Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Eichenbaum, Howard / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2016: 2.546
5-year IMPACT FACTOR: 3.191

CiteScore 2016: 3.30

SCImago Journal Rank (SJR) 2016: 1.249
Source Normalized Impact per Paper (SNIP) 2016: 0.983

Online
ISSN
2191-0200
See all formats and pricing
More options …
Ahead of print

Issues

Dopamine dysregulation hypothesis: the common basis for motivational anhedonia in major depressive disorder and schizophrenia?

Jan Józef SzczypińskiORCID iD: http://orcid.org/0000-0002-5682-5840
  • Corresponding author
  • Laboratory of Brain Imaging, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
  • Medical University of Warsaw, Chair of Psychiatry, Nowowiejska 27, 00-665 Warsaw, Poland
  • Center for Modern Interdisciplinary Technologies, Neurocognitive Laboratory, Wileńska 4, 87-100 Torun, Poland
  • orcid.org/0000-0002-5682-5840
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mateusz Gola
  • Swartz Center for Computational Neuroscience, Institute of Neural Computations, University of California San Diego, 9500 Gilman Drive, #0559, La Jolla, CA 92093-0559, USA
  • Institute of Psychology, Polish Academy of Sciences, Clinical Neuroscience Lab, Jaracza 1, 00-001, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-03-24 | DOI: https://doi.org/10.1515/revneuro-2017-0091

Abstract

Abnormalities in reward processing are crucial symptoms of major depressive disorder (MDD) and schizophrenia (SCH). Recent neuroscientific findings regarding MDD have led to conclusions about two different symptoms related to reward processing: motivational and consummatory anhedonia, corresponding, respectively, to impaired motivation to obtain rewards (‘wanting’), and diminished satisfaction from consuming them (‘liking’). One can ask: which of these is common for MDD and SCH. In our review of the latest neuroscientific studies, we show that MDD and SCH do not share consummatory anhedonia, as SCH patients usually have unaltered liking. Therefore, we investigated whether motivational anhedonia is the common symptom across MDD and SCH. With regard to the similarities and differences between the neural mechanisms of MDD and SCH, here we expand the current knowledge of motivation deficits and present the common underlying mechanism of motivational anhedonia – the dopamine dysregulation hypothesis – stating that any prolonged dysregulation in tonic dopamine signaling that exceeds the given equilibrium can lead to striatal dysfunction and motivational anhedonia. The implications for further research and treatment of MDD and SCH are also discussed.

Keywords: dopamine; major depressive disorder; motivational anhedonia; reward system; schizophrenia

References

  • Admon, R., Kaiser, R.H., Dillon, D.G., Beltzer, M., Goer, F., Olson, D.P., Vitaliano, G., and Pizzagalli, D.A. (2017). Dopaminergic enhancement of striatal response to reward in major depression. Am. J. Psychiatry 174, 378–386.PubMedCrossrefGoogle Scholar

  • American Psychology Association. (2013). Diagnostic and Statistical Manual of Mental Disorders. 5th ed. (Washington DC, USA: American Psychiatric Association).Google Scholar

  • Andreasen, N.C. and Flaum, M. (1991). Schizophrenia: the characteristic symptoms. Schizophr. Bull. 17, 27–50.PubMedCrossrefGoogle Scholar

  • Anticevic, A., Schleifer, C., and Cho, Y.T. (2015). Emotional and cognitive dysregulation in schizophrenia and depression: understanding common and distinct behavioral and neural mechanisms. Dialogues Clin. Neurosci. 17, 421–434.PubMedGoogle Scholar

  • Arias-Carrión, Ó. and Pöppel, E. (2007). Dopamine, learning, and reward-seeking behavior. Acta Neurobiol. Exp. (Warsaw) 67, 481–488.Google Scholar

  • Arroll, B., Cr, E., Fishman, T., Fa, G., Kenealy, T., Blashki, G., Kerse, N., and MacGillvray, S. (2009). Antidepressants versus placebo for depression in primary care. Cochrane Database Syst. Rev. CD007954.PubMedGoogle Scholar

  • Arrondo, G., Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N.R., Dudas, R.B., Robbins, T.W., Fletcher, P.C., and Murray, G.K. (2015). Reduction in ventral striatal activity when anticipating a reward in depression and schizophrenia: a replicated cross-diagnostic finding. Front. Psychol. 6, 1280.PubMedGoogle Scholar

  • Arsenault, J.T., Rima, S., Stemmann, H., and Vanduffel, W. (2014). Role of the primate ventral tegmental area in reinforcement and motivation. Curr. Biol. 24, 1347–1353.CrossrefPubMedGoogle Scholar

  • Balleine, B.W., Delgado, M.R., and Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. J. Neurosci. 27, 8161–8165.CrossrefPubMedGoogle Scholar

  • Balodis, I.M. and Potenza, M.N. (2016). Anticipatory reward processing in addicted populations: a focus on the monetary incentive delay task. Biol. Psychiatry 77, 434–444.Google Scholar

  • Barch, D.M., Treadway, M.T., and Schoen, N. (2014). Effort, anhedonia, and function in schizophrenia: reduced effort allocation predicts amotivation and functional impairment. J. Abnorm. Psychol. 123, 387–397.CrossrefPubMedGoogle Scholar

  • Beck, A.T., Steer, R.A., and Brown, G.K. (1996). Beck Depression Inventory: Manual. 2nd ed. (San Antonio, Texas, USA: The Psychological Corp).Google Scholar

  • Benningfield, M.M., Blackford, J.U., Ellsworth, M.E., Samanez-Larkin, G.R., Martin, P.R., Cowan, R.L., and Zald, D.H. (2014). Caudate responses to reward anticipation associated with delay discounting behavior in healthy youth. Dev. Cogn. Neurosci. 7, 43–52.PubMedCrossrefGoogle Scholar

  • Berlin, I., Givry-Steiner, L., Lecrubier, Y., and Puech, A. J. (1998). Measures of anhedonia and hedonic responses to sucrose in depressive and schizophrenic patients in comparison with healthy subjects. Eur. Psychiatry 13, 303–309.PubMedCrossrefGoogle Scholar

