Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Volume 28, Issue 2

Issues

Epilepsy and vitamin D: a comprehensive review of current knowledge

Seyed Amir Miratashi Yazdi / Mehdi Abbasi
  • Corresponding author
  • Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, 1333635445 Tehran, Iran
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Seyed Masoud Miratashi Yazdi
Published Online: 2016-12-19 | DOI: https://doi.org/10.1515/revneuro-2016-0044

Abstract

Vitamin D has been considered as neurosteroid, and its pivotal role in neuroprotection, brain development, and immunomodulation has been noticed in studies; however, our knowledge regarding its role in neurological disorders is still developing. The potential role of vitamin D in the pathophysiology and treatment of epilepsy, as one the most prevalent neurological disorders, has received less attention in recent years. In this article, we review the possible relationship between vitamin D and epilepsy from different aspects, including the action mechanism of vitamin D in the central nervous system and ecological and epidemiological findings. We also present the outcome of studies that evaluated the level of vitamin D and the impact of administrating vitamin D in epileptic patients or animal subjects. We also review the current evidence on interactions between vitamin D and antiepileptic drugs.

Keywords: antiepileptic drugs; epilepsy; vitamin D

References

  • Adams, J., Collaço-Moraes, Y., and De Belleroche, J. (1996). Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J. Neurochem. 66, 6–13.Google Scholar

  • Akira, S., Takeda, K., and Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680.Google Scholar

  • Ali, F.E., Al-Bustan, M.A., Al-Busairi, W.A., and Al-Mulla, F.A. (2004). Loss of seizure control due to anticonvulsant-induced hypocalcemia. Ann. Pharmacother. 38, 1002–1005.Google Scholar

  • Ali, I.I., Herial, N.A., Horrigan, T., Kellough, L., and Tietjen, G.E. (2006). Measurement of bone mineral density in patients on levetiracetam monotherapy. Epilepsia 47, 276–276.Google Scholar

  • Ali, I.I., Herial, N.A., Orris, M., Horrigan, T., and Tietjen, G.E. (2011). Migraine prophylaxis with topiramate and bone health in women. Headache 51, 613–616.Google Scholar

  • Annweiler, C., Llewellyn, D.J., and Beauchet, O. (2013). Low serum vitamin D concentrations in Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheimers Dis. 33, 659–674.Google Scholar

  • Balabanova, S., Richter, H.-P., Antoniadis, G., Homoki, J., Kremmer, N., Hanle, J., and Teller, W. (1984). 25-Hydroxyvitamin D, 24, 25-dihydroxyvitamin D and 1, 25-dihydroxyvitamin D in human cerebrospinal fluid. Klin. Wochenschr. 62, 1086–1090.Google Scholar

  • Balion, C., Griffith, L.E., Strifler, L., Henderson, M., Patterson, C., Heckman, G., Llewellyn, D.J., and Raina, P. (2012). Vitamin D, cognition, and dementia A systematic review and meta-analysis. Neurology 79, 1397–1405.Google Scholar

  • Balosso, S., Ravizza, T., Perego, C., Peschon, J., Campbell, I.L., De Simoni, M.G., and Vezzani, A. (2005). Tumor necrosis factor-α inhibits seizures in mice via p75 receptors. Ann. Neurol. 57, 804–812.Google Scholar

  • Barnevik-Olsson, M., Gillberg, C., and Fernell, E. (2008). Prevalence of autism in children born to Somali parents living in Sweden: a brief report. Dev. Med. Child Neurol. 50, 598–601.Google Scholar

  • Bartels, L.E., Jørgensen, S.P., Agnholt, J., Kelsen, J., Hvas, C.L., and Dahlerup, J.F. (2007). 1, 25-Dihydroxyvitamin D3 and dexamethasone increase interleukin-10 production in CD4+ T cells from patients with Crohn’s disease. Int. Immunopharmacol. 7, 1755–1764.Google Scholar

  • Baxendale, S. (2009). Seeing the light? Seizures and sunlight. Epilepsy Res. 84, 72–76.Google Scholar

  • Beattie, E.C., Stellwagen, D., Morishita, W., Bresnahan, J.C., Ha, B.K., Von Zastrow, M., Beattie, M.S., and Malenka, R.C. (2002). Control of synaptic strength by glial TNFα. Science 295, 2282–2285.Google Scholar

  • Ben-Ari, Y., Khalilov, I., Kahle, K.T., and Cherubini, E. (2012). The GABA excitatory/inhibitory shift in brain maturation and neurological disorders. Neuroscientist 18, 467–486.Google Scholar

  • Benarroch, E.E. (2011). Na+, K+-ATPase functions in the nervous system and involvement in neurologic disease. Neurology 76, 287–293.Google Scholar

  • Bergqvist, A., Schall, J.I., and Stallings, V.A. (2007). Vitamin D status in children with intractable epilepsy, and impact of the ketogenic diet. Epilepsia 48, 66–71.Google Scholar

  • Bernardino, L., Xapelli, S., Silva, A.P., Jakobsen, B., Poulsen, F.R., Oliveira, C.R., Vezzani, A., Malva, J.O., and Zimmer, J. (2005). Modulator effects of interleukin-1β and tumor necrosis factor-α on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J. Neurosci. 25, 6734–6744.Google Scholar

  • Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., and Meldolesi, J. (2001). CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710.Google Scholar

  • Borowicz, K.K., Morawska, M., Furmanek-Karwowska, K., Luszczki, J.J., and Czuczwar, S.J. (2007). Cholecalciferol enhances the anticonvulsant effect of conventional antiepileptic drugs in the mouse model of maximal electroshock. Eur. J. Pharmacol. 573, 111–115.Google Scholar

