Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Volume 28, Issue 7


The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms

Bor Luen TangORCID iD: http://orcid.org/0000-0002-1925-636X
  • Corresponding author
  • Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore
  • NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 117597, Singapore
  • orcid.org/0000-0002-1925-636X
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-05-25 | DOI: https://doi.org/10.1515/revneuro-2017-0018


Recent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.

Keywords: amyotrophic lateral sclerosis (ALS); cell transplantation therapy; mesenchymal stem cells (MSC); motor neuron; neuroinflammation


  • Abdul Wahid, S.F., Law, Z.K., Ismail, N.A., Azman Ali, R., and Lai, N.M. (2016). Cell-based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 11, CD011742.PubMedGoogle Scholar

  • Abdullah, R.H., Yaseen, N.Y., Salih, S.M., Al-Juboory, A.A., Hassan, A., and Al-Shammari, A.M. (2016). Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. J. Chem. Neuroanat. 77, 129–142.CrossrefPubMedGoogle Scholar

  • Abounit, S., Bousset, L., Loria, F., Zhu, S., de Chaumont, F., Pieri, L., Olivo-Marin, J.C., Melki, R., and Zurzolo, C. (2016). Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138.CrossrefPubMedGoogle Scholar

  • Atkin-Smith, G.K., Tixeira, R., Paone, S., Mathivanan, S., Collins, C., Liem, M., Goodall, K.J., Ravichandran, K.S., Hulett, M.D., and Poon, I.K.H. (2015). A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439.CrossrefGoogle Scholar

  • Austefjord, M.W., Gerdes, H.H., and Wang, X. (2014). Tunneling nanotubes: diversity in morphology and structure. Commun. Integr. Biol. 7, e27934.CrossrefPubMedGoogle Scholar

  • Bagher, Z., Azami, M., Ebrahimi-Barough, S., Mirzadeh, H., Solouk, A., Soleimani, M., Ai, J., Nourani, M.R., and Joghataei, M.T. (2016). Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol. Neurobiol. 53, 2397–2408.PubMedCrossrefGoogle Scholar

  • Bahrami, N., Bayat, M., Mohamadnia, A., Khakbiz, M., Yazdankhah, M., Ai, J., and Ebrahimi-Barough, S. (2017). Purmorphamine as a Shh signaling activator small molecule promotes motor neuron differentiation of mesenchymal stem cells cultured on nanofibrous PCL scaffold. Mol. Neurobiol. (in press).PubMedGoogle Scholar

  • Bátiz, L.F., Castro, M.A., Burgos, P.V., Velásquez, Z.D., Muñoz, R.I., Lafourcade, C.A., Troncoso-Escudero, P., and Wyneken, U. (2016). Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci. 9, 501.PubMedGoogle Scholar

  • Beers, D.R., Henkel, J.S., Zhao, W., Wang, J., Huang, A., Wen, S., Liao, B., and Appel, S.H. (2011). Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134, 1293–1314.PubMedCrossrefGoogle Scholar

  • Bennion Callister, J., and Pickering-Brown, S.M. (2014). Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS. Exp. Neurol. 262, 84–90.CrossrefPubMedGoogle Scholar

  • Boido, M., Piras, A., Valsecchi, V., Spigolon, G., Mareschi, K., Ferrero, I., Vizzini, A., Temi, S., Mazzini, L., Fagioli, F., et al. (2014). Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 16, 1059–1072.CrossrefGoogle Scholar

  • Bonafede, R., Scambi, I., Peroni, D., Potrich, V., Boschi, F., Benati, D., Bonetti, B., and Mariotti, R. (2016). Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp. Cell Res. 340, 150–158.CrossrefPubMedGoogle Scholar

  • Boucherie, C., Schäfer, S., Lavand’homme, P., Maloteaux, J.M., and Hermans, E. (2009). Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87, 2034–2046.CrossrefGoogle Scholar

  • Bozzo, F., Mirra, A., and Carrì, M.T. (2017). Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci. Lett. 636, 3–8.PubMedCrossrefGoogle Scholar

  • Bunton-Stasyshyn, R.K.A., Saccon, R.A., Fratta, P., and Fisher, E.M.C. (2015). SOD1 Function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 21, 519–529.PubMedCrossrefGoogle Scholar

  • Burkhardt, M.F., Martinez, F.J., Wright, S., Ramos, C., Volfson, D., Mason, M., Garnes, J., Dang, V., Lievers, J., Shoukat-Mumtaz, U., et al. (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 56, 355–364.CrossrefPubMedGoogle Scholar

  • Cassatella, M.A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., and Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29, 1001–1011.CrossrefPubMedGoogle Scholar

  • Chan-Il, C., Young-Don, L., Heejaung, K., Kim, S.H., Suh-Kim, H., and Kim, S.S. (2013). Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell Transplant. 22, 855–870.CrossrefGoogle Scholar

  • Chao, Y.H., Wu, H.P., Wu, K.H., Tsai, Y.G., Peng, C.T., Lin, K.C., Chao, W.R., Lee, M.S., and Fu, Y.C. (2014). An increase in CD3+ CD4+ CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9, e110338.CrossrefPubMedGoogle Scholar

  • Chen, Y., Teng, F.Y.H., and Tang, B.L. (2006). Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell. Mol. Life Sci. 63, 1649–1657.PubMedCrossrefGoogle Scholar