  • Berman, S.M., Kuczenski, R., Mccracken, J.T., and London, E.D. (2009). Potential adverse effects of amphetamine treatment on brain and behavior: a review. Mol. Psychiatry 14, 123–142.PubMedCrossrefGoogle Scholar

  • Berridge, K.C. and Robinson, T.E. (1998). What is the role of dopamine in reward: hedonics, learning, or incentive salience? Brain Res. Rev. 28, 308–367.Google Scholar

  • Berridge, K.C. and Robinson, T.E. (2003). Parsing reward. Trends Neurosci. 26, 507–513.PubMedCrossrefGoogle Scholar

  • Birkett, P., Sigmundsson, T., Sharma, T., Toulopoulou, T., Griffiths, T.D., Reveley, A., and Murray, R. (2007). Reaction time and sustained attention in schizophrenia and its genetic predisposition. Schizophr. Res. 95, 76–85.CrossrefPubMedGoogle Scholar

  • Bustamante, J., Barrós-Loscertales, A., Costumero, V., Fuentes-Claramonte, P., Rosell-Negre, P., Ventura-Campos, N., Llopis, J., and Ávila, C. (2013). Abstinence duration modulates striatal functioning during monetary reward processing in cocaine patients. Addict. Biol. 19, 885–894.PubMedGoogle Scholar

  • Camardese, G., Di Giuda, D., Carli, V., Picello, A., Di Carlo, G., Mosca, L., Morelli, C., Rosetti, R., and Giordano, A. (2006). Changing of dopamine transporter binding in depressed patients with anhedonia during treatment. Eur. Neuropsychopharmacol. 16, 267.CrossrefGoogle Scholar

  • Cannon, C.M. and Palmiter, R.D. (2003). Reward without dopamine. J. Neurosci. 23, 10827–10831.PubMedGoogle Scholar

  • Carlson, P.J., Diazgranados, N., Nugent, A.C., Ibrahim, L., Luckenbaugh, D.A., Brutsche, N., Herscovitch, P., Manji, H.K., Zarate, C.A., and Drevets, W.C. (2013). Neural correlates of rapid antidepressant response to ketamine in treatment-resistant unipolar depression: a preliminary positron emission tomography study. Biol. Psychiatry 73, 1213–1221.PubMedCrossrefGoogle Scholar

  • Carter, J.D., Bizzel, J., Kim, C., Bellion, C., Carpenter, K.L.H., Dichter, G., and Belger, A. (2010). Attention deficits in schizophrenia – preliminary evidence of dissociable transient and sustained deficits. Schizophr. Res. 122, 104–112.CrossrefPubMedGoogle Scholar

  • Cassano, G.B. and Jori, M.C. (2002). Efficacy and safety of amisulpride 50 mg versus paroxetine 20 mg in major depression: a randomized, double-blind, parallel group study. 17, 27–32.Google Scholar

  • Chan, R.C., Li, Z., Li, K., Zeng, Y.W., Xie, W.Z., Yan, C., Cheung, E.F., and Jin, Z. (2015). Distinct processing of social and monetary rewards in late adolescents with trait anhedonia. Neuropsychology 30, 274–280.PubMedGoogle Scholar

  • Chelnokova, O., Laeng, B., Eikemo, M., Riegels, J., Løseth, G., Maurud, H., Willoch, F., and Leknes, S. (2014). Rewards of beauty: the opioid system mediates social motivation in humans. Mol. Psychiatry 19, 746–747.CrossrefPubMedGoogle Scholar

  • Cohen, A.S. and Minor, K.S. (2010). Emotional experience in patients with schizophrenia revisited: meta-analysis of laboratory studies. Schizophr. Bull. 36, 143–150.PubMedCrossrefGoogle Scholar

  • Cosgrove, K.P. (2010). Imaging receptor changes in human drug abusers. Curr. Top. Behav. Neurosci. 3, 199–217.CrossrefPubMedGoogle Scholar

  • Cuijpers, P., Sijbrandij, M., Koole, S.L., Andersson, G., Beekman, A.T., and Reynolds III, C.F. (2014). Adding psychotherapy to antidepressant medication in depression and anxiety disorders: a meta-analysis. World Psychiatry 13, 56–67.PubMedCrossrefGoogle Scholar

  • Dale, E., Bang-Andersen, B., and Sánchez, C. (2015). Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochem. Pharmacol. 95, 81–97.PubMedCrossrefGoogle Scholar

  • de Bartolomeis, A., Fiore, G., and Iasevoli, F. (2005). Dopamine-glutamate interaction and antipsychotics mechanism of action: implication for new pharmacological strategies in psychosis. Curr. Pharm. Des. 11, 3561–3594.PubMedCrossrefGoogle Scholar

  • Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C., Fiez, J.A., and Arbor, A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077.CrossrefPubMedGoogle Scholar

  • Delgado, M.R., Stenger, V.A., and Fiez, J.A. (2004). Motivation-dependent responses in the human caudate nucleus. Cereb. Cortex 14, 1022–1030.CrossrefPubMedGoogle Scholar

  • Dichter, G.S., Smoski, M.J., Kampov-Polevoy, A.B., Gallop, R., and Garbutt, J.C. (2010). Unipolar depression does not moderate responses to the sweet taste test. Depress. Anxiety 27, 859–863.PubMedCrossrefGoogle Scholar

  • Diederen, K.M.J., Ziauddeen, H., Vestergaard, M.D., Spencer, T., Schultz, W., and Fletcher, P.C. (2017). Dopamine modulates adaptive prediction error coding in the human midbrain and striatum. 37, 1708–1720.Google Scholar

  • Ding, L. and Gold, J.I. (2010). Caudate encodes multiple computations for perceptual decisions. J. Neurosci. 30, 15747–15759.PubMedCrossrefGoogle Scholar

  • Dowd, E.C. and Barch, D.M. (2010). Anhedonia and emotional experience in schizophrenia: neural and behavioral indicators. Biol. Psychiatry 67, 902–911.PubMedCrossrefGoogle Scholar

  • Dowd, E.C. and Barch, D.M. (2012). Pavlovian reward prediction and receipt in schizophrenia: relationship to anhedonia. PLoS One 7, 1–12.Google Scholar