  • Bouillon, R., Reynaert, J., Claes, J.H., Lissens, W., and De Moor, P. (1975). The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D, calcium, and parathyroid hormone. J. Clin. Endocrinol. Metab. 41, 1130–1135.Google Scholar

  • Brewer, L.D., Thibault, V., Chen, K.-C., Langub, M.C., Landfield, P.W., and Porter, N.M. (2001). Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J. Neurosci. 21, 98–108.Google Scholar

  • Brodie, M.J., Mintzer, S., Pack, A.M., Gidal, B.E., Vecht, C.J., and Schmidt, D. (2013). Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia. 54, 11–27.Google Scholar

  • Brown, A. (1999). Regulation of vitamin D action. Nephrol. Dial. Transplant. 14, 11–16.Google Scholar

  • Cannell, J.J. (2008). Autism and vitamin D. Med. Hypotheses 70, 750–759.Google Scholar

  • Cansu, A., Yesilkaya, E., Serdaroğlu, A., Hırfanoğlu, T.L., Çamurdan, O., Gülbahar, Ö., Gücüyener, K., and Cinaz, P. (2008). Evaluation of bone turnover in epileptic children using oxcarbazepine. Pediatr. Neurol. 39, 266–271.Google Scholar

  • Christakos, S., Ajibade, D.V., Dhawan, P., Fechner, A.J., and Mady, L.J. (2012). Vitamin D: metabolism. Rheum. Dis. Clin. North Am. 38, 1–11.Google Scholar

  • Christiansen, C., Rødbro, P., and Lund, M. (1973). Incidence of anticonvulsant osteomalacia and effect of vitamin D: controlled therapeutic trial. Br. Med. J. 4, 695–701.Google Scholar

  • Christiansen, C., Rødbro, P., and Sjö, O. (1974). “Anticonvulsant action” of vitamin D in epileptic patients? A controlled pilot study. Br. Med. J. 2, 258–259.Google Scholar

  • Clark, J.H., Rhoden, D.K., and Turner, D.S. (1993). Symptomatic vitamin A and D deficiencies in an eight-year-old with autism. J. Parenter. Enteral Nutr. 17, 284–286.Google Scholar

  • Cornet, A., Baudet, C., Neveu, I., Evercooren, B.V., Brachet, P., and Naveilhan, P. (1998). 1, 25-Dihydroxyvitamin D3 regulates the expression of VDR and NGF gene in Schwann cells in vitro. J. Neurosci. Res. 53, 742–746.Google Scholar

  • Cortez, M.A., Burnham, W.M., and Hwang, P.A. (1997). Infantile spasms: seasonal onset differences and zeitgebers. Pediatr. Neurol. 16, 220–224.Google Scholar

  • Davis, R.L. and Crozier, R.A. (2015). Dynamic firing properties of type I spiral ganglion neurons. Cell Tissue Res. 361, 115–127.Google Scholar

  • Dawson, V.L. and Dawson, T.M. (1996). Nitric oxide actions in neurochemistry. Neurochem. Int. 29, 97–110.Google Scholar

  • de Abreu, D.F., Eyles, D., and Feron, F. (2009). Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology 34, S265–S277.CrossrefGoogle Scholar

  • De Boer, H.M., Mula, M., and Sander, J.W. (2008). The global burden and stigma of epilepsy. Epilepsy Behav. 12, 540–546.Google Scholar

  • De Simoni, M.G., Perego, C., Ravizza, T., Moneta, D., Conti, M., Marchesi, F., De Luigi, A., Garattini, S., and Vezzani, A. (2000). Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur. J. Neurosci. 12, 2623–2633.Google Scholar

  • de Viragh, P.A., Haglid, K., and Celio, M. (1989). Parvalbumin increases in the caudate putamen of rats with vitamin D hypervitaminosis. Proc. Natl. Acad. Sci. USA 86, 3887–3890.Google Scholar

  • DeLuca, H.F. (2004). Overview of general physiologic features and functions of vitamin D. Am. J. Clin. Nutr. 80, 1689S–1696S.Google Scholar

  • Dinarello, C.A. (1996). Biologic basis for interleukin-1 in disease. Blood. 87, 2095–2147.Google Scholar

  • Dong, X.-x., Wang, Y., and Qin, Z.-h. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 30, 379–387.Google Scholar

  • Ecevit, Ç., Aydoğan, A., ülay Kavakli, T., and Altinöz, S. (2004). Effect of carbamazepine and valproate on bone mineral density. Pediatr. Neurol. 31, 279–282.Google Scholar

  • Emmanuel, R., Alexandre, D., Benoit, V., Mohamed, H.S., and Remi, N. (2011). Nitric oxide scavenging modulates mitochondrial dysfunction induced by hypoxia/reoxygenation. Pharmacol. Rep. 63, 1189–1194.Google Scholar

  • Ensrud, K., Walczak, T., Blackwell, T., Ensrud, E., Bowman, P., and Stone, K. (2004). Antiepileptic drug use increases rates of bone loss in older women: a prospective study. Neurology 62, 2051–2057.Google Scholar

  • Erbayat Altay, E., Serdaroğlu, A., Tümer, L., Gücüyener, K., and Hasanoğlu, A. (2000). Evaluation of bone mineral metabolism in children receiving carbamazepine and valproic acid. J. Pediatr. Endocrinol. Metab. 13, 933–940.Google Scholar

  • Eyles, D.W. (2010). Vitamin D and autism: does skin colour modify risk? Acta Paediatr. 99, 645–647.Google Scholar