  • Cherry, J.D., Olschowka, J.A., and O’Banion, M.K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflamm. 11, 98.CrossrefGoogle Scholar

  • Chipman, P.H., Toma, J.S., and Rafuse, V.F. (2012). Generation of motor neurons from pluripotent stem cells. Prog. Brain Res. 201, 313–331.CrossrefPubMedGoogle Scholar

  • Chivet, M., Javalet, C., Hemming, F., Pernet-Gallay, K., Laulagnier, K., Fraboulet, S., and Sadoul, R. (2013). Exosomes as a novel way of interneuronal communication. Biochem. Soc. Trans. 41, 241–244.CrossrefPubMedGoogle Scholar

  • Coatti, G.C., Beccari, M.S., Olávio, T.R., Mitne-Neto, M., Okamoto, O.K., and Zatz, M. (2015). Stem cells for amyotrophic lateral sclerosis modeling and therapy: myth or fact? Cytometry A 87, 197–211.CrossrefPubMedGoogle Scholar

  • Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L.F., Théry, C., and Raposo, G. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565.CrossrefPubMedGoogle Scholar

  • Costanzo, M., Abounit, S., Marzo, L., Danckaert, A., Chamoun, Z., Roux, P., and Zurzolo, C. (2013). Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 126, 3678–3685.PubMedCrossrefGoogle Scholar

  • Crigler, L., Robey, R.C., Asawachaicharn, A., Gaupp, D., and Phinney, D.G. (2006). Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol. 198, 54–64.PubMedCrossrefGoogle Scholar

  • Czarzasta, J., Habich, A., Siwek, T., Czapliński, A., Maksymowicz, W., and Wojtkiewicz, J. (2017). Stem cells for ALS: an overview of possible therapeutic approaches. Int. J. Dev. Neurosci. 57, 46–55.PubMedCrossrefGoogle Scholar

  • Deda, H., Inci, M.C., Kürekçi, A.E., Sav, A., Kayihan, K., Ozgün, E., Ustünsoy, G.E., and Kocabay, S. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 11, 18–25.CrossrefPubMedGoogle Scholar

  • DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.CrossrefPubMedGoogle Scholar

  • Del Fattore, A., Luciano, R., Pascucci, L., Goffredo, B.M., Giorda, E., Scapaticci, M., Fierabracci, A., and Muraca, M. (2015). Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 24, 2615–2627.CrossrefGoogle Scholar

  • DeLoach, A., Cozart, M., Kiaei, A., and Kiaei, M. (2015). A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin. Drug Discov. 10, 1099–1118.CrossrefGoogle Scholar

  • Deng, J., Petersen, B.E., Steindler, D.A., Jorgensen, M.L., and Laywell, E.D. (2006). Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24, 1054–1064.CrossrefPubMedGoogle Scholar

  • Di Giorgio, F.P., Carrasco, M.A., Siao, M.C., Maniatis, T., and Eggan, K. (2007). Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614.CrossrefGoogle Scholar

  • Dieriks, B.V., Park, T.I.H., Fourie, C., Faull, R.L.M., Dragunow, M., and Curtis, M.A. (2017). α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci. Rep. 7, 42984.PubMedCrossrefGoogle Scholar

  • Ding, Y., Yan, Q., Ruan, J.W., Zhang, Y.Q., Li, W.J., Zeng, X., Huang, S.F., Zhang, Y.J., Wu, J.L., Fisher, D., et al. (2013). Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats. Cell Transplant. 22, 65–86.CrossrefPubMedGoogle Scholar

  • Ding, X., Ma, M., Teng, J., Teng, R.K.F., Zhou, S., Yin, J., Fonkem, E., Huang, J.H., Wu, E., and Wang, X. (2015). Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6, 24178–24191.PubMedCrossrefGoogle Scholar

  • Domhan, S., Ma, L., Tai, A., Anaya, Z., Beheshti, A., Zeier, M., Hlatky, L., and Abdollahi, A. (2011). Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One 6, e21283.PubMedCrossrefGoogle Scholar

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317.Google Scholar

  • Drago, D., Cossetti, C., Iraci, N., Gaude, E., Musco, G., Bachi, A., and Pluchino, S. (2013). The stem cell secretome and its role in brain repair. Biochimie 95, 2271–2285.CrossrefPubMedGoogle Scholar

  • Drommelschmidt, K., Serdar, M., Bendix, I., Herz, J., Bertling, F., Prager, S., Keller, M., Ludwig, A.K., Duhan, V., Radtke, S., et al. (2017). Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav. Immun. 60, 220–232.CrossrefPubMedGoogle Scholar

  • Edens, B.M., Miller, N., and Ma, Y.C. (2016). Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci. 10, 44.PubMedGoogle Scholar

  • Eugenin, E.A., Gaskill, P.J., and Berman, J.W. (2009). Tunneling nanotubes (TNT): a potential mechanism for intercellular HIV trafficking. Commun. Integr. Biol. 2, 243–244.CrossrefPubMedGoogle Scholar

  • Faravelli, I., Bucchia, M., Rinchetti, P., Nizzardo, M., Simone, C., Frattini, E., and Corti, S. (2014a). Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Res. Ther. 5, 87.CrossrefGoogle Scholar