  • Dunlop, B.W. and Nemeroff, C.B. (2007). The role of dopamine in the pathophysiology of depression. Arch. Gen. Psychiatry 64, 327.CrossrefPubMedGoogle Scholar

  • Fenton, W.S. and McGlashan, T.H. (1991). Natural history of schizophrenia subtypes II. Positive and negative symptoms and long-term course. Arch. Gen. Psychiatry 48, 978–986.PubMedCrossrefGoogle Scholar

  • Fervaha, G., Graff-Guerrero, A., Zakzanis, K.K., Foussias, G., Agid, O., and Remington, G. (2013). Incentive motivation deficits in schizophrenia reflect effort computation impairments during cost-benefit decision-making. J. Psychiatr. Res. 47, 1590–1596.CrossrefPubMedGoogle Scholar

  • Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C., Clinton, S.M., Phillips, P.E., and Akil, H. (2011). A selective role for dopamine in stimulus-reward learning. Nature 469, 53–57.CrossrefPubMedGoogle Scholar

  • Forbes, E.E., Hariri, A.R., Martin, S.L., Silk, J.S., Moyles, D.L., Fisher, P.M., Brown, S.M., Ryan, N.D., Birmaher, B., Axelson, D.A., et al. (2009). Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am. J. Psychiatry 166, 64–73.CrossrefPubMedGoogle Scholar

  • Forbes, E.E., Olino, T.M., Ryan, N.D., Birmaher, B., Axelson, D., Moyles, D.L., and Dahl, R.E. (2010). Reward-related brain function as a predictor of treatment response in adolescents with major depressive disorder. Cogn. Affect. Behav. Neurosci. 10, 107–118.PubMedCrossrefGoogle Scholar

  • Foti, D., Carlson, J.M., Sauder, C.L., and Proud, G.H. (2014). Reward dysfunction in major depression: multimodal neuroimaging evidence for refining the melancholic phenotype. Neuroimage 101, 50–58.CrossrefPubMedGoogle Scholar

  • Gard, D.E., Gard, M.G., Kring, A.M., and John, O.P. (2006). Anticipatory and consummatory components of the experience of pleasure: a scale development study. J. Res. Pers. 40, 1086–1102.CrossrefGoogle Scholar

  • Gard, D.E., Kring, A.M., Gard, M.G., Horan, W.P., and Green, M.F. (2007). Anhedonia in schizophrenia: distinctions between anticipatory and consummatory pleasure. Schizophr. Res. 93, 253–260.PubMedCrossrefGoogle Scholar

  • Gard, D.E., Sanchez, A.H., Cooper, K., Fisher, M., Garrett, C., and Vinogradov, S. (2014). Do people with schizophrenia have difficulty anticipating pleasure, engaging in effortful behavior, or both? J. Abnorm. Psychol. 123, 771–782.CrossrefGoogle Scholar

  • Gargoloff, P.D., Corral, R., Herbst, L., Marquez, M., Martinotti, G., and Gargoloff, P.R. (2016). Effectiveness of agomelatine on anhedonia in depressed patients: an outpatient, open-label, real-world study. Hum. Psychopharmacol. 31, 412–418.PubMedCrossrefGoogle Scholar

  • Gartlehner, G., Hansen, R.a, Morgan, L.C., Thaler, K., Lux, L., Van Noord, M., Mager, U., Thieda, P., Gaynes, B.N., Wilkins, T., et al. (2011). Comparative benefits and harms of second-generation antidepressants for treating major depressive disorder. An updated meta-analysis. Ann. Intern. Med. 155, 772–785.CrossrefPubMedGoogle Scholar

  • Gerdes, A.B.M., Wieser, M.J., Mühlberger, A., Weyers, P., Alpers, G.W., Plichta, M.M., Breuer, F., and Pauli P. (2010). Brain activations to emotional pictures are differentially associated with valence and arousal ratings. Front. Hum. Neurosci. 4, 175.PubMedGoogle Scholar

  • Gola, M., Miyakoshi, M., and Sescousse, G. (2015). Sex, impulsivity, and anxiety: interplay between ventral striatum and amygdala reactivity in sexual behaviors. J. Neurosci. 35, 15227–15229.PubMedCrossrefGoogle Scholar

  • Gola, M., Wordecha, M., Marchewka, A., and Sescousse, G. (2016). Visual sexual stimuli-cue or reward? A perspective for interpreting brain imaging findings on human sexual behaviors. Front. Hum. Neurosci. 10, 402.PubMedGoogle Scholar

  • Gola, M., Wordecha, M., Sescousse, G., Lew-Starowicz, M., Kossowski, B., Wypych, M., Makeig, S., Potenza, M., and Marchewka, A. (2017). Can pornography be addictive? An fMRI study of men seeking treatment for problematic pornography use. Neuropsychopharmacology 42, 2021–2031.CrossrefPubMedGoogle Scholar

  • Gold, J.M., Waltz, J.A., Matveeva, T.M., Kasanova, Z., Strauss, G.P., Herbener, E.S., Collins, A.G.E., and Frank, M.J. (2012). Negative symptoms and the failure to represent the expected reward value of actions. Arch. Gen. Psychiatry 69, 129.CrossrefPubMedGoogle Scholar

  • Goto, Y., Otani, S., and Grace, A.A. (2007). The Yin and Yang of dopamine release: a new perspective. Neuropharmacology 53, 583–587.CrossrefPubMedGoogle Scholar

  • Gozdzik-Zelazny, A., Borecki, L., and Pokorski, M. (2011). Depressive symptoms in schizophrenic patients. Eur. J. Med. Res. 16, 549–552.CrossrefPubMedGoogle Scholar

  • Gradin, V.B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., Milders, M., Reid, I., Hall, J., and Steele, J.D. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134, 1751–1764.PubMedCrossrefGoogle Scholar

  • Graske, M.G., Meuret, A.E., Ritz, T., Treanor, M., and Dour, H.J. (2016). Treatment for anhedonia: a neuroscience driven approach. Depress. Anxiety 33, 927–938.CrossrefPubMedGoogle Scholar

