwann cell-seeded guidance channels after spinal cord injury. Exp. Neurol. 229, 238–250.Google Scholar

  • Deng, L.X., Deng, P., Ruan, Y., Xu, Z.C., Liu, N.K., Wen, X., Smith, G.M., and Xu, X.M. (2013). A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J. Neurosci. 33, 5655–5667.CrossrefGoogle Scholar

  • Enomoto, M., Bunge, M.B., and Tsoulfas, P. (2013). A multifunctional neurotrophin with reduced affinity to p75NTR enhances transplanted Schwann cell survival and axon growth after spinal cord injury. Exp. Neurol. 248, 170–182.Google Scholar

  • Enzmann, G.U., Benton, R.L., Talbott, J.F., Cao, Q., and Whittemore, S.R. (2006). Functional considerations of stem cell transplantation therapy for spinal cord repair. J. Neurotrauma 23, 479–495.CrossrefGoogle Scholar

  • Flora, G., Joseph, G., Patel, S., Singh, A., Bleicher, D., Barakat, D.J., Louro, J., Fenton, S., Garg, M., Bunge, M.B., et al. (2013). Combining neurotrophin transduced Schwann cells and rolipram to promote functional recovery from spinal cord injury. Cell Transplant. 22, 2203–2217.PubMedCrossrefGoogle Scholar

  • Fortun, J., Hill, C.E., and Bunge, M.B. (2009). Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci. Lett. 456, 124–132.CrossrefPubMedGoogle Scholar

  • Fouad, K., Schnell, L., Bunge, M.B., Schwab, M.E., Liebscher, T., and Pearse, D.D. (2005). Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J. Neurosci. 25, 1169–1178.CrossrefGoogle Scholar

  • Fouad, K., Pearse, D.D., Tetzlaff, W., and Vavrek, R. (2009). Transplantation and repair: combined cell implantation and chondroitinase delivery prevents deterioration of bladder function in rats with complete spinal cord injury. Spinal Cord 47, 727–732.PubMedCrossrefGoogle Scholar

  • Fraher, J.P. (2000). The transitional zone and CNS regeneration. J. Anat. 196, 137–158.Google Scholar

  • Franklin, R.J., Gilson, J.M., and Blakemore, W.F. (1997). Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J. Neurosci. Res. 50, 337–344.CrossrefGoogle Scholar

  • Geffner, L.F., Santacruz, P., Izurieta, M., Flor, L., Maldonado, B., Auad, A.H., Montenegro, X., Gonzalez, R., and Silva, F. (2008). Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies. Cell Transplant. 17, 1277–1293.CrossrefPubMedGoogle Scholar

  • Ghosh, M., Tuesta, L.M., Puentes, R., Patel, S., Melendez, K., El Maarouf, A., Rutishauser, U., and Pearse, D.D. (2012). Extensive cell migration, axon regeneration, and improved function with polysialic acid-modified Schwann cells after spinal cord injury. Glia 60, 979–992.CrossrefGoogle Scholar

  • Golden, K.L., Pearse, D.D., Blits, B., Garg, M.S., Oudega, M., Wood, P.M., and Bunge, M.B. (2007). Transduced Schwann cells promote axon growth and myelination after spinal cord injury. Exp. Neurol. 207, 203–217.Google Scholar

  • Graziadei, G.A. and Graziadei, P.P. (1979). Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J. Neurocytol. 8, 197–213.CrossrefGoogle Scholar

  • Guest, J.D., Hiester, E.D., and Bunge, R.P. (2005). Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury. Exp. Neurol. 192, 384–393.Google Scholar

  • Guest, J., Santamaria, A.J., and Benavides, F.D. (2013). Clinical translation of autologous Schwann cell transplantation for the treatment of spinal cord injury. Curr. Opin. Organ Transplant. 18, 682–689.PubMedGoogle Scholar

  • Hawryluk, G.W., Rowland, J., Kwon, B.K., and Fehlings, M.G. (2008). Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg. Focus 25, E14.CrossrefPubMedGoogle Scholar

  • Hill, C.E., Hurtado, A., Blits, B., Bahr, B.A., Wood, P.M., Bartlett Bunge, M., and Oudega, M. (2007). Early necrosis and apoptosis of Schwann cells transplanted into the injured rat spinal cord. Eur. J. Neurosci. 26, 1433–1445.CrossrefGoogle Scholar

  • Hill, C.E., Guller, Y., Raffa, S.J., Hurtado, A., and Bunge, M.B. (2010). A calpain inhibitor enhances the survival of Schwann cells in vitro and after transplantation into the injured spinal cord. J. Neurotrauma 27, 1685–1695.CrossrefGoogle Scholar