  • Eyles, D., Brown, J., Mackay-Sim, A., McGrath, J., and Feron, F. (2003). Vitamin D3 and brain development. Neuroscience 118, 641–653.Google Scholar

  • Eyles, D.W., Smith, S., Kinobe, R., Hewison, M., and McGrath, J.J. (2005). Distribution of the vitamin D receptor and 1α-hydroxylase in human brain. J. Chem. Neuroanat. 29, 21–30.Google Scholar

  • Farinas, I., Jones, K.R., Backus, C., Wang, X.-Y., and Reichardt, L.F. (1994). Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369, 658–661.Google Scholar

  • Feldkamp, J., Becker, A., Witte, O., Scharff, D., and Scherbaum, W. (2000). Long-term anticonvulsant therapy leads to low bone mineral density – evidence for direct drug effects of phenytoin and carbamazepine on human osteoblast-like cells. Exp. Clin. Endocrinol. Diabetes. 108, 37–43.Google Scholar

  • Fernell, E., Barnevik-Olsson, M., Bågenholm, G., Gillberg, C., Gustafsson, S., and Sääf, M. (2010). Serum levels of 25-hydroxyvitamin D in mothers of Swedish and of Somali origin who have children with and without autism. Acta Paediatr. 99, 743–747.Google Scholar

  • Féron, F., Burne, T.H.J., Brown, J., Smith, E., McGrath, J.J., Mackay-Sim, A., and Eyles, D. (2005). Developmental Vitamin D3 deficiency alters the adult rat brain. Brain Res. Bull. 65, 141–148.Google Scholar

  • Foss, M., Meneghelli, U., and Tabosa, V.J. (1978). The effect of the anticonvulsants phenobarbital and diphenylhydantoin on intestinal absorption of calcium. Acta Physiol. Lat. Am. 29, 223–228.Google Scholar

  • Freidel, M., Krause, E., Kuhn, K., Peper, R., and Vogel, H. (2007). [Oxcarbazepine in the treatment of epilepsy]. Fortschr. Neurol. Psychiatr. 75, 100–106.Google Scholar

  • Fu, G.K., Lin, D., Zhang, M.Y., Bikle, D.D., Shackleton, C.H., Miller, W.L., and Portale, A.A. (1997). Cloning of human 25-hydroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol. Endocrinol. 11, 1961–1970.Google Scholar

  • Fuleihan, G.E.-H., Dib, L., Yamout, B., Sawaya, R., and Mikati, M.A. (2008). Predictors of bone density in ambulatory patients on antiepileptic drugs. Bone. 43, 149–155.Google Scholar

  • Furth, M.E., Ronald, M.L., and George, D.Y. (1990). Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 247, 1446–1451.Google Scholar

  • Garcion, E., Wion-Barbot, N., Montero-Menei, C.N., Berger, F., and Wion, D. (2002). New clues about vitamin D functions in the nervous system. Trends Endocrinol. Metab. 13, 100–105.Google Scholar

  • Gillberg, C. (1990). Do children with autism have March birthdays? Acta Psychiatr. Scand. 82, 152–156.Google Scholar

  • Goodman, R. and Richards, H. (1995). Child and adolescent psychiatric presentations of second-generation Afro-Caribbeans in Britain. Br J Psychiatry 167, 362–369.Google Scholar

  • Gough, H., Goggin, T., Bissessar, A., Baker, M., Crowley, M., and Callaghan, N. (1986). A comparative study of the relative influence of different anticonvulsant drugs, UV exposure and diet on vitamin D and calcium metabolism in out-patients with epilepsy. Q. J. Med. 59, 569–577.Google Scholar

  • Grant, W.B. and Soles, C.M. (2009). Epidemiologic evidence for supporting the role of maternal vitamin D deficiency as a risk factor for the development of infantile autism. Dermatoendocrinology 1, 223–228.Google Scholar

  • Hahn, T., Birge, S., Scharp, C., and Avioli, L. (1972). Phenobarbital-induced alterations in vitamin D metabolism. J. Clin. Invest. 51, 741.Google Scholar

  • Hahn, T.J., Hendin, B.A., Scharp, C.R., Boisseau, V.C., and Haddad Jr, J.G. (1975). Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N. Engl. J. Med. 292, 550–554.Google Scholar

  • Harms, L.R., Burne, T.H., Eyles, D.W., and McGrath, J.J. (2011). Vitamin D and the brain. Best Pract. Res. Clin. Endocrinol. Metab. 25, 657–669.Google Scholar

  • Heo, K., Rhee, Y., Lee, H.W., Lee, S.A., Shin, D.J., Kim, W.J., Song, H.K., Song, K., and Lee, B.I. (2011). The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia 52, 1884–1889.Google Scholar

  • Holick, M.F. (2007). Vitamin D deficiency. N. Engl. J. Med. 357, 266–281.Google Scholar

  • Holick, M.F. and Garabedian, M. (2006). Vitamin D: Photobiology, Metabolism, Mechanism of Action, and Clinical Applications. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 6th ed. (Washington, DC: American Society for Bone and Mineral Research), pp. 106–114.Google Scholar

  • Holick, M.F., Smith, E., and Pincus, S. (1987). Skin as the site of vitamin D synthesis and target tissue for 1, 25-dihydroxyvitamin D3: use of calcitriol (1, 25-dihydroxyvitamin D3) for treatment of psoriasis. Arch. Dermatol. 123, 1677–1683.Google Scholar

  • Holick, M.F., Binkley, N.C., Bischoff-Ferrari, H.A., Gordon, C.M., Hanley, D.A., Heaney, R.P., Murad, M.H., and Weaver, C.M. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930.Google Scholar