  • Faravelli, I., Riboldi, G., Nizzardo, M., Simone, C., Zanetta, C., Bresolin, N., Comi, G.P., and Corti, S. (2014b). Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol. Life Sci. 71, 3257–3268.CrossrefGoogle Scholar

  • Feiler, M.S., Strobel, B., Freischmidt, A., Helferich, A.M., Kappel, J., Brewer, B.M., Li, D., Thal, D.R., Walther, P., Ludolph, A.C., et al. (2015). TDP-43 is intercellularly transmitted across axon terminals. J. Cell. Biol. 211, 897–911.PubMedCrossrefGoogle Scholar

  • Ferraiuolo, L., Meyer, K., Sherwood, T.W., Vick, J., Likhite, S., Frakes, A., Miranda, C.J., Braun, L., Heath, P.R., Pineda, R., et al. (2016). Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc. Natl. Acad. Sci. USA 113, E6496–E6505.Google Scholar

  • Ferrero, I., Mazzini, L., Rustichelli, D., Gunetti, M., Mareschi, K., Testa, L., Nasuelli, N., Oggioni, G.D., and Fagioli, F. (2008). Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant. 17, 255–266.PubMedCrossrefGoogle Scholar

  • Figeac, F., Lesault, P.F., Le Coz, O., Damy, T., Souktani, R., Trébeau, C., Schmitt, A., Ribot, J., Mounier, R., Guguin, A., et al. (2014). Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 32, 216–230.CrossrefPubMedGoogle Scholar

  • Forostyak, S., Jendelova, P., Kapcalova, M., Arboleda, D., and Sykova, E. (2011). Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13, 1036–1046.CrossrefGoogle Scholar

  • Franco Lambert, A.P., Fraga Zandonai, A., Bonatto, D., Cantarelli Machado, D., and Pêgas Henriques, J.A. (2009). Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77, 221–228.CrossrefPubMedGoogle Scholar

  • Frausin, S., Viventi, S., Verga Falzacappa, L., Quattromani, M.J., Leanza, G., Tommasini, A., and Valencic, E. (2015). Wharton’s jelly derived mesenchymal stromal cells: biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem. 117, 329–338.CrossrefPubMedGoogle Scholar

  • Gerdes, H.H., and Carvalho, R.N. (2008). Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20, 470–475.PubMedCrossrefGoogle Scholar

  • Gitler, A.D., and Tsuiji, H. (2016). There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res. 1647, 19–29.PubMedCrossrefGoogle Scholar

  • Goldman, S.A. (2016). Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18, 174–188.CrossrefPubMedGoogle Scholar

  • Goyal, N.A., and Mozaffar, T. (2014). Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin. Investig. Drugs 23, 1541–1551.CrossrefPubMedGoogle Scholar

  • Grad, L.I., Yerbury, J.J., Turner, B.J., Guest, W.C., Pokrishevsky, E., O’Neill, M.A., Yanai, A., Silverman, J.M., Zeineddine, R., Corcoran, L., et al. (2014). Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 111, 3620–3625.CrossrefGoogle Scholar

  • Gransee, H.M., Zhan, W.Z., Sieck, G.C., and Mantilla, C.B. (2015). Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J. Neurotrauma. 32, 185–193.PubMedCrossrefGoogle Scholar

  • Grégoire, C., Lechanteur, C., Briquet, A., Baudoux, É., Baron, F., Louis, E., and Beguin, Y. (2017). Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases. Aliment Pharmacol. Ther. 45, 205–221.CrossrefPubMedGoogle Scholar

  • Gross, J.C., Chaudhary, V., Bartscherer, K., and Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Nat. Cell. Biol. 14, 1036–1045.CrossrefPubMedGoogle Scholar

  • Gurke, S., Barroso, J.F.V., Hodneland, E., Bukoreshtliev, N.V., Schlicker, O., and Gerdes, H.H. (2008). Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res. 314, 3669–3683.CrossrefPubMedGoogle Scholar

  • Haidet-Phillips, A.M., Hester, M.E., Miranda, C.J., Meyer, K., Braun, L., Frakes, A., Song, S., Likhite, S., Murtha, M.J., Foust, K.D., et al. (2011). Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828.PubMedCrossrefGoogle Scholar

  • Hajishengallis, G., and Lambris, J.D. (2016). More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol. Rev. 274, 233–244.CrossrefPubMedGoogle Scholar

  • Henkel, J.S., Beers, D.R., Wen, S., Rivera, A.L., Toennis, K.M., Appel, J.E., Zhao, W., Moore, D.H., Powell, S.Z., and Appel, S.H. (2013). Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 5, 64–79.CrossrefPubMedGoogle Scholar

  • Heo, J.S., Choi, S.M., Kim, H.O., Kim, E.H., You, J., Park, T., Kim, E., and Kim, H.S. (2013). Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience 238, 305–318.CrossrefGoogle Scholar

  • Hombach-Klonisch, S., Panigrahi, S., Rashedi, I., Seifert, A., Alberti, E., Pocar, P., Kurpisz, M., Schulze-Osthoff, K., Mackiewicz, A., and Los, M. (2008). Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J. Mol. Med. 86, 1301–1314.CrossrefPubMedGoogle Scholar

  • Howitt, J., and Hill, A.F. (2016). Exosomes in the pathology of neurodegenerative diseases. J. Biol. Chem. 291, 26589–26597.CrossrefPubMedGoogle Scholar