  • Imaizumi, T., Lankford, K.L., Waxman, S.G., Greer, C.A., and Kocsis, J.D. (1998). Transplanted olfactory ensheathing cells remyelinate and enhance axonal conduction in the demyelinated dorsal columns of the rat spinal cord. J. Neurosci. 18, 6176–6185.Google Scholar

  • Kamada, T., Koda, M., Dezawa, M., Anahara, R., Toyama, Y., Yoshinaga, K., Hashimoto, M., Koshizuka, S., Nishio, Y., Mannoji, C., et al. (2011). Transplantation of human bone marrow stromal cell-derived Schwann cells reduces cystic cavity and promotes functional recovery after contusion injury of adult rat spinal cord. Neuropathology 31, 48–58.PubMedCrossrefGoogle Scholar

  • Kanno, H., Pressman, Y., Moody, A., Berg, R., Muir, E.M., Rogers, J.H., Ozawa, H., Itoi, E., Pearse, D.D., and Bunge, M.B. (2014). Combination of engineered Schwann cell grafts to secrete neurotrophin and chondroitinase promotes axonal regeneration and locomotion after spinal cord injury. J. Neurosci. 34, 1838–1855.CrossrefGoogle Scholar

  • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Morshead, C.M., and Fehlings, M.G. (2006). Delayed transplantation of adult neural precursor cells promotes remyelination and functional neurological recovery after spinal cord injury. J. Neurosci. 26, 3377–3389.CrossrefGoogle Scholar

  • Karimi-Abdolrezaee, S., Eftekharpour, E., Wang, J., Schut, D., and Fehlings, M.G. (2010). Synergistic effects of transplanted adult neural stem/progenitor cells, chondroitinase, and growth factors promote functional repair and plasticity of the chronically injured spinal cord. J. Neurosci. 30, 1657–1676.CrossrefGoogle Scholar

  • Kumar, A.A., Kumar, S.R., Narayanan, R., Arul, K., and Baskaran, M. (2009). Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp. Clin. Transplant. 7, 241–248.Google Scholar

  • Levi, A.D., Bunge, R.P., Lofgren, J.A., Meima, L., Hefti, F., Nikolics, K., and Sliwkowski, M.X. (1995). The influence of heregulins on human Schwann cell proliferation. J. Neurosci. 15, 1329–1340.Google Scholar

  • Li, Y., Field, P.M., and Raisman, G. (1997). Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 277, 2000–2002.CrossrefPubMedGoogle Scholar

  • Li, Y., Decherchi, P., and Raisman, G. (2003). Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing. J. Neurosci. 23, 727–731.Google Scholar

  • Lipson, A.C., Widenfalk, J., Lindqvist, E., Ebendal, T., and Olson, L. (2003). Neurotrophic properties of olfactory ensheathing glia. Exp. Neurol. 180, 167–171.Google Scholar

  • Liu, Q., Spusta, S.C., Mi, R., Lassiter, R.N., Stark, M.R., Hoke, A., Rao, M.S., and Zeng, X. (2012). Human neural crest stem cells derived from human ESCs and induced pluripotent stem cells: induction, maintenance, and differentiation into functional Schwann cells. Stem Cells Transl. Med. 1, 266–278.Google Scholar

  • Luo, J., Bo, X., Wu, D., Yeh, J., Richardson, P.M., and Zhang, Y. (2011). Promoting survival, migration, and integration of transplanted Schwann cells by over-expressing polysialic acid. Glia. 59, 424–434.PubMedCrossrefGoogle Scholar

  • Matsuse, D., Kitada, M., Kohama, M., Nishikawa, K., Makinoshima, H., Wakao, S., Fujiyoshi, Y., Heike, T., Nakahata, T., Akutsu, H., et al. (2010). Human umbilical cord-derived mesenchymal stromal cells differentiate into functional Schwann cells that sustain peripheral nerve regeneration. J. Neuropathol. Exp. Neurol. 69, 973–985.Google Scholar

  • Moradi, F., Bahktiari, M., Joghataei, M.T., Nobakht, M., Soleimani, M., Hasanzadeh, G., Fallah, A., Zarbakhsh, S., Hejazian, L.B., Shirmohammadi, M., et al. (2012). BD PuraMatrix peptide hydrogel as a culture system for human fetal Schwann cells in spinal cord regeneration. J. Neurosci. Res. 90, 2335–2348.CrossrefGoogle Scholar