  • Holló, A., Clemens, Z., Kamondi, A., Lakatos, P., and Szücs, A. (2012). Correction of vitamin D deficiency improves seizure control in epilepsy: a pilot study. Epilepsy Behav. 24, 131–133.Google Scholar

  • Hosseinpour, F., Ellfolk, M., Norlin, M., and Wikvall, K. (2007). Phenobarbital suppresses vitamin D 3 25-hydroxylase expression: a potential new mechanism for drug-induced osteomalacia. Biochem. Biophys. Res. Commun. 357, 603–607.Google Scholar

  • Humble, M.B., Gustafsson, S., and Bejerot, S. (2010). Low serum levels of 25-hydroxyvitamin D (25-OHD) among psychiatric out-patients in Sweden: relations with season, age, ethnic origin and psychiatric diagnosis. J. Steroid Biochem. Mol. Biol. 121, 467–470.Google Scholar

  • Jia, F., Wang, B., Shan, L., Xu, Z., Staal, W.G., and Du, L. (2015). Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 135, e196–e198.Google Scholar

  • Kalia, L.V., Kalia, S.K., and Salter, M.W. (2008). NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 7, 742–755.Google Scholar

  • Kalueff, A., Eremin, K., and Tuohimaa, P. (2004). Mechanisms of neuroprotective action of vitamin D3. Biochemistry (Mosc.) 69, 738–741.Google Scholar

  • Kalueff, A.V., Minasyan, A., and Tuohimaa, P. (2005). Anticonvulsant effects of 1, 25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res. Bull. 67, 156–160.Google Scholar

  • Kalueff, A., Minasyan, A., Keisala, T., Kuuslahti, M., Miettinen, S., and Tuohimaa, P. (2006a). The vitamin D neuroendocrine system as a target for novel neurotropic drugs. CNS Neurol. Disord. Drug Targets 5, 363–371.Google Scholar

  • Kalueff, A.V., Minasyan, A., Keisala, T., Kuuslahti, M., Miettinen, S., and Tuohimaa, P. (2006b). Increased severity of chemically induced seizures in mice with partially deleted vitamin D receptor gene. Neurosci. Lett. 394, 69–73.Google Scholar

  • Kamikawa, H., Hori, T., Nakane, H., Aou, S., and Tashiro, N. (1998). IL-1β increases norepinephrine level in rat frontal cortex: involvement of prostanoids, NO, and glutamate. Am. J. Physiol. Regul. Integr. Comp. Physiol. 275, R803–R810.Google Scholar

  • Kawashima, H., Torikai, S., and Kurokawa, K. (1981). Localization of 25-hydroxyvitamin D3 1 alpha-hydroxylase and 24-hydroxylase along the rat nephron. Proc. Natl. Acad. Sci. USA 78, 1199–1203.Google Scholar

  • Keen, D., Reid, F., and Arnone, D. (2010). Autism, ethnicity and maternal immigration. Br. J. Psychiatry 196, 274–281.Google Scholar

  • Kesby, J.P., Burne, T.H., McGrath, J.J., and Eyles, D.W. (2006). Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol. Psychiatry 60, 591–596.Google Scholar

  • Kesby, J.P., O’Loan, J.C., Alexander, S., Deng, C., Huang, X.-F., McGrath, J.J., Eyles, D.W., and Burne, T.H. (2012). Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring. Psychopharmacology (Berl.). 220, 455–463.Google Scholar

  • Kim, S.H., Lee, J.W., Choi, K.-G., Chung, H.W., and Lee, H.W. (2007). A 6-month longitudinal study of bone mineral density with antiepileptic drug monotherapy. Epilepsy Behav. 10, 291–295.Google Scholar

  • Knekt, P., Kilkkinen, A., Rissanen, H., Marniemi, J., Sääksjärvi, K., and Heliövaara, M. (2010). Serum vitamin D and the risk of Parkinson disease. Arch. Neurol. 67, 808–811.Google Scholar

  • Ko, P., Burkert, R., McGrath, J., and Eyles, D. (2004). Maternal vitamin D 3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Brain Res. Dev. Brain Res. 153, 61–68.Google Scholar

  • Kočovská, E., Fernell, E., Billstedt, E., Minnis, H., and Gillberg, C. (2012). Vitamin D and autism: clinical review. Res. Dev. Disabil. 33, 1541–1550.Google Scholar

  • Koo, D.L., Joo, E.Y., Kim, D., and Hong, S.B. (2013). Effects of levetiracetam as a monotherapy on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res. 104, 134–139.Google Scholar

  • Krishnamoorthy, G., Nair, R., Sundar, U., Kini, P., and Shrivastava, M. (2010). Early predisposition to osteomalacia in Indian adults on phenytoin or valproate monotherapy and effective prophylaxis by simultaneous supplementation with calcium and 25-hydroxy vitamin D at recommended daily allowance dosage: a prospective study. Neurol. India 58, 213.Google Scholar

  • Kulak, C.A., Borba, V.Z., Bilezikian, J.P., Silvado, C.E., Paola, L.D., and Boguszewski, C.L. (2004). Bone mineral density and serum levels of 25 OH vitamin D in chronic users of antiepileptic drugs. Arq. Neuropsiquiatr. 62, 940–948.Google Scholar

  • Kumandas, S., Koklu, E., Gümüs, H., Koklu, S., Kurtoglu, S., Karakukcu, M., and Keskin, M. (2006). Effect of carbamezapine and valproic acid on bone mineral density, IGF-I and IGFBP-3. J. Pediatr. Endocrinol. Metab. 19, 529–534.Google Scholar