  • Hägele, C., Schlagenhauf, F., Rapp, M., Sterzer, P., Beck, A., Bermpohl, F., Stoy, M., Ströhle, A., Wittchen, H.U., Dolan, R.J., et al. (2015). Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology (Berl.) 232, 331–341.PubMedCrossrefGoogle Scholar

  • Hammar, Å. and Årdal, G. (2009). Cognitive functioning in major depression – a summary. Front. Hum. Neurosci. 3, 1–7.Google Scholar

  • Hanssen, E., van der Velde, J., Gromann, P.M., Shergill, S.S., da Haan, L., Bruggeman, R., Krabbendam, L., Aleman, A., and van Atteveneldt, N. (2015). Neural correlates of reward processing in healthy siblings of patients with schizophrenia. Front. Hum. Neurosci. 9, 504.PubMedGoogle Scholar

  • Hershenberg, R., Satterthwaite, T.D., Daldal, A., Katchmar, N., Moore, T.M., Kable, J.W., and Wolf, D.H. (2016). Diminished effort on a progressive ratio task in both unipolar and bipolar depression. J. Affect. Disord. 196, 97–100.CrossrefPubMedGoogle Scholar

  • Horan, W.P., Foti, D., Hajcak, G., Wynn, J.K., and Green, M.F. (2012). Impaired neural response to internal but not external feedback in schizophrenia. Psychol. Med. 42, 1637–1647.PubMedCrossrefGoogle Scholar

  • Horan, W.P., Reddy, L.F., Barch, D.M., Buchanan, R.W., Gold, J.M., Marder, S.R., Wynn, J.K., Young, J.W., and Green, M.F. (2015). Effort-based decision-making paradigms for clinical trials in schizophrenia: part 2 – external validity and correlates. Schizophr. Bull. 41, 1055–1065.CrossrefPubMedGoogle Scholar

  • Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III – the final common pathway. Schizophr. Bull. 35, 549–562.PubMedCrossrefGoogle Scholar

  • Ichikawa, J. and Meltzer, H.Y. (1995). Effect of antidepressants on striatal and accumbens extracellular dopamine levels. Eur. J. Pharmacol. 281, 255–261.PubMedCrossrefGoogle Scholar

  • Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., Sanislow, C., and Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751.CrossrefGoogle Scholar

  • Jayaram-Lindström, N., Wennberg, P., Hurd, Y.L., and Franck, J. (2004). Effects of naltrexone on the subjective response to amphetamine in healthy volunteers. J. Clin. Psychopharmacol. 24, 665–669.CrossrefPubMedGoogle Scholar

  • Jiang, T., Soussignan, R., Schaal, B., and Royet, J.P. (2013). Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI. Soc. Cogn. Affect. Neurosci. 10, 561–568.Google Scholar

  • Joormann, J. and Gotlib, I.H. (2007). Selective attention to emotional faces following recovery from depression. J. Abnorm. Psychol. 116, 80–85.CrossrefPubMedGoogle Scholar

  • Juckel, G., Schlagenhauf, F., Koslowski, M., Filonov, D., Kienast, T., Gallinat, J., Wrase, J., and Heinz, A. (2006a). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl.) 187, 222–228.CrossrefGoogle Scholar

  • Juckel, G., Schlagenhauf, F., Koslowski, M., Wüstenberg, T., Villringer, A., Knutson, B., Wrase, J., and Heinz, A. (2006b). Dysfunction of ventral striatal reward prediction in schizophrenia. Neuroimage 29, 409–416.CrossrefGoogle Scholar

  • Juckel, G., Friedel, E., Koslowski, M., Witthaus, H., Gudlowski, Y., Knutson, B., Wrase, J., Heinz, A., and Schlagenhauf, F. (2012). Ventral striatal activation during reward processing in subjects with ultra-high risk for schizophrenia. Neuropsychobiology 66, 50–56.PubMedCrossrefGoogle Scholar

  • Kaczmarek, H.J. and Kiefer, S.W. (2000). Microinjections of dopaminergic agents in the nucleus accumbens affect ethanol consumption but not palatability. Pharmacol. Biochem. Behav. 66, 307–312.PubMedCrossrefGoogle Scholar

  • Kawamichi, H., Sugawara, S.K., Hamano, Y.H., Makita, K., Kochiyama, T., and Sadato, N. (2016). Increased frequency of social interaction is associated with enjoyment enhancement and reward system activation. Sci. Rep. 6, 24561.PubMedCrossrefGoogle Scholar

  • Keedwell, P.A., Andrew, C., Williams, S.C.R., Brammer, M.J., and Phillips, M.L. (2005). The neural correlates of anhedonia in major depressive disorder. Biol. Psychiatry 58, 843–853.CrossrefPubMedGoogle Scholar

  • Kennedy, S.H. (2008). Core symptoms of major depressive disorder: relevance to diagnosis and treatment. Dialogues Clin. Neurosci. 10, 271–277.PubMedGoogle Scholar

  • Kirsch, P., Ronshausen, S., Mier, D., and Gallhofer, B. (2007). The influence of antipsychotic treatment on brain reward system reactivity in schizophrenia patients. Pharmacopsychiatry 40, 196–198.CrossrefPubMedGoogle Scholar

  • Kitaichi, Y., Inoue, T., Nakagawa, S., Boku, S., Kakuta, A., Izumi, T., and Koyama, T. (2010). Sertraline increases extracellular levels not only of serotonin, but also of dopamine in the nucleus accumbens and striatum of rats. Eur. J. Pharmacol. 647, 90–96.PubMedCrossrefGoogle Scholar

  • Knutson, B., Westdorp, A, Kaiser, E., and Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12, 20–27.CrossrefPubMedGoogle Scholar

  • Knutson, B., Adams, C.M., Fong, G.W., and Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21, 1–5.Google Scholar

  • Knutson, B., Bhanji, J.P., Cooney, R.E., Atlas, L.Y., and Gotlib, I.H. (2008). Neural responses to monetary incentives in major depression. Biophys. Psychiatry 63, 686–692.CrossrefGoogle Scholar

  • Krach, S., Paulus, F.M., Bodden, M., and Kircher, T. (2010). The rewarding nature of social interactions. Front. Behav. Neurosci. 4, 22.PubMedGoogle Scholar