  • Jackson, M.V., Morrison, T.J., Doherty, D.F., McAuley, D.F., Matthay, M.A., Kissenpfennig, A., O’Kane, C.M., and Krasnodembskaya, A.D. (2016). Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34, 2210–2223.PubMedCrossrefGoogle Scholar

  • Jiang, D., Gao, F., Zhang, Y., Wong, D.S.H., Li, Q., Tse, H.F., Xu, G., Yu, Z., and Lian, Q. (2016). Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7, e2467.CrossrefPubMedGoogle Scholar

  • Jose, S., Tan, S.W., Ooi, Y.Y., Ramasamy, R., and Vidyadaran, S. (2014). Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels. J. Neuroinflamm. 11, 149.CrossrefGoogle Scholar

  • Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., and Nolta, J.A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 5, 933–946.CrossrefPubMedGoogle Scholar

  • Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J.M., Kassis, I., Bulte, J.W.M., Petrou, P., Ben-Hur, T., Abramsky, O., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194.PubMedGoogle Scholar

  • Kiernan, M.C., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardiman, O., Burrell, J.R., and Zoing, M.C. (2011). Amyotrophic lateral sclerosis. Lancet 377, 942–955.CrossrefPubMedGoogle Scholar

  • Kim, H.Y., Kim, H., Oh, K.W., Oh, S.I., Koh, S.H., Baik, W., Noh, M.Y., Kim, K.S., and Kim, S.H. (2014). Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 32, 2724–2731.CrossrefPubMedGoogle Scholar

  • Koh, S.H., Baik, W., Noh, M.Y., Cho, G.W., Kim, H.Y., Kim, K.S., and Kim, S.H. (2012). The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp. Neurol. 233, 472–480.CrossrefPubMedGoogle Scholar

  • Kumar, A., Mishra, H.K., Dwivedi, P., and Subramaniam, J.R. (2015). Secreted trophic factors of human umbilical cord stromal cells induce differentiation and neurite extension through PI3K and independent of cAMP pathway. Ann. Neurosci. 22, 97–106.PubMedGoogle Scholar

  • Kwiatkowski, T.J., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208.CrossrefPubMedGoogle Scholar

  • Kwon, M.S., Noh, M.Y., Oh, K.W., Cho, K.A., Kang, B.Y., Kim, K.S., Kim, Y.S., and Kim, S.H. (2014). The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. J. Neurochem. 131, 206–218.CrossrefPubMedGoogle Scholar

  • Lee, M., Ban, J.J., Kim, K.Y., Jeon, G.S., Im, W., Sung, J.J., and Kim, M. (2016). Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem. Biophys. Res. Commun. 479, 434–439.PubMedCrossrefGoogle Scholar

  • Lee, S.H., Kim, Y., Rhew, D., Kim, A., Jo, K.R., Yoon, Y., Choi, K.U., Jung, T., Kim, W.H., and Kweon, O.K. (2017). Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy 19, 75–87.CrossrefGoogle Scholar

  • Liao, B., Zhao, W., Beers, D.R., Henkel, J.S., and Appel, S.H. (2012). Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 237, 147–152.CrossrefGoogle Scholar

  • Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., Münch, A.E., Chung, W.S., Peterson, T.C., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487.PubMedCrossrefGoogle Scholar

  • Lillo, P., Savage, S., Mioshi, E., Kiernan, M.C., and Hodges, J.R. (2012). Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotroph. Lateral Scler. 13, 102–109.PubMedCrossrefGoogle Scholar

  • Lim, Y.S., and Tang, B.L. (2012). Intercellular organelle trafficking by membranous nanotube connections: a possible new role in cellular rejuvenation? Cell Commun. Adhes. 19, 39–44.PubMedCrossrefGoogle Scholar

  • Lindvall, O. (2015). Treatment of Parkinson’s disease using cell transplantation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140370.PubMedCrossrefGoogle Scholar

  • Liu, Y., Zhang, R., Yan, K., Chen, F., Huang, W., Lv, B., Sun, C., Xu, L., Li, F., and Jiang, X. (2014). Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J. Neuroinflamm. 11, 135.CrossrefGoogle Scholar

  • Liu, M.L., Zang, T., and Zhang, C.L. (2016). Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Rep. 14, 115–128.CrossrefPubMedGoogle Scholar

  • Lopez-Verrilli, M.A., Caviedes, A., Cabrera, A., Sandoval, S., Wyneken, U., and Khoury, M. (2016). Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 320, 129–139.CrossrefPubMedGoogle Scholar

  • Low, C.B., Liou, Y.C., and Tang, B.L. (2008). Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. J. Neurosci. Res. 86, 1670–1679.PubMedCrossrefGoogle Scholar

  • Lunn, J.S., Sakowski, S.A., and Feldman, E.L. (2014). Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells. 32, 1099–1109.CrossrefPubMedGoogle Scholar

  • Maas, S.L.N., Breakefield, X.O., and Weaver, A.M. (2017). Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188.CrossrefPubMedGoogle Scholar

  • Mackenzie, I.R., Rademakers, R., and Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007.CrossrefPubMedGoogle Scholar

  • Mancuso, R., and Navarro, X. (2015). Amyotrophic lateral sclerosis: current perspectives from basic research to the clinic. Prog. Neurobiol. 133, 1–26.CrossrefPubMedGoogle Scholar