  • Laflamme, N., Echchannaoui, H., Landmann, R., and Rivest, S. (2003). Cooperation between toll-like receptor 2 and 4 in the brain of mice challenged with cell wall components derived from gram-negative and gram-positive bacteria. Eur. J. Immunol. 33, 1127–1138.Google Scholar

  • Lau, K., Nakade, O., Barr, B., Taylor, A.K., Houchin, K., and Baylink, D.J. (1995). Phenytoin increases markers of osteogenesis for the human species in vitro and in vivo. J. Clin. Endocrinol. Metab. 80, 2347–2353.Google Scholar

  • Lee, Y.-J., Park, K.M., Kim, Y.M., Yeon, G.M., and Nam, S.O. (2015). Longitudinal change of vitamin D status in children with epilepsy on antiepileptic drugs: prevalence and risk factors. Pediatr. Neurol. 52, 153–159.Google Scholar

  • Lefebvre d’Hellencourt, C., Montero-Menei, C.N., Bernard, R., and Couez, D. (2003). Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J. Neurosci. Res. 71, 575–582.Google Scholar

  • Li, X.-H., Hou, X.-Y., and Chen, R. (2015). The roles of vitamin B12 and vitamin D in children with intractable epilepsy. Int. J. Clin. Exp. Med. 8, 764.Google Scholar

  • Lifshitz, F. and Maclaren, N.K. (1973). Vitamin D-dependent rickets in institutionalized, mentally retarded children receiving long-term anticonvulsant therapy. I. A survey of 288 patients. J. Pediatr. 83, 612–620.Google Scholar

  • Löscher, W. and Brandt, C. (2010). Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol. Rev. 62, 668–700.Google Scholar

  • Löscher, W. and Fiedler, M. (2000). The role of technical, biological, and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. VII. Seasonal influences on anticonvulsant drug actions in mouse models of generalized seizures. Epilepsy Res. 38, 231–248.Google Scholar

  • Lowe, K., Maiyar, A., and Norman, A. (1991). Vitamin D-mediated gene expression. Crit. Rev. Eukaryot. Gene Expr. 2, 65–109.Google Scholar

  • Manfredini, R., Vergine, G., Boari, B., Faggioli, R., and Borgna-Pignatti, C. (2004). Circadian and seasonal variation of first febrile seizures. J. Pediatr. 145, 838–839.Google Scholar

  • Margineanu, D.G. (2010). Epileptic hypersynchrony revisited. Neuroreport. 21, 963–967.Google Scholar

  • McCormick, D.A. and Contreras, D. (2001). On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol. 63, 815–846.Google Scholar

  • McGrath, J.J., Burne, T.H., Féron, F., Mackay-Sim, A., and Eyles, D.W. (2010). Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr. Bull., sbq101.Google Scholar

  • Meguid, N.A., Hashish, A.F., Anwar, M., and Sidhom, G. (2010). Reduced serum levels of 25-hydroxy and 1, 25-dihydroxy vitamin D in Egyptian children with autism. J. Altern. Complement. Med. 16, 641–645.Google Scholar

  • Menon, B. and Harinarayan, C. (2010). The effect of anti epileptic drug therapy on serum 25-hydroxyvitamin D and parameters of calcium and bone metabolism – a longitudinal study. Seizure. 19, 153–158.Google Scholar

  • Meyer, M.B., Watanuki, M., Kim, S., Shevde, N.K., and Pike, J.W. (2006). The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1, 25-dihydroxyvitamin D3 in intestinal cells. Mol. Endocrinol. 20, 1447–1461.Google Scholar

  • Mintzer, S., Boppana, P., Toguri, J., and DeSantis, A. (2006). Vitamin D levels and bone turnover in epilepsy patients taking carbamazepine or oxcarbazepine. Epilepsia 47, 510–515.Google Scholar

  • Mitrovic, B., Pierre, B.A., Mackenzie-Graham, A.J., and Merrill, J E. (1994). The role of nitric oxide in glial pathologya. Ann. N. Y. Acad. Sci. 738, 436–446.Google Scholar

  • Molloy, C.A., Kalkwarf, H.J., Manning-Courtney, P., Mills, J.L., and Hediger, M.L. (2010). Plasma 25 (OH) D concentration in children with autism spectrum disorder. Dev. Med. Child Neurol. 52, 969–971.Google Scholar

  • Moore, T.B., Koeffler, H.P., Yamashiro, J.M., and Wada, R.K. (1996). Vitamin D3 analogs inhibit growth and induce differentiation in LA-N-5 human neuroblastoma cells. Clin. Exp. Metastasis 14, 239–245.Google Scholar

  • Mylvaganam, S., Ramani, M., Krawczyk, M., and Carlen, P.L. (2014). Roles of gap junctions, connexins, and pannexins in epilepsy. Front. Physiol. 5, 172.Google Scholar

  • Nagarjunakonda, S., Amalakanti, S., Uppala, V., Rajanala, L., and Athina, S. (2016). Vitamin D in epilepsy: vitamin D levels in epilepsy patients, patients on antiepileptic drug polytherapy and drug-resistant epilepsy sufferers. Eur. J. Clin. Nutr. 70, 140–142.Google Scholar

  • Naveilhan, P., Neveu, I., Baudet, C., Ohyama, K., Brachet, P., and Wion, D. (1993). Expression of 25 (OH) vitamin D3 24-hydroxylase gene in glial cells. Neuroreport 5, 255–257.Google Scholar