  • Kraepelin, E. (1919). Psychiatrie. 8th ed. (Leipzig, Germany: Deuticke).Google Scholar

  • Kringelbach, M.L., Phil, D., and Berridge, K.C. (2010). The functional neuroanatomy of pleasure and happiness. Discov. Med. 9, 579–587.PubMedGoogle Scholar

  • Kujawa, A., Proudfit, G.H., and Klein, D.N. (2014). Neural reactivity to rewards and losses in offspring of mothers and fathers with histories of depressive and anxiety disorders. J. Abnorm. Psychol. 123, 287–297.PubMedCrossrefGoogle Scholar

  • Kumar, P., Waiter, G., Ahearn, T., Milders, M., Reid, I., and Steele, J.D. (2008). Abnormal temporal difference reward-learning signals in major depression. Brain 131, 2084–2093.CrossrefPubMedGoogle Scholar

  • Lally, N., Nugent, A.C., Luckenbaugh, D.A., Niciu, M.J., Roiser, J.P., and Zarate, C.A. Jr. (2015). Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J. Psychopharmacol. 29, 596–607.CrossrefPubMedGoogle Scholar

  • Lammers, C.H., Diaz, J., Schwartz, J.C., and Sokoloff, P. (2000). Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol. Psychiatry 5, 378–388.CrossrefPubMedGoogle Scholar

  • Lathi, A.C., Holcomb, H.H., Medoff, D.R., and Tamminga, C.A. (1995). Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6, 869–872.CrossrefPubMedGoogle Scholar

  • Leggio, G.M., Salomone, S., Bucolo, C., Platania, C., Micale, V., Caraci, F., and Drago, F. (2013). Dopamine D3 receptor as a new pharmacological target for the treatment of depression. Eur. J. Pharmacol. 719, 25–33.CrossrefPubMedGoogle Scholar

  • Lepping, R.J., Atchley, R.A., Chrysikou, E., Martin, L.E., Clair, A.A., Ingram, R.E., Simmons, W.K., and Savage, C.R. (2016). Neural processing of emotional musical and nonmusical stimuli in depression. PLoS One 11, 1–23.Google Scholar

  • Lernbass, B., Gron, G., Wolf, N.D., and Abler, B. (2013). Cigarette smoking modulates medication-associated deficits in a monetary reward task in patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 263, 509–517.CrossrefGoogle Scholar

  • Leyton, M., Boileau, I., Benkelfat, C., Diksic, M., Baker, G., and Dagher, A. (2002). Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET/[11C]raclopride study in healthy men. Neuropsychopharmacology 27, 1027–1035.CrossrefPubMedGoogle Scholar

  • Liggins, J., Pihl, R.O., Benkelfat, C., and Leyton, M. (2012). The dopamine augmenter L-dopa does not affect positive mood in healthy human volunteers. PLoS One 7, e28370.PubMedCrossrefGoogle Scholar

  • Limbrick-Oldfield, E.H., van Holst, R.J., and Clark, L. (2013). Fronto-striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies? Neuroimage Clin. 2, 385–393.PubMedCrossrefGoogle Scholar

  • Liu, W., Wang, L., Shang, H., Shen, Y., Li, Z., Cheung, E.F.C., and Chan, R.C.K. (2014). The influence of anhedonia on feedback negativity in major depressive disorder. Neuropsychologia 53, 213–220.PubMedCrossrefGoogle Scholar

  • Llorca, P. and Gourion, D. (2015). Management of anhedonia and depressive symptoms in depressed outpatients: benefit for functioning. Eur. Psychiatry 30, 364.CrossrefGoogle Scholar

  • Lohrenz, T., Kishida, K.T., and Montague, P.R. (2016). BOLD and its connection to dopamine release in human striatum: a crosscohort comparison. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371. DOI: 10.1098/rstb.2015.0352.Google Scholar

  • Martinotti, G., Hatzigiakoumis, D.S., De Vita, O., Clerici, M., Petruccelli, F., Di Giannantonio, M., and Janiri, L. (2012). Anhedonia and reward system: psychobiology, evaluation, and clinical features. 3, 697–713.Google Scholar

  • Mccarthy, J.M., Treadway, M.T., Bennett, M.E., and Blanchard, J.J. (2016). Inefficient effort allocation and negative symptoms in individuals with schizophrenia. Schizophr. Res. 170, 278–284.CrossrefPubMedGoogle Scholar

  • McFarland, B.R. and Klein, D.N. (2009). Emotional reactivity in depression: diminished responsiveness to anticipated reward but not to anticipated punishment or to nonreward or avoidance. Depress. Anxiety 26, 117–122.PubMedCrossrefGoogle Scholar

  • McMakin, D.L., Olino, T.M., Porta, G., Dietz, L.J., Emslie, G., Clarke, G., Dineen Wagner, K., Asanrow, J.R., Ryan, N.D., Birmaher, B., et al. (2012). Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment–resistant depression. J. Am. Acad. Child Adolesc. Psychiatry 51, 404–411.PubMedCrossrefGoogle Scholar

  • Millan, M.J., Gobert, A., Lejeune, F., Dekeyne, A., Pasteau, V., Rivet, J.-M., and Cussac, D. (2003). The novel melatonin agonist Agomelatine (S20098) is an antagonist at 5-hydroxytryptamine 2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways. J. Pharmacol. Exp. Ther. 306, 954–964.CrossrefPubMedGoogle Scholar

  • Misaki, M., Suzuki, H., Savitz, J., Drevets, W.C., and Bodurka, J. (2016). Individual variations in nucleus accumbens responses associated with major depressive disorder symptoms. Sci. Rep. 6, 21227.CrossrefPubMedGoogle Scholar

  • Morrens, M., Hulstijn, W., and Sabbe, B. (2007). Psychomotor slowing in schizophrenia. Schizophr. Bull. 33, 1038–1053.PubMedCrossrefGoogle Scholar

  • Mote, J., Minzenberg, M.J., Carter, C.S., and Kring, A.M. (2014). Deficits in anticipatory but not consummatory pleasure in people with recent-onset schizophrenia spectrum disorders. Schizophr. Res. 159, 76–79.CrossrefPubMedGoogle Scholar

  • Mucci, A., Dima, D., Soricelli, A., Volpe, U., Bucci, P., Frangou, S., Prinster, A., Salvatore, M., Galderisi, S., and Maj, M. (2015). Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychol. Med. 45, 1765–1778.PubMedCrossrefGoogle Scholar

  • Muris, P. and van der Heiden, S. (2006). Anxiety, depression, and judgments about the probability of future negative and positive events in children. J. Anxiety Disord. 20, 252–261.CrossrefPubMedGoogle Scholar

  • National Institute of Mental Health. (2011). RdoC Matrix. Available at: https://www.nimh.nih.gov/research-priorities/rdoc/constructs/rdoc-matrix.shtml. Accessed 9 October 2017.