  • Nagoshi, N., Shibata, S., Hamanoue, M., Mabuchi, Y., Matsuzaki, Y., Toyama, Y., Nakamura, M., and Okano, H. (2011). Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia 59, 771–784.CrossrefPubMedGoogle Scholar

  • Niapour, A., Karamali, F., Nemati, S., Taghipour, Z., Mardani, M., Nasr-Esfahani, M.H., and Baharvand, H. (2012). Cotransplantation of human embryonic stem cell-derived neural progenitors and Schwann cells in a rat spinal cord contusion injury model elicits a distinct neurogenesis and functional recovery. Cell Transplant. 21, 827–843.CrossrefGoogle Scholar

  • Oudega, M. and Xu, X.M. (2006). Schwann cell transplantation for repair of the adult spinal cord. J. Neurotrauma 23, 453–467.CrossrefGoogle Scholar

  • Pal, R., Venkataramana, N.K., Bansal, A., Balaraju, S., Jan, M., Chandra, R., Dixit, A., Rauthan, A., Murgod, U., and Totey, S. (2009). Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study. Cytotherapy 11, 897–911.PubMedCrossrefGoogle Scholar

  • Patel, V., Joseph, G., Patel, A., Patel, S., Bustin, D., Mawson, D., Tuesta, L.M., Puentes, R., Ghosh, M., and Pearse, D.D. (2010). Suspension matrices for improved Schwann-cell survival after implantation into the injured rat spinal cord. J. Neurotrauma 27, 789–801.CrossrefGoogle Scholar

  • Pearse, D.D., Marcillo, A.E., Oudega, M., Lynch, M.P., Wood, P.M., and Bunge, M.B. (2004a). Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? J. Neurotrauma 21, 1223–1239.CrossrefGoogle Scholar

  • Pearse, D.D., Pereira, F.C., Marcillo, A.E., Bates, M.L., Berrocal, Y.A., Filbin, M.T., and Bunge, M.B. (2004b). cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat. Med. 10, 610–616.PubMedCrossrefGoogle Scholar

  • Pearse, D.D., Sanchez, A.R., Pereira, F.C., Andrade, C.M., Puzis, R., Pressman, Y., Golden, K., Kitay, B.M., Blits, B., Wood, P.M., et al. (2007). Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery. Glia 55, 976–1000.CrossrefPubMedGoogle Scholar

  • Peterson, S.E. and Loring, J.F. (2014). Genomic instability in pluripotent stem cells: implications for clinical applications. J. Biol. Chem. 289, 4578–4584.Google Scholar

  • Plant, G.W., Bates, M.L., and Bunge, M.B. (2001). Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol. Cell. Neurosci. 17, 471–487.CrossrefPubMedGoogle Scholar

  • Pourheydar, B., Joghataei, M.T., Bakhtiari, M., Mehdizadeh, M., Yekta, Z., and Najafzadeh, N. (2012). Co- transplantation of bone marrow Stromal cells with Schwann cells evokes mechanical allodynia in the contusion model of spinal cord injury in rats. Cell J. 13, 213–222.PubMedGoogle Scholar

  • Ramon-Cueto, A. and Santos-Benito, F.F. (2001). Cell therapy to repair injured spinal cords: olfactory ensheathing glia transplantation. Restor. Neurol. Neurosci. 19, 149–156.Google Scholar

  • Ramon-Cueto, A., Plant, G.W., Avila, J., and Bunge, M.B. (1998). Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18, 3803–3815.Google Scholar

  • Ramon-Cueto, A., Cordero, M.I., Santos-Benito, F.F., and Avila, J. (2000). Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 25, 425–435.CrossrefGoogle Scholar

  • Rossi, S.L. and Keirstead, H.S. (2009). Stem cells and spinal cord regeneration. Curr. Opin. Biotechnol. 20, 552–562.PubMedCrossrefGoogle Scholar

  • Ruff, C.A., Wilcox, J.T., and Fehlings, M.G. (2012). Cell-based transplantation strategies to promote plasticity following spinal cord injury. Exp. Neurol. 235, 78–90.Google Scholar

  • Rutkowski, J.L., Kirk, C.J., Lerner, M.A., and Tennekoon, G.I. (1995). Purification and expansion of human Schwann cells in vitro. Nat. Med. 1, 80–83.CrossrefGoogle Scholar

  • Saberi, H., Moshayedi, P., Aghayan, H.R., Arjmand, B., Hosseini, S.K., Emami-Razavi, S.H., Rahimi-Movaghar, V., Raza, M., and Firouzi, M. (2008). Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes. Neurosci. Lett. 443, 46–50.Google Scholar