  • Nettekoven, S., Ströhle, A., Trunz, B., Wolters, M., Hoffmann, S., Horn, R., Steinert, M., Brabant, G., Lichtinghagen, R., and Welkoborsky, H.-J. (2008). Effects of antiepileptic drug therapy on vitamin D status and biochemical markers of bone turnover in children with epilepsy. Eur. J. Pediatr. 167, 1369–1377.Google Scholar

  • Neveu, I., Naveilhan, P., Baudet, C., Brachet, P., and Metsis, M. (1994a). 1, 25-dihydroxyvitamin D3 regulates NT-3, NT-4 but not BDNF mRNA in astrocytes. Neuroreport. 6, 124–126.Google Scholar

  • Neveu, I., Naveilhan, P., Baudet, C., Wion, D., De Luca, H.F., and Brachet, P. (1994b). 1, 25-dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res. Mol. Brain Res. 24, 70–76.Google Scholar

  • Nguyen, M.D., Julien, J.-P., and Rivest, S. (2002). Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3, 216–227.Google Scholar

  • Nicolaidou, P., Georgouli, H., Kotsalis, H., Matsinos, Y., Papadopoulou, A., Fretzayas, A., Syriopoulou, V., Krikos, X., Karantana, A., and Karpathios, T. (2006). Effects of anticonvulsant therapy on vitamin D status in children: prospective monitoring study. J. Child Neurol. 21, 205–210.Google Scholar

  • Noble, J.M., Mandel, A., and Patterson, M.C. (2007). Scurvy and rickets masked by chronic neurologic illness: revisiting “psychologic malnutrition”. Pediatrics 119, e783–e790.CrossrefGoogle Scholar

  • Norman, A.W. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 88, 491S–499S.Google Scholar

  • Norman, A.W., Nemere, I., Zhou, L.-X., Bishop, J.E., Lowe, K.E., Maiyar, A.C., Collins, E.D., Taoka, T., Sergeev, I., and Farach-Carson, M.C. (1992). 1, 25 (OH) 2-vitamin D 3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways. J. Steroid Biochem. Mol. Biol. 41, 231–240.Google Scholar

  • Pack, A. (2008). Bone health in people with epilepsy: is it impaired and what are the risk factors? Seizure 17, 181–186.Google Scholar

  • Pack, A.M. and Morrell, M.J. (2004). Epilepsy and bone health in adults. Epilepsy Behav. 5, 24–29.Google Scholar

  • Pack, A.M., Morrell, M.J., Marcus, R., Holloway, L., Flaster, E., Doñe, S., Randall, A., Seale, C., and Shane, E. (2005). Bone mass and turnover in women with epilepsy on antiepileptic drug monotherapy. Ann. Neurol. 57, 252–257.Google Scholar

  • Pack, A., Morrell, M., Randall, A., McMahon, D., and Shane, E. (2008). Bone health in young women with epilepsy after one year of antiepileptic drug monotherapy. Neurology 70, 1586–1593.Google Scholar

  • Pack, A.M., Morrell, M.J., McMahon, D.J., and Shane, E. (2011). Normal vitamin D and low free estradiol levels in women on enzyme-inducing antiepileptic drugs. Epilepsy Behav. 21, 453–458.Google Scholar

  • Pannu, R. and Singh, I. (2006). Pharmacological strategies for the regulation of inducible nitric oxide synthase: neurodegenerative versus neuroprotective mechanisms. Neurochem. Int. 49, 170–182.Google Scholar

  • Pardridge, W.M., Sakiyama, R., and Coty, W.A. (1985). Restricted transport of vitamin D and A derivatives through the rat blood-brain barrier. J. Neurochem. 44, 1138–1141.Google Scholar

  • Pascussi, J.M., Robert, A., Nguyen, M., Walrant-Debray, O., Garabedian, M., Martin, P., Pineau, T., Saric, J., Navarro, F., and Maurel, P. (2005). Possible involvement of pregnane X receptor-enhanced CYP24 expression in drug-induced osteomalacia. J. Clin. Invest. 115, 177–186.Google Scholar

  • Phabphal, K., Geater, A., Limapichat, K., Sathirapanya, P., Setthawatcharawanich, S., and Leelawattana, R. (2013). Effect of switching hepatic enzyme-inducer antiepileptic drug to levetiracetam on bone mineral density, 25 hydroxyvitamin D, and parathyroid hormone in young adult patients with epilepsy. Epilepsia 54, e94–e98.Google Scholar

  • Pogge, E. (2010). Vitamin D and Alzheimer’s disease: is there a link? Consult. Pharm. 25, 440–450.Google Scholar

  • Procopio, M. and Marriott, P.K. (1998). Seasonality of birth in epilepsy: a Danish study. Acta Neurol. Scand. 98, 297–301.Google Scholar

  • Procopio, M., Marriott, P.K., and Williams, P. (1997). Season of birth: aetiological implications for epilepsy. Seizure 6, 99–105.Google Scholar

  • Procopio, M., Marriott, P.K., and Davies, R.J. (2006). Seasonality of birth in epilepsy: a Southern Hemisphere study. Seizure 15, 17–21.Google Scholar

  • Raol, Y.H., Lund, I.V., Bandyopadhyay, S., Zhang, G., Roberts, D.S., Wolfe, J.H., Russek, S.J., and Brooks-Kayal, A.R. (2006). Enhancing GABAA receptor α1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J. Neurosci. 26, 11342–11346.Google Scholar

  • Ravizza, T. and Vezzani, A. (2006). Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137, 301–308.Google Scholar

  • Rivest, S. (2003). Molecular insights on the cerebral innate immune system. Brain. Behav. Immun. 17, 13–19.Google Scholar