  • Nestor, L., Hester, R., and Garavan, H. (2010). Increased ventral striatal BOLD activity during non-drug reward anticipation in cannabis users. Neuroimage 49, 1133–1143.CrossrefPubMedGoogle Scholar

  • Nielsen, M.O., Rostrup, E., Wulff, S., Bak, N., Broberg, B.V, Lublin, H., Kapur, S., and Glenthoj, B. (2012a). Improvement of brain reward abnormalities by antipsychotic monotherapy in schizophrenia. Arch. Gen. Psychiatry 69, 1195–1204.CrossrefGoogle Scholar

  • Nielsen, M.O., Rostrup, E., Wulff, S., Bak, N., Lublin, H., Kapur, S., and Glenthøj, B. (2012b). Alterations of the brain reward system in antipsychotic naïve schizophrenia patients. Biol. Psychiatry 71, 898–905.CrossrefGoogle Scholar

  • O’Daly, O.G., Joyce, D., Tracy, D.K., Azim, A., Stephan, K.E., Murray, R.M., and Shergill, S.S. (2014). Amphetamine sensitization alters reward processing in the human striatum and amygdala. PLoS One 9, e93955.CrossrefPubMedGoogle Scholar

  • Olino, T.M., McMakin, D.L., Morgan, J.K., Silk, J.S., Birmaher, B., Axelson, D.A., Williamson, D.E., Dahl, R.E., Ryan, N.D., and Forbes, E.E. (2014). Reduced reward anticipation in youth at high-risk for unipolar depression: a preliminary study. Dev. Cogn. Neurosci. 8, 55–64.PubMedCrossrefGoogle Scholar

  • Owesson-White, C., Belle, A.M., Herr, N.R., Peele, J.L., Gowrishankar, P., Carelli, R.M., Wightman, M., and Carolina, N. (2016). Cue-evoked dopamine release rapidly modulates D2 Neurons in the nucleus accumbens during motivated behavior. J. Neurosci. 36, 6011–6021.PubMedCrossrefGoogle Scholar

  • Patel, P. (2016). The efficacy of antidepressants in alleviating anhedonia in depressed patients. Undergrad. Honor. Thesis Collect. 350, 1–26.Google Scholar

  • Peciña, S. and Berridge, K.C. (2013). Dopamine or opioid stimulation of nucleus accumbens similarly amplify cue-triggered “wanting” for reward: entire core and medial shell mapped as substrates for PIT enhancement. Eur. J. Neurosci. 37, 1529–1540.PubMedCrossrefGoogle Scholar

  • Peciña, S., Berridge, K.C., and Parker, L.A. (1997). Pimozide does not shift palatability: separation of anhedonia from sensorimotor suppression by taste reactivity. Pharmacol. Biochem. Behav. 58, 801–811.PubMedCrossrefGoogle Scholar

  • Pelizza, L. and Ferrari, A. (2009). Anhedonia in schizophrenia and major depression: state or trait? Review of the literature. Ann. Gen. Psychiatry 8, 145–155.Google Scholar

  • Phan, K.L., Wager, T., Taylor, S.F., and Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348.PubMedCrossrefGoogle Scholar

  • Piray, P., den Ouden, H.E.M., van der Schaaf, M.E., Toni, I., and Cools, R. (2015). Dopaminergic modulation of the functional ventrodorsal architecture of the human striatum. Cereb. Cortex 27, 485–495.Google Scholar

  • Pizzagalli, D.A. (2014). Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu. Rev. Clin. Psychol. 10, 393–423.CrossrefGoogle Scholar

  • Pizzagalli, D.A., Holmes, A.J., Dillon, D.G., Goetz, E.L., Birk, J.L., Bogdan, R., Dougherty, D.D., Iosifescu, D.V, Rauch, S.L., and Fava, M. (2009). Reduced caudate and nucleus accumbens response to rewards in unmedicated subjects with major depressive disorder. Am. J. Psychiatry 166, 702–710.CrossrefPubMedGoogle Scholar

  • Proudfit, G.H. (2015). The reward positivity: from basic research on reward to a biomarker for depression. Psychophysiology 52, 449–459.CrossrefPubMedGoogle Scholar

  • Raffard, S., Esposito, F., Boulenger, J.P., and Van der Linden, M. (2013). Impaired ability to imagine future pleasant events is associated with apathy in schizophrenia. Psychiatry Res. 209, 393–400.PubMedCrossrefGoogle Scholar

  • Ribot, T. (1986). La Psychologie des Sentiments (Paris, France: Felix Alcan).Google Scholar

  • Rizvi, S., Strafella, A., Rusjan, P., Sproule, B., and Kennedy, S. (2016). The prominence of anhedonia in treatment-resistant depression and links to dopamine receptor binding. Eur. Neuropsychopharmacol. 26, 381.CrossrefGoogle Scholar

  • Robinson, T.E. and Berridge, K.C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247–291.CrossrefGoogle Scholar

  • Rose, E.J., Ross, T.J., Salmeron, B.J., Lee, M., Shakleya, D.M., Huestis, M.A., and Stein, E.A. (2013). Acute nicotine differentially impacts anticipatory valence- and magnitude-related striatal activity. Biol. Psychiatry 73, 280–288.PubMedCrossrefGoogle Scholar

  • Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Nierenberg, A.A., Stewart, J.W., Warden, D., Niederehe, G., Thase, M.E., Lavori, P.W., Lebowitz, B.D., et al. (2006). Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps. Am. J. Psychiatry 163, 1905–1917.PubMedCrossrefGoogle Scholar