  • Saberi, H., Firouzi, M., Habibi, Z., Moshayedi, P., Aghayan, H.R., Arjmand, B., Hosseini, K., Razavi, H.E., and Yekaninejad, M.S. (2011). Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J. Neurosurg. Spine 15, 515–525.CrossrefGoogle Scholar

  • Schaal, S.M., Kitay, B.M., Cho, K.S., Lo, T.P., Jr., Barakat, D.J., Marcillo, A.E., Sanchez, A.R., Andrade, C.M., and Pearse, D.D. (2007). Schwann cell transplantation improves reticulospinal axon growth and forelimb strength after severe cervical spinal cord contusion. Cell Transplant. 16, 207–228.CrossrefPubMedGoogle Scholar

  • Shand, J., Berg, J., Bogue, C., Committee for Pediatric Research and Committee on Bioethics (2012). Human embryonic stem cell (hESC) and human embryo research. Pediatrics 130, 972–977.PubMedGoogle Scholar

  • Silver, J. and Miller, J.H. (2004). Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5, 146–156.PubMedCrossrefGoogle Scholar

  • Siriphorn, A., Chompoopong, S., and Floyd, C.L. (2010). 17beta-estradiol protects Schwann cells against H2O2-induced cytotoxicity and increases transplanted Schwann cell survival in a cervical hemicontusion spinal cord injury model. J. Neurochem. 115, 864–872.CrossrefGoogle Scholar

  • Suzuki, Y., Ishikawa, N., Omae, K., Hirai, T., Ohnishi, K., Nakano, N., Nishida, H., Nakatani, T., Fukushima, M., and Ide, C. (2014). Bone marrow-derived mononuclear cell transplantation in spinal cord injury patients by lumbar puncture. Restor. Neurol. Neurosci. 32, 473–482.Google Scholar

  • Sykova, E., Homola, A., Mazanec, R., Lachmann, H., Konradova, S.L., Kobylka, P., Padr, R., Neuwirth, J., Komrska, V., Vavra, V., et al. (2006). Autologous bone marrow transplantation in patients with subacute and chronic spinal cord injury. Cell Transplant. 15, 675–687.CrossrefPubMedGoogle Scholar

  • Takami, T., Oudega, M., Bates, M.L., Wood, P.M., Kleitman, N., and Bunge, M.B. (2002). Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci. 22, 6670–6681.Google Scholar

  • Taylor, L., Jones, L., Tuszynski, M.H., and Blesch, A. (2006). Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J. Neurosci. 38, 9713–9721.CrossrefGoogle Scholar

  • Tetzlaff, W., Okon, E.B., Karimi-Abdolrezaee, S., Hill, C.E., Sparling, J.S., Plemel, J.R., Plunet, W.T., Tsai, E.C., Baptiste, D., Smithson, L.J., et al. (2010). A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 28, 1611–1682.Google Scholar

  • Tuszynski, M.H., Weidner, N., McCormack, M., Miller, I., Powell, H., and Conner, J. (1998). Grafts of genetically modified Schwann cells to the spinal cord: survival, axon growth, and myelination. Cell Transplant. 7, 187–196.PubMedCrossrefGoogle Scholar

  • Urfer, R., Tsoulfas, P., Soppet, D., Escandon, E., Parada, L.F., and Presta, L.G. (1994). The binding epitopes of neurotrophin-3 to its receptors trkC and gp75 and the design of a multifunctional human neurotrophin. EMBO J. 13, 5896–5909.Google Scholar

  • Varma, A.K., Das, A., Wallace, Gt., Barry, J., Vertegel, A.A., Ray, S.K., and Banik, N.L. (2013). Spinal cord injury: a review of current therapy, future treatments, and basic science frontiers. Neurochem. Res. 38, 895–905.PubMedCrossrefGoogle Scholar

  • Wang, Z.H., Walter, G.F., and Gerhard, L. (1996). The expression of nerve growth factor receptor on Schwann cells and the effect of these cells on the regeneration of axons in traumatically injured human spinal cord. Acta Neuropathol. 91, 180–184.CrossrefPubMedGoogle Scholar

  • Wang, J.M., Zeng, Y.S., Wu, J.L., Li, Y., and Teng, Y.D. (2011). Cograft of neural stem cells and Schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials 32, 7454–7468.PubMedGoogle Scholar

  • Wang, H., Liu, C., and Ma, X. (2012). Alginic acid sodium hydrogel co-transplantation with Schwann cells for rat spinal cord repair. Arch. Med. Sci. 8, 563–568.PubMedCrossrefGoogle Scholar