  • Saporito, M.S., Brown, E.R., Hartpence, K.C., Wilcox, H.M., Vaught, J.L., and Carswell, S. (1994). Chronic 1, 25-dihydroxyvitamin D3-mediated induction of nerve growth factor mRNA and protein in L929 fibroblasts and in adult rat brain. Brain Res. 633, 189–196.Google Scholar

  • Schmitt, B., Nordlund, D., and Rodgers, L. (1984). Prevalence of hypocalcemia and elevated serum alkaline phosphatase in patients receiving chronic anticonvulsant therapy. J. Fam. Pract. 18, 873–877.Google Scholar

  • Scorza, F.A., de Albuquerque, M., Arida, R.M., and Cavalheiro, E.A. (2007). Sudden unexpected death in epilepsy: are winter temperatures a new potential risk factor? Epilepsy Behav. 10, 509–510.Google Scholar

  • Sheth, R.D. (2004). Bone health in pediatric epilepsy. Epilepsy Behav. 5, 30–35.Google Scholar

  • Shinpo, K., Kikuchi, S., Sasaki, H., Moriwaka, F., and Tashiro, K. (2000). Effect of 1, 25-dihydroxyvitamin D3 on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by l-buthionine sulfoximine and 1-methyl-4-phenylpyridine. J. Neurosci. Res. 62, 374–382.Google Scholar

  • Siegel, A., Malkowitz, L., Moskovits, M.J., and Christakos, S. (1984). Administration of 1, 25-dihydroxyvitamin D 3 results in the elevation of hippocampal seizure threshold levels in rats. Brain Res. 298, 125–129.Google Scholar

  • Simeone, T.A., Sanchez, R.M., and Rho, J.M. (2004). Molecular biology and ontogeny of glutamate receptors in the mammalian central nervous system. J. Child Neurol. 19, 343–360.Google Scholar

  • Smolders, J., Damoiseaux, J., Menheere, P., and Hupperts, R. (2008). Vitamin D as an immune modulator in multiple sclerosis, a review. J. Neuroimmunol. 194, 7–17.Google Scholar

  • Snoeijen-Schouwenaars, F.M., van Deursen, K.C., Tan, I.Y., Verschuure, P., and Majoie, M.H. (2015). Vitamin D supplementation in children with epilepsy and intellectual disability. Pediatr. Neurol. 52, 160–164.Google Scholar

  • Stellwagen, D., Beattie, E.C., Seo, J.Y., and Malenka, R.C. (2005). Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci. 25, 3219–3228.Google Scholar

  • Stephen, L., McLellan, A., Harrison, J., Shapiro, D., Dominiczak, M., Sills, G., and Brodie, M. (1999). Bone density and antiepileptic drugs: a case-controlled study. Seizure. 8, 339–342.Google Scholar

  • Stewart, C. and Latif, A. (2008). Symptomatic nutritional rickets in a teenager with autistic spectrum disorder. Child Care Health Dev. 34, 276–278.Google Scholar

  • Sumi, K., Sugita, T., Shimotsuji, T., Seino, Y., Mimaki, T., and Yabuuchi, H. (1978). Effect of anticonvulsant therapy on serum 25-hydroxyvitamin D level. Tohoku J. Exp. Med. 125, 265–269.Google Scholar

  • Swann, J.W., Le, J.T., Lam, T.T., Owens, J., and Mayer, A.T. (2007). The impact of chronic network hyperexcitability on developing glutamatergic synapses. Eur. J. Neurosci. 26, 975–991.Google Scholar

  • Tekgul, H., Serdaroglu, G., Huseyinov, A., and Gökben, S. (2006). Bone mineral status in pediatric outpatients on antiepileptic drug monotherapy. J. Child Neurol. 21, 411–414.Google Scholar

  • Telci, A., Çakatay, U., Kurt, B.B., Kayali, R., Sivas, A., Akçay, T., and Gökyiğit, A. (2000). Changes in bone turnover and deoxypyridinoline levels in epileptic patients. Clin. Chem. Lab. Med. 38, 47–50.Google Scholar

  • Thomas, M.K., Lloyd-Jones, D.M., Thadhani, R.I., Shaw, A.C., Deraska, D.J., Kitch, B.T., Vamvakas, E.C., Dick, I.M., Prince, R.L., and Finkelstein, J.S. (1998). Hypovitaminosis D in medical inpatients. N. Engl. J. Med. 338, 777–783.Google Scholar

  • Tjellesen, L. and Christiansen, C. (1982). Serum vitamin D metabolites in epileptic patients treated with 2 different anti-convulsants. Acta Neurol. Scand. 66, 335–341.Google Scholar

  • Torrey, E.F., Miller, J., Rawlings, R., and Yolken, R.H. (2000). Seasonal birth patterns of neurological disorders. Neuroepidemiology 19, 177–185.Google Scholar

  • Tuohimaa, P., Keisala, T., Minasyan, A., Cachat, J., and Kalueff, A. (2009). Vitamin D, nervous system and aging. Psychoneuroendocrinology 34, S278–S286.CrossrefGoogle Scholar

  • Turrin, N.P. and Rivest, S. (2004). Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol. Dis. 16, 321–334.Google Scholar

  • Umesono, K., Murakami, K.K., Thompson, C.C., and Evans, R.M. (1991). Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65, 1255–1266.Google Scholar

  • Van Cromphaut, S.J., Dewerchin, M., Hoenderop, J.G., Stockmans, I., Van Herck, E., Kato, S., Bindels, R.J., Collen, D., Carmeliet, P., and Bouillon, R. (2001). Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc. Natl. Acad. Sci. USA 98, 13324–13329.Google Scholar