  • Sarchiapone, M., Carli, V., Camardese, G., Cuomo, C., Di Giuda, D., Calcagni, M.L., Focacci, C., and De Risio, S. (2006). Dopamine transporter binding in depressed patients with anhedonia. Psychiatry Res. Neuroimaging 147, 243–248.CrossrefGoogle Scholar

  • Schlagenhauf, F., Sterzer, P., Schmack, K., Ballmaier, M., Rapp, M., Wrase, J., Juckel, G., Gallinat, J., and Heinz, A. (2009). Reward feedback alterations in unmedicated schizophrenia patients: relevance for delusions. Biol. Psychiatry 65, 1032–1039.CrossrefPubMedGoogle Scholar

  • Schlagenhauf, F., Rapp, M.A., Huys, Q.J.M., Beck, A., Wüstenberg, T., Deserno, L., Buchholz, H.G., Kalbitzer, J., Buchert, R., Bauer, M., et al. (2013). Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum. Brain Mapp. 34, 1490–1499.PubMedCrossrefGoogle Scholar

  • Schott, B.H., Minuzzi, L., Krebs, R.M., Elmenhorst, D., Lang, M., Winz, O.H., Seidenbecher, C.I., Coenen, H.H., Heinze, H.-J., Zilles, K., et al. (2008). Mesolimbic functional magnetic resonance imaging activations during reward anticipation correlate with reward-related ventral striatal dopamine release. J. Neurosci. 28, 14311–14319.CrossrefPubMedGoogle Scholar

  • Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. Science 275, 1593–1599.PubMedCrossrefGoogle Scholar

  • Seeman, P. (2002). Atypical antipsychotics: mechanism of action. Can. J. Psychiatry 47, 27–38.PubMedGoogle Scholar

  • Segarra, N., Metastasio, A., Ziauddeen, H., Spencer, J., Reinders, N.R., Dudas, R.B., Arrondo, G., Robbins, T.W., Clark, L., Fletcher, P.C., et al. (2016). Abnormal frontostriatal activity during unexpected reward receipt in depression and schizophrenia: relationship to anhedonia. Neuropsychopharmacology 41, 2001–2010.PubMedCrossrefGoogle Scholar

  • Sescousse, G., Redouté, J., and Dreher, J.C. (2010). The architecture of reward value coding in the human orbitofrontal cortex. J. Neurosci. 30, 13095–13104.CrossrefPubMedGoogle Scholar

  • Sescousse, G., Caldú, X., Segura, B., and Dreher, J.C. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neurosci. Biobehav. Rev. 37, 681–696.CrossrefPubMedGoogle Scholar

  • Sescousse, G., Li, Y., and Dreher, J.C. (2015). A common currency for the computation of motivational values in the human striatum. Soc. Cogn. Affect. Neurosci. 10, 467–473.CrossrefPubMedGoogle Scholar

  • Sherdell, L. and Gotlib, I.H. (2012). Anticipatory pleasure predicts motivation for reward in major depression. J. Abnorm. Psychol. 121, 51–60.CrossrefPubMedGoogle Scholar

  • Shirayama, Y. and Chaki, S. (2006). Neurochemistry of the nucleus accumbens and its relevance to depression and antidepressant action in rodents. Curr. Neuropharmacol. 4, 277–291.CrossrefPubMedGoogle Scholar

  • Sibitz, I., Berger, P., Freidl, M., Topitz, A., Krautgartner, M., Spiegel, W., and Katsching, H. (2010). ICD-10 or DSM-IV? Anhedonia, fatigue and depressed mood as screening symptoms for diagnosing a current depressive episode in physically ill patients in general hospital. J. Affect. Disord. 126, 245–251.CrossrefPubMedGoogle Scholar

  • Simon, J.J., Biller, A., Walther, S., Roesch-Ely, D., Stippich, C., Weisbrod, M., and Kaiser, S. (2010). Neural correlates of reward processing in schizophrenia – relationship to apathy and depression. Schizophr. Res. 118, 154–161.PubMedCrossrefGoogle Scholar

  • Simon, J.J., Cordeiro, S.A., Weber, M.A., Friederich, H.C., Wolf, R.C., Weisbrod, M., and Kaiser, S. (2015). Reward system dysfunction as a neural substrate of symptom expression across the general population and patients with schizophrenia. Schizophr. Bull. 41, 1370–1378.CrossrefPubMedGoogle Scholar

  • Sloan, D.M., Strauss, M.E., and Wisner, K.L. (2001). Diminished response to pleasant stimuli by depressed women. J. Abnorm. Psychol. 110, 488–493.PubMedCrossrefGoogle Scholar

  • Smith, K.S. and Berridge, K.C. (2007). Opioid limbic circuit for reward: interaction between hedonic hotspots of nucleus accumbens and ventral pallidum. J. Neurosci. 27, 1594–1605.PubMedCrossrefGoogle Scholar

  • Smoski, M.J., Felder, J., Bizell, J., Green, S.R., Ernst, M., Lynch, T.R., and Dichter, G.S. (2009). fMRI of alterations in reward selection, anticipation, and feedback in major depressive disorder. J. Affect. Disord. 118, 69–78.CrossrefPubMedGoogle Scholar

  • Stoy, M., Schlagenhauf, F., Sterzer, P., Bermpohl, F., Hagele, C., Suchotzki, K., Schmack, K., Wrase, J., Ricken, R., Knutson, B., et al. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. J. Psychopharmacol. 26, 677–688.PubMedCrossrefGoogle Scholar

  • Strauss, G.P. (2013). The emotion paradox of anhedonia in schizophrenia: or is it? Schizophr. Bull. 39, 247–250.Google Scholar

  • Strauss, G.P., Wilbur, R.C., Warren, K.R., August, S.M., and Gold, J.M. (2011). Anticipatory vs. consummatory pleasure: what is the nature of hedonic deficits in schizophrenia? Psychiatry Res. 187, 36–41.PubMedCrossrefGoogle Scholar

  • Stringaris, A., Belil, P.V.-R., Artiges, E., Lemaitre, H., Gollier-Briant, F., Wolke, S., Vulser, H., Miranda, R., Penttilá, J., Struve, M., et al. (2015). The brain’s response to reward anticipation and depression in adolescence: dimensionality, specificity, and longitudinal predictions in a community-based sample. Am. J. Psychiatry 172, 1215–1223.CrossrefGoogle Scholar