  • Williams, R.R., Henao, M., Pearse, D.D., and Bunge, M.B. (2014). Permissive Schwann cell graft/spinal cord interfaces for axon regeneration. Cell Transplant. Epub ahead of print. PMID 24152553Google Scholar

  • Woodhall, E., West, A.K., and Chuah, M.I. (2001). Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res. Mol. Brain Res. 88, 203–213.CrossrefPubMedGoogle Scholar

  • Xu, X.M., Chen, A., Guenard, V., Kleitman, N., and Bunge, M.B. (1997). Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 26, 1–16.CrossrefGoogle Scholar

  • Yazdani, S.O., Hafizi, M., Zali, A.R., Atashi, A., Ashrafi, F., Seddighi, A.S., and Soleimani, M. (2013). Safety and possible outcome assessment of autologous Schwann cell and bone marrow mesenchymal stromal cell co-transplantation for treatment of patients with chronic spinal cord injury. Cytotherapy 15, 782–791.PubMedCrossrefGoogle Scholar

  • Zhang, X., Zeng, Y., Zhang, W., Wang, J., Wu, J., and Li, J. (2007). Co-transplantation of neural stem cells and NT-3-overexpressing Schwann cells in transected spinal cord. J. Neurotrauma 24, 1863–1877.Google Scholar

  • Zhang, J.F., Zhao, F.S., Wu, G., Kong, Q.F., Sun, B., Cao, J., Zhang, Y., Wang, J.H., Zhang, J., Jin, X.D., et al. (2011). Therapeutic effect of co-transplantation of neuregulin-1-transfected Schwann cells and bone marrow stromal cells on spinal cord hemisection syndrome. Neurosci. Lett. 497, 128–133.Google Scholar

  • Zhao, R.R. and Fawcett, J.W. (2013). Combination treatment with chondroitinase ABC in spinal cord injury – breaking the barrier. Neurosci. Bull. 29, 477–483.PubMedCrossrefGoogle Scholar

  • Zhou, X.H., Ning, G.Z., Feng, S.Q., Kong, X.H., Chen, J.T., Zheng, Y.F., Ban, D.X., Liu, T., Li, H., and Wang, P. (2012). Transplantation of autologous activated Schwann cells in the treatment of spinal cord injury: six cases, more than five years of follow-up. Cell Transplant. 21, S39–S47.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Haruo Kanno, Department of Orthopaedic Surgery, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Japan, e-mail: ; and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA


Received: 2014-09-30

Accepted: 2014-10-16

Published Online: 2015-01-10

Published in Print: 2015-04-01


Citation Information: Reviews in the Neurosciences, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2014-0068.

Export Citation

©2015 by De Gruyter. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Anna Badner, Ahad M. Siddiqui, and Michael G. Fehlings
Expert Opinion on Biological Therapy, 2017, Volume 17, Number 5, Page 529
[2]
Francesca Busuttil, Ahad A. Rahim, and James B. Phillips
Stem Cells and Development, 2017, Volume 26, Number 4, Page 231
[3]
Hui Liu, Peizhen Lv, Yongjia Zhu, Huayu Wu, Kun Zhang, Fuben Xu, Li Zheng, and Jinmin Zhao
Scientific Reports, 2017, Volume 7, Page 39869
[4]
Yee-Shuan Lee, Siliang Wu, Treena Livingston Arinzeh, and Mary Bartlett Bunge
Biotechnology and Bioengineering, 2017, Volume 114, Number 2, Page 444
[5]
Michael A. Lane, Angelo C. Lepore, and Itzhak Fischer
Expert Review of Neurotherapeutics, 2017, Volume 17, Number 5, Page 433
[6]
Chizuka Ide and Kenji Kanekiyo
Neural Regeneration Research, 2016, Volume 11, Number 7, Page 1046
[7]
Anh Do-Thi, Florence E. Perrin, Mathieu Desclaux, Paulette Saillour, Lahouari Amar, Alain Privat, and Jacques Mallet
Journal of Chemical Neuroanatomy, 2016, Volume 76, Page 48
[8]
Ning Li and Gilberto K. K. Leung
BioMed Research International, 2015, Volume 2015, Page 1
[9]
Shushi Kabu, Yue Gao, Brian K. Kwon, and Vinod Labhasetwar
Journal of Controlled Release, 2015, Volume 219, Page 141
[10]
Viren S. Vasudeva, Muhammad M. Abd-El-Barr, and John H. Chi
Neurosurgery, 2015, Volume 77, Number 2, Page N15

Comments (0)

Please log in or register to comment.
Log in