  • Marchetto, M.C.N., Muotri, A.R., Mu, Y., Smith, A.M., Cezar, G.G., and Gage, F.H. (2008). Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657.PubMedCrossrefGoogle Scholar

  • Maria Ferri, A.L., Bersano, A., Lisini, D., Boncoraglio, G., Frigerio, S., and Parati, E. (2016). Mesenchymal stem cells for ischemic stroke: progress and possibilities. Curr. Med. Chem. 23, 1598–1608.CrossrefPubMedGoogle Scholar

  • Matula, Z., Németh, A., Lőrincz, P., Szepesi, Á., Brózik, A., Buzás, E.I., Lőw, P., Német, K., Uher, F., and Urbán, V.S. (2016). The role of extracellular vesicle and tunneling nanotube-mediated intercellular cross-talk between mesenchymal stem cells and human peripheral T Cells. Stem Cells Dev. 25, 1818–1832.CrossrefPubMedGoogle Scholar

  • Mause, S.F., and Weber, C. (2010). Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 107, 1047–1057.PubMedCrossrefGoogle Scholar

  • Mazzini, L., Fagioli, F., Boccaletti, R., Mareschi, K., Oliveri, G., Olivieri, C., Pastore, I., Marasso, R., and Madon, E. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor. Neuron. Disord. 4, 158–161.CrossrefPubMedGoogle Scholar

  • Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Boccaletti, R., Testa, L., Livigni, S., and Fagioli, F. (2006). Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol. Res. 28, 523–526.PubMedCrossrefGoogle Scholar

  • Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Nasuelli, N., Oggioni, G.D., Testa, L., and Fagioli, F. (2008). Stem cell treatment in amyotrophic lateral sclerosis. J. Neurol. Sci. 265, 78–83.CrossrefPubMedGoogle Scholar

  • Mazzini, L., Ferrero, I., Luparello, V., Rustichelli, D., Gunetti, M., Mareschi, K., Testa, L., Stecco, A., Tarletti, R., Miglioretti, M., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol. 223, 229–237.CrossrefPubMedGoogle Scholar

  • Mazzini, L., Mareschi, K., Ferrero, I., Miglioretti, M., Stecco, A., Servo, S., Carriero, A., Monaco, F., and Fagioli, F. (2012). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 14, 56–60.CrossrefPubMedGoogle Scholar

  • Mazzini, L., Vescovi, A., Cantello, R., Gelati, M., and Vercelli, A. (2016). Stem cells therapy for ALS. Expert Opin. Biol. Ther. 16, 187–199.PubMedCrossrefGoogle Scholar

  • Melentijevic, I., Toth, M.L., Arnold, M.L., Guasp, R.J., Harinath, G., Nguyen, K.C., Taub, D., Parker, J.A., Neri, C., Gabel, C.V., et al. (2017). C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542, 367–371.PubMedCrossrefGoogle Scholar

  • Miller, R.G., Mitchell, J.D., and Moore, D.H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 3, CD001447.Google Scholar

  • Mishra, P.S., Dhull, D.K., Nalini, A., Vijayalakshmi, K., Sathyaprabha, T.N., Alladi, P.A., and Raju, T.R. (2016). Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J. Neuroinflamm. 13, 212.CrossrefGoogle Scholar

  • Momin, E.N., Mohyeldin, A., Zaidi, H.A., Vela, G., and Quiñones-Hinojosa, A. (2010). Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Curr. Stem Cell Res. Ther. 5, 326–344.CrossrefPubMedGoogle Scholar

  • Morcuende, S., Muñoz-Hernández, R., Benítez-Temiño, B., Pastor, A.M., and de la Cruz, R.R. (2013). Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats. Neuroscience 250, 31–48.PubMedCrossrefGoogle Scholar

  • Morita, E., Watanabe, Y., Ishimoto, M., Nakano, T., Kitayama, M., Yasui, K., Fukada, Y., Doi, K., Karunaratne, A., Murrell, W.G., et al. (2008). A novel cell transplantation protocol and its application to an ALS mouse model. Exp. Neurol. 213, 431–438.CrossrefGoogle Scholar

  • Mounayar, M., Kefaloyianni, E., Smith, B., Solhjou, Z., Maarouf, O.H., Azzi, J., Chabtini, L., Fiorina, P., Kraus, M., Briddell, R., et al. (2015). PI3kα and STAT1 interplay regulates human mesenchymal stem cell immune polarization. Stem Cells 33, 1892–1901.CrossrefPubMedGoogle Scholar

  • Müller, G., Schneider, M., Biemer-Daub, G., and Wied, S. (2011). Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 23, 1207–1223.CrossrefPubMedGoogle Scholar

  • Nagai, M., Re, D.B., Nagata, T., Chalazonitis, A., Jessell, T.M., Wichterle, H., and Przedborski, S. (2007). Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622.PubMedCrossrefGoogle Scholar

  • Naghdi, M., Tiraihi, T., Namin, S.A.M., and Arabkheradmand, J. (2009). Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 11, 137–152.PubMedCrossrefGoogle Scholar

  • Najar, M., Raicevic, G., Crompot, E., Fayyad-Kazan, H., Bron, D., Toungouz, M., and Lagneaux, L. (2016a). The immunomodulatory potential of mesenchymal stromal cells: a story of a regulatory network. J. Immunother. 39, 45–59.CrossrefGoogle Scholar