  • Subramaniam, K., Hooker, C.I., Biagianti, B., Fisher, M., Nagarajan, S., and Vinogradov, S. (2015). Neural signal during immediate reward anticipation in schizophrenia: relationship to real-world motivation and function. Neuroimage Clin. 9, 153–163.CrossrefPubMedGoogle Scholar

  • Treadway, M.T. and Zald, D.H. (2011). Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci. Biobehav. Rev. 35, 537–555.PubMedCrossrefGoogle Scholar

  • Treadway, M.T., Buckholtz, J.W., Schwartzman, A.N., Lambert, W.E., and Zald, D.H. (2009). Worth the “EEfRT”? The effort expenditure for rewards task as an objective measure of motivation and anhedonia. PLoS One 4, e6598.PubMedCrossrefGoogle Scholar

  • Treadway, M.T., Bossaller, N.A., Shelton, R.C., and Zald, D.H. (2012). Effort-based decision-making in major depressive disorder: a translational model of motivational anhedonia. J. Abnorm. Psychol. 121, 553–558.CrossrefPubMedGoogle Scholar

  • Treadway, M.T., Peterman, J.S., Zald, D.H., and Park, S. (2015). Impaired effort allocation in patients with schizophrenia. Schizophr. Res. 161, 382–385.PubMedCrossrefGoogle Scholar

  • Tritsch, N.X. and Sabatini, B.L. (2012). Review dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 76, 33–50.CrossrefPubMedGoogle Scholar

  • Ubl, B., Kuehner, C., Kirsch, P., Ruttorf, M., Diener, C., and Flor, H. (2015). Altered neural reward and loss processing and prediction error signalling in depression. Soc. Cogn. Affect. Neurosci. 10, 1102–1112.CrossrefPubMedGoogle Scholar

  • van Hell, H.H., Vink, M., Ossewaarde, L., Jager, G., Kahn, R.S., and Ramsey, N.F. (2010). Chronic effects of cannabis use on the human reward system: an fMRI study. Eur. Neuropsychopharmacol. 20, 153–163.PubMedCrossrefGoogle Scholar

  • Volkow, N.D., Chang, L., Wang, G., Fowler, J.S., Leonido-Yee, M., Franceschi, D., Sedler, M.J., Gatley, J.S., Hitzemann, R., and Ding, Y. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry 158, 377–382.CrossrefPubMedGoogle Scholar

  • Volkow, N.D., Wang, G.-J., Telang, F., Fowler, J.S., Alexoff, D., Logan, J., Jayne, M., Wong, C., and Tomasi, D. (2014). Decreased dopamine brain reactivity in marijuana abusers is associated with negative emotionality and addiction severity. Proc. Natl. Acad. Sci. USA 111, E3149–E3156.Google Scholar

  • Walker, E., Kestler, L., Bollini, A., and Hochman, K.M. (2004). Shizophrenia: etiology and course. Annu. Rev. Psychol. 55, 401–430.CrossrefGoogle Scholar

  • Walter, H., Kammerer, H., Frasch, K., Spitzer, M., and Abler, B. (2009). Altered reward functions in patients on atypical antipsychotic medication in line with the revised dopamine hypothesis of schizophrenia. Psychopharmacology (Berl.) 206, 121–132.PubMedCrossrefGoogle Scholar

  • Wardle, M.C., Treadway, M.T., Mayo, L.M., Zald, D.H., and de Wit, H. (2011). Amping up effort: effects of D-amphetamine on human effort-based decision-making. J. Neurosci. 31, 16597–16602.CrossrefPubMedGoogle Scholar

  • Wise, R. (1980). “Yes, but!...” a response to Arbuthnott from Roy Wise. Trends Neurosci. 3, 200.CrossrefGoogle Scholar

  • Wolf, D.H., Satterthwaite, T.D., Kantrowitz, J.J., and Elliott, M.A. (2014). Amotivation in schizophrenia: integrated assessment with behavioral, clinical, and imaging measures. Schizophr. Bull. 40, 1328–1337.PubMedCrossrefGoogle Scholar

  • World Health Organization. (1992). The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines (Geneva, Switzerland: World Health Organization).Google Scholar

  • Wu, C., Chen, K.C., Chen, P.S., Chiu, N., Yeh, T.L., Lee, I.H., and Yang, Y.K. (2013). No changes in striatal dopamine transporter in antidepressant-treated patients with major depression. Int. Clin. Psychopharmacol. 28, 141–144.CrossrefPubMedGoogle Scholar

  • Yang, X., Huang, J., Zhu, C., Wang, Y., Cheung, E.F.C., Chan, R.C.K., and Xie, G. (2014). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Res. 220, 874–882.PubMedCrossrefGoogle Scholar

  • Yang, X., Huang, J., Lan, Y., Zhu, C., Liu, X.Q., Wang, Y., Cheung, E.F.C., Xie, G., and Chan, R.C.K. (2016). Diminished caudate and superior temporal gyrus responses to effort-based decision making in patients with first-episode major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 64, 52–59.CrossrefPubMedGoogle Scholar

  • Yee, A., Chin, S.C., Hashim, A.H., Harbajan Singh, M.K., Loh, H.S., Sulaiman, A.H., and Ng, C.G. (2015). Anhedonia in depressed patients on treatment with selective serotonin reuptake inhibitor anti-depressant – a two-centered study in Malaysia. Int. J. Psychiatry Clin. Pract. 19, 182–187.PubMedGoogle Scholar

  • Zhang, B., Lin, P., Shi, H., Öngür, D., Auerbach, R.P., Wang, X., Yao, S., and Wang, X. (2016). Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis. Brain Imaging Behav. 10, 920–939.CrossrefGoogle Scholar

About the article

Received: 2017-10-30

Accepted: 2018-01-30

Published Online: 2018-03-24


Conflict of interest statement: The authors report no conflicts of interest with respect to the content of this manuscript.


Citation Information: Reviews in the Neurosciences, 20170091, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2017-0091.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in