  • Vaziri, N. (1993). Endocrinological consequences of the nephrotic syndrome. Am. J. Nephrol. 13, 360–364.Google Scholar

  • Verrotti, A., Agostinelli, S., Coppola, G., Parisi, P., and Chiarelli, F. (2010). A 12-month longitudinal study of calcium metabolism and bone turnover during valproate monotherapy. Eur. J. Neurol. 17, 232–237.Google Scholar

  • Vezzani, A. (2015). Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? Expert Opin. Drug Saf. 14, 583–592.Google Scholar

  • Vezzani, A. and Granata, T. (2005). Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 46, 1724–1743.Google Scholar

  • Vezzani, A., Conti, M., De Luigi, A., Ravizza, T., Moneta, D., Marchesi, F., and De Simoni, M.G. (1999). Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci. 19, 5054–5065.Google Scholar

  • Vezzani, A., Moneta, D., Richichi, C., Aliprandi, M., Burrows, S.J., Ravizza, T., Perego, C., and De Simoni, M.G. (2002). Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 43, 30–35.Google Scholar

  • Viviani, B., Bartesaghi, S., Gardoni, F., Vezzani, A., Behrens, M., Bartfai, T., Binaglia, M., Corsini, E., Di Luca, M., and Galli, C. (2003). Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 23, 8692–8700.Google Scholar

  • Voudris, K., Moustaki, M., Zeis, P.M., Dimou, S., Vagiakou, E., Tsagris, B., and Skardoutsou, A. (2002). Alkaline phosphatase and its isoenzyme activity for the evaluation of bone metabolism in children receiving anticonvulsant monotherapy. Seizure 11, 377–380.Google Scholar

  • Vyklicky, V., Korinek, M., Smejkalova, T., Balik, A., Krausova, B., Kaniakova, M., Lichnerova, K., Cerny, J., Krusek, J., and Dittert, I. (2014). Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 63, S191.Google Scholar

  • Wang, Y., Chiang, Y.-H., Su, T.-P., Hayashi, T., Morales, M., Hoffer, B., and Lin, S.-Z. (2000). Vitamin D3 attenuates cortical infarction induced by middle cerebral arterial ligation in rats. Neuropharmacology 39, 873–880.Google Scholar

  • Weinstein, R.S., Bryce, G.F., Sappington, L.J., King, D.W., and Gallagher, B.B. (1984). Decreased serum ionized calcium and normal vitamin D metabolite levels with anticonvulsant drug treatment. J. Clin. Endocrinol. Metab. 58, 1003–1009.Google Scholar

  • Weisman, Y., Fattal, A., Eisenberg, Z., Harel, S., Spirer, Z., and Harell, A. (1979). Decreased serum 24, 25-dihydroxy vitamin D concentrations in children receiving chronic anticonvulsant therapy. Br. Med. J. 2, 521.Google Scholar

  • Wion, D., MacGrogan, D., Neveu, I., Jehan, F., Houlgatte, R., and Brachet, P. (1991). 1, 25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J. Neurosci. Res. 28, 110–114.Google Scholar

  • Ye, Z.-C. and Sontheimer, H. (1996). Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport. 7, 2181–2185.Google Scholar

  • Yuhas, Y., Shulman, L., Weizman, A., Kaminsky, E., Vanichkin, A., and Ashkenazi, S. (1999). Involvement of tumor necrosis factor alpha and interleukin-1β in enhancement of pentylenetetrazole-induced seizures caused by Shigella dysenteriae. Infect. Immun. 67, 1455–1460.Google Scholar

  • Zanatta, L., Goulart, P.B., Gonçalves, R., Pierozan, P., Winkelmann-Duarte, E.C., Woehl, V.M., Pessoa-Pureur, R., Silva, F.R.M.B., and Zamoner, A. (2012). 1α, 25-Dihydroxyvitamin D3 mechanism of action: modulation of L-type calcium channels leading to calcium uptake and intermediate filament phosphorylation in cerebral cortex of young rats. Biochim. Biophys. Acta 1823, 1708–1719.Google Scholar

  • Zehnder, D., Bland, R., Williams, M.C., McNinch, R.W., Howie, A.J., Stewart, P.M., and Hewison, M. (2001). Extrarenal expression of 25-hydroxyvitamin D3-1α-hydroxylase 1. J. Clin. Endocrinol. Metab. 86, 888–894.Google Scholar

  • Zeise, M., Espinoza, J., Morales, P., and Nalli, A. (1997). Interleukin-1β does not increase synaptic inhibition in hippocampal CA3 pyramidal and dentate gyrus granule cells of the rat in vitro. Brain Res. 768, 341–344.Google Scholar

  • Zhou, C., Assem, M., Tay, J.C., Watkins, P.B., Blumberg, B., Schuetz, E.G., and Thummel, K.E. (2006). Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. J. Clin. Invest. 116, 1703–1712.Google Scholar

  • Zierold, C., Darwish, H.M., and DeLuca, H.F. (1994). Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc. Natl. Acad. Sci. USA 91, 900–902.Google Scholar

About the article

Received: 2016-07-21

Accepted: 2016-09-24

Published Online: 2016-12-19

Published in Print: 2017-02-01


Conflict of interest statement: All authors declare that they have no conflict of interest.


Citation Information: Reviews in the Neurosciences, Volume 28, Issue 2, Pages 185–201, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2016-0044.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Haidong Wang, Yujin Guo, Gongying Li, Ruining Xie, Zhimei Zhang, Wenxiu Han, Mengqi Yang, Dan Chen, and Pei Jiang
DNA and Cell Biology, 2018

Comments (0)

Please log in or register to comment.
Log in