  • Najar, M., Raicevic, G., Fayyad-Kazan, H., Bron, D., Toungouz, M., and Lagneaux, L. (2016b). Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18, 160–171.CrossrefGoogle Scholar

  • Naphade, S., Sharma, J., Gaide Chevronnay, H.P., Shook, M.A., Yeagy, B.A., Rocca, C.J., Ur, S.N., Lau, A.J., Courtoy, P.J., and Cherqui, S. (2015). Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33, 301–309.PubMedCrossrefGoogle Scholar

  • Ng, L., Khan, F., Young, C.A., and Galea, M. (2017). Symptomatic treatments for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 1, CD011776.PubMedGoogle Scholar

  • Noh, M.Y., Lim, S.M., Oh, K.W., Cho, K.A., Park, J., Kim, K.S., Lee, S.J., Kwon, M.S., and Kim, S.H. (2016). Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl. Med. 5, 1538–1549.PubMedCrossrefGoogle Scholar

  • Oh, K.W., Moon, C., Kim, H.Y., Oh, S.I., Park, J., Lee, J.H., Chang, I.Y., Kim, K.S., and Kim, S.H. (2015). Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 4, 590–597.PubMedCrossrefGoogle Scholar

  • Onfelt, B., Nedvetzki, S., Benninger, R.K.P., Purbhoo, M.A., Sowinski, S., Hume, A.N., Seabra, M.C., Neil, M.A.A., French, P.M.W., and Davis, D.M. (2006). Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177, 8476–8483.PubMedCrossrefGoogle Scholar

  • Ong, W.K., and Sugii, S. (2013). Adipose-derived stem cells: fatty potentials for therapy. Int. J. Biochem. Cell. Biol. 45, 1083–1086.PubMedCrossrefGoogle Scholar

  • Ooi, Y.Y., Dheen, S.T., and Tay, S.S.W. (2015). Paracrine effects of mesenchymal stem cells-conditioned medium on microglial cytokines expression and nitric oxide production. Neuroimmunomodul. 22, 233–242.Google Scholar

  • Ophelders, D.R.M.G., Wolfs, T.G.A.M., Jellema, R.K., Zwanenburg, A., Andriessen, P., Delhaas, T., Ludwig, A.K., Radtke, S., Peters, V., Janssen, L., et al. (2016). Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl. Med. 5, 754–763.CrossrefPubMedGoogle Scholar

  • Otero, L., Zurita, M., Bonilla, C., Aguayo, C., Rico, M.A., Rodríguez, A., and Vaquero, J. (2012). Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis. Cytotherapy 14, 34–44.CrossrefPubMedGoogle Scholar

  • Park, H.J., Oh, S.H., Kim, H.N., Jung, Y.J., and Lee, P.H. (2016). Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol. 132, 685–701.PubMedCrossrefGoogle Scholar

  • Pegtel, D.M., Peferoen, L., and Amor, S. (2014). Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, pii: 20130516.CrossrefGoogle Scholar

  • Pen, A.E., and Jensen, U.B. (2017). Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurol. Scand. 135, 57–72.PubMedCrossrefGoogle Scholar

  • Petit, G.H., Olsson, T.T., and Brundin, P. (2014). The future of cell therapies and brain repair: Parkinson’s disease leads the way. Neuropathol. Appl. Neurobiol. 40, 60–70.CrossrefPubMedGoogle Scholar

  • Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y.S., Kassis, I., Vaknin-Dembinsky, A., Ben-Hur, T., Offen, D., Abramsky, O., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. J. Am. Med. Assoc. Neurol. 73, 337–344.Google Scholar

  • Qiu, X.C., Jin, H., Zhang, R.Y., Ding, Y., Zeng, X., Lai, B.Q., Ling, E.A., Wu, J.L., and Zeng, Y.S. (2015). Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res. Ther. 6, 105.PubMedCrossrefGoogle Scholar

  • Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.CrossrefPubMedGoogle Scholar

  • Renton, A.E., Chiò, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23.PubMedGoogle Scholar

  • Riva, N., Agosta, F., Lunetta, C., Filippi, M., and Quattrini, A. (2016). Recent advances in amyotrophic lateral sclerosis. J. Neurol. 263, 1241–1254.CrossrefPubMedGoogle Scholar

  • Robberecht, W., and Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264.CrossrefPubMedGoogle Scholar

  • Rodríguez, M.J., and Mahy, N. (2016). Neuron-microglia interactions in motor neuron degeneration. The inflammatory hypothesis in amyotrophic lateral sclerosis revisited. Curr. Med. Chem. 23, 4753–4772.CrossrefPubMedGoogle Scholar

  • Roy, S., Huang, H., Liu, S., and Kornberg, T.B. (2014). Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343, 1244624.CrossrefPubMedGoogle Scholar

  • Ruegsegger, C., and Saxena, S. (2016). Proteostasis impairment in ALS. Brain Res. 1648, 571–579.CrossrefPubMedGoogle Scholar

  • Rushkevich, Y.N., Kosmacheva, S.M., Zabrodets, G.V., Ignatenko, S.I., Goncharova, N.V., Severin, I.N., Likhachev, S.A., and Potapnev, M.P. (2015). The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in Belarus. Bull. Exp. Biol. Med. 159, 576–581.CrossrefGoogle Scholar

  • Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H.H. (2004). Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010.CrossrefPubMedGoogle Scholar

  • Sanchez, V., Villalba, N., Fiore, L., Luzzani, C., Miriuka, S., Boveris, A., Gelpi, R.J., Brusco, A., and Poderoso, J.J. (2017). Characterization of tunneling nanotubes in Wharton’s jelly mesenchymal stem cells. An intercellular exchange of components between neighboring cells. Stem Cell Rev. doi: 10.1007/s12015-017-9730-8.PubMedGoogle Scholar

  • Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G., and Tredici, G. (2011). Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6, 82–92.CrossrefGoogle Scholar

  • Sharpe, P.T. (2016). Dental mesenchymal stem cells. Development 143, 2273–2280.PubMedCrossrefGoogle Scholar

  • Shin, W.J., Shin, S.W., Yuk, J.S., Amornkitbamrung, L., Jang, M.S., Song, I.H., Choi, S.W., Kang, I., Lee, J.Y., Bae, H., et al. (2017). Cell surface nano-modulation for non-invasive in vivo near-IR stem cell monitoring. ChemMedChem. 12, 28–32.PubMedCrossrefGoogle Scholar

  • Silverman, J.M., Fernando, S.M., Grad, L.I., Hill, A.F., Turner, B.J., Yerbury, J.J., and Cashman, N.R. (2016). Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell. Mol. Neurobiol. 36, 377–381.PubMedCrossrefGoogle Scholar

  • Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M.A., Chauveau, A., Köhler, K., Oddos, S., Eissmann, P., Brodsky, F.M., Hopkins, C., et al. (2008). Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219.PubMedCrossrefGoogle Scholar

  • Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672.PubMedCrossrefGoogle Scholar

  • Staff, N.P., Madigan, N.N., Morris, J., Jentoft, M., Sorenson, E.J., Butler, G., Gastineau, D., Dietz, A., and Windebank, A.J. (2016). Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS. Neurology 87, 2230–2234.PubMedCrossrefGoogle Scholar

  • Sun, C., Shao, J., Su, L., Zhao, J., Bi, J., Yang, S., Zhang, S., Gao, J., and Miao, J. (2013). Cholinergic neuron-like cells derived from bone marrow stromal cells induced by tricyclodecane-9-yl-xanthogenate promote functional recovery and neural protection after spinal cord injury. Cell Transplant. 22, 961–975.CrossrefPubMedGoogle Scholar

  • Sun, J.M., and Kurtzberg, J. (2015). Cord blood for brain injury. Cytotherapy 17, 775–785.CrossrefPubMedGoogle Scholar

  • Syková, E., Rychmach, P., Drahorádová, I., Konrádová, Š., Růžičková, K., Voříšek, I., Forostyak, S., Homola, A., and Bojar, M. (2017). Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of Phase I/IIa clinical trial. Cell Transplant. 26, 647–658.CrossrefPubMedGoogle Scholar

  • Tafuri, F., Ronchi, D., Magri, F., Comi, G.P., and Corti, S. (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 9, 336.PubMedGoogle Scholar

  • Tanna, T., and Sachan, V. (2014). Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr. Stem Cell. Res. Ther. 9, 513–521.CrossrefPubMedGoogle Scholar

  • Tomchuck, S.L., Zwezdaryk, K.J., Coffelt, S.B., Waterman, R.S., Danka, E.S., and Scandurro, A.B. (2008). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26, 99–107.CrossrefPubMedGoogle Scholar

  • Uccelli, A., Milanese, M., Principato, M.C., Morando, S., Bonifacino, T., Vergani, L., Giunti, D., Voci, A., Carminati, E., Giribaldi, F., et al. (2012). Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol. Med. 18, 794–804.PubMedGoogle Scholar

  • Van Damme, P., Bogaert, E., Dewil, M., Hersmus, N., Kiraly, D., Scheveneels, W., Bockx, I., Braeken, D., Verpoorten, N., Verhoeven, K., et al. (2007). Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl. Acad. Sci. USA 104, 14825–14830.CrossrefGoogle Scholar

  • Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211.PubMedCrossrefGoogle Scholar

  • Vaquero, J., and Zurita, M. (2011). Functional recovery after severe CNS trauma: current perspectives for cell therapy with bone marrow stromal cells. Prog. Neurobiol. 93, 341–349.PubMedCrossrefGoogle Scholar

  • Vercelli, A., Mereuta, O.M., Garbossa, D., Muraca, G., Mareschi, K., Rustichelli, D., Ferrero, I., Mazzini, L., Madon, E., and Fagioli, F. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 31, 395–405.PubMedCrossrefGoogle Scholar

  • Victoria, G.S., Arkhipenko, A., Zhu, S., Syan, S., and Zurzolo, C. (2016). Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci. Rep. 6, 20762.CrossrefPubMedGoogle Scholar

  • Wang, X., and Gerdes, H.H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22, 1181–1191.PubMedCrossrefGoogle Scholar

  • Wang, Y., Cui, J., Sun, X., and Zhang, Y. (2011). Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ. 18, 732–742.PubMedCrossrefGoogle Scholar

  • Waterman, R.S., Tomchuck, S.L., Henkle, S.L., and Betancourt, A.M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5, e10088.CrossrefGoogle Scholar

  • Wen, L., Zhu, M., Madigan, M.C., You, J., King, N.J.C., Billson, F.A., McClellan, K., Sutton, G., and Petsoglou, C. (2014). Immunomodulatory effects of bone marrow-derived mesenchymal stem cells on pro-inflammatory cytokine-stimulated human corneal epithelial cells. PLoS One 9, e101841.CrossrefPubMedGoogle Scholar

  • Wislet-Gendebien, S., Hans, G., Leprince, P., Rigo, J.M., Moonen, G., and Rogister, B. (2005). Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23, 392–402.CrossrefPubMedGoogle Scholar

  • Wood, C.R., and Rosenbaum, J.L. (2015). Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol. 25, 276–285.PubMedCrossrefGoogle Scholar

  • Xin, H., Li, Y., Cui, Y., Yang, J.J., Zhang, Z.G., and Chopp, M. (2013a). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711–1715.CrossrefGoogle Scholar

  • Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z.G., and Chopp, M. (2013b). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737–2746.CrossrefGoogle Scholar

  • Xu, L., He, D., and Bai, Y. (2016). Microglia-mediated inflammation and neurodegenerative disease. Mol. Neurobiol. 53, 6709–6715.PubMedCrossrefGoogle Scholar

  • Yang, H., Borg, T.K., Ma, Z., Xu, M., Wetzel, G., Saraf, L.V., Markwald, R., Runyan, R.B., and Gao, B.Z. (2016). Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication 8, 015012.PubMedCrossrefGoogle Scholar

  • Yasuda, K., Khandare, A., Burianovskyy, L., Maruyama, S., Zhang, F., Nasjletti, A., and Goligorsky, M.S. (2011). Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 3, 597–608.CrossrefPubMedGoogle Scholar

  • Ye, Y., Peng, Y.R., Hu, S.Q., Yan, X.L., Chen, J., and Xu, T. (2016). In vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells by cerebrospinal fluid improves motor function of middle cerebral artery occlusion rats. Front Neurol. 7, 183.PubMedGoogle Scholar

  • Yousefi, B., Sanooghi, D., Faghihi, F., Joghataei, M.T., and Latifi, N. (2017). Evaluation of motor neuron differentiation potential of human umbilical cord blood-derived mesenchymal stem cells, in vitro. J. Chem. Neuroanat. 81, 18–26.CrossrefPubMedGoogle Scholar

  • Zappulli, V., Friis, K.P., Fitzpatrick, Z., Maguire, C.A., and Breakefield, X.O. (2016). Extracellular vesicles and intercellular communication within the nervous system. J. Clin. Invest. 126, 1198–1207.CrossrefPubMedGoogle Scholar

  • Zeng, X., Qiu, X.C., Ma, Y.H., Duan, J.J., Chen, Y.F., Gu, H.Y., Wang, J.M., Ling, E.A., Wu, J.L., Wu, W., et al. (2015). Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 53, 184–201.CrossrefPubMedGoogle Scholar

  • Zhang, Y. (2011). Tunneling-nanotube: a new way of cell-cell communication. Commun. Integr. Biol. 4, 324–325.CrossrefPubMedGoogle Scholar

  • Zhang, C., Zhou, C., Teng, J.J., Zhao, R.L., Song, Y.Q., and Zhang, C. (2009). Multiple administrations of human marrow stromal cells through cerebrospinal fluid prolong survival in a transgenic mouse model of amyotrophic lateral sclerosis. Cytotherapy 11, 299–306.CrossrefGoogle Scholar

  • Zhang, B., Yin, Y., Lai, R.C., Tan, S.S., Choo, A.B.H., and Lim, S.K. (2014). Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 23, 1233–1244.PubMedCrossrefGoogle Scholar

  • Zhang, L., Liu, D., Pu, D., Wang, Y., Li, L., He, Y., Li, Y., Li, L., Qiu, Z., Zhao, S., et al. (2015a). The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. Int. J. Mol. Med. 35, 1003–1010.CrossrefGoogle Scholar

  • Zhang, L., Zhang, S., Yao, J., Lowery, F.J., Zhang, Q., Huang, W.C., Li, P., Li, M., Wang, X., Zhang, C., et al. (2015b). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104.CrossrefGoogle Scholar

  • Zhao, C.P., Zhang, C., Zhou, S.N., Xie, Y.M., Wang, Y.H., Huang, H., Shang, Y.C., Li, W.Y., Zhou, C., Yu, M.J., et al. (2007). Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9, 414–426.PubMedCrossrefGoogle Scholar

  • Zhu, S., Victoria, G.S., Marzo, L., Ghosh, R., and Zurzolo, C. (2015a). Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 9, 125–135.CrossrefGoogle Scholar

  • Zhu, T., Yu, D., Feng, J., Wu, X., Xiang, L., Gao, H., Zhang, X., and Wei, M. (2015b). GDNF and NT-3 induce progenitor bone mesenchymal stem cell differentiation into neurons in fetal gut culture medium. Cell Mol. Neurobiol. 35, 255–264.CrossrefGoogle Scholar

About the article

Received: 2017-02-27

Accepted: 2017-04-04

Published Online: 2017-05-25

Published in Print: 2017-10-26

Conflict of interest statement: The author declares that he has no conflict of interest.

Citation Information: Reviews in the Neurosciences, Volume 28, Issue 7, Pages 725–738, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0018.

Export Citation

©2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in