Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Ahead of print


Acute anxiety disorder, major depressive disorder, bipolar disorder and schizophrenia are related to different patterns of nigrostriatal and mesolimbic dopamine dysfunction

Susanne Nikolaus
  • Corresponding author
  • Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eduards Mamlins
  • Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hubertus Hautzel
  • Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hans-Wilhelm Müller
  • Clinic of Nuclear Medicine, University Hospital Düsseldorf, Heinrich Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-01 | DOI: https://doi.org/10.1515/revneuro-2018-0037


Dopamine (DA) receptor and transporter dysfunctions play a major role in the pathophysiology of neuropsychiatric diseases including anxiety disorder (AD), major depressive disorder (MDD), bipolar disorder (BD) in the manic (BDman) or depressive (BDdep) state and schizophrenia (SZ). We performed a PUBMED search, which provided a total of 239 in vivo imaging studies with either positron emission tomography (PET) or single-proton emission computed tomography (SPECT). In these studies, DA transporter binding, D1 receptor (R) binding, D2R binding, DA synthesis and/or DA release in patients with the primary diagnosis of acute AD (n=310), MDD (n=754), BDman (n=15), BDdep (n=49) or SZ (n=1532) were compared to healthy individuals. A retrospective analysis revealed that AD, MDD, BDman, BDdep and SZ differed as to affected brain region(s), affected synaptic constituent(s) and extent as well as direction of dysfunction in terms of either sensitization or desensitization of transporter and/or receptor binding sites. In contrast to AD and SZ, in MDD, BDman and BDdep, neostriatal DA function was normal, whereas MDD, BDman, and BDdep were characterized by the increased availability of prefrontal and frontal DA. In contrast to AD, MDD, BDman and BDdep, DA function in SZ was impaired throughout the nigrostriatal and mesolimbocortical system with an increased availability of DA in the striatothalamocortical and a decreased availability in the mesolimbocortical pathway.

Keywords: anxiety; bipolar disorder; depression; mania; schizophrenia


  • Abi-Dargham, A. (2003). Probing cortical dopamine function in schizophrenia: what can D1 receptors tell us? World Psychiatry 2, 166–171.PubMedGoogle Scholar

  • Abi-Dargham, A., Gil, R., Krystal, J., Baldwin, R.M., Seibyl, J.P., Bowers, M., van Dyck, C.H., Charney, D.S., Innis, R.B., and Laruelle, M. (1998). Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am. J. Psychiatry 155, 761–767.Google Scholar

  • Abi-Dargham, A., Rodenhiser, J., Printz, D., Zea-Ponce, Y., Gil, R., Kegeles, L.S., Weiss, R., Cooper, T.B., Mann, J.J., Van Heertum, R.L., et al. (2000). Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc. Natl. Acad. Sci. USA 97, 8104–8109.CrossrefGoogle Scholar

  • Abi-Dargham, A., Mawlawi, O., Lombardo, I., Gil, R., Martinez, D., Huang, Y., Hwang, D.R., Keilp, J., Kochan, L., Van Heertum, R., et al. (2002). Prefrontal dopamine D1 receptors and working memory in schizophrenia. J. Neurosci. 22, 3708–3719.CrossrefPubMedGoogle Scholar

  • Abi-Dargham, A., van de Giessen, E., Slifstein, M., Kegeles, L.S., and Laruelle M. (2009). Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol. Psychiatry 65, 1091–1093.CrossrefPubMedGoogle Scholar

  • Abi-Dargham, A., Xu, X., Thompson, J.L., Gil, R., Kegeles, L.S., Urban, N., Narendran, R., Hwang, D.R., Laruelle, M., and Slifstein, M. (2012). Increased prefrontal cortical D₁ receptors in drug naive patients with schizophrenia: a PET study with [11C]NNC112. J. Psychopharmacol. 26, 794–805.CrossrefGoogle Scholar

  • Afifi, A.K. (1994a). Basal ganglia: functional anatomy and physiology. Part 1. J. Child Neurol. 9, 249–260.CrossrefGoogle Scholar

  • Afifi, A.K. (1994b). Basal ganglia: functional anatomy and physiology. Part 2. J. Child Neurol. 9, 352–361.CrossrefGoogle Scholar

  • Agid, O., Mamo, D., Ginovart, N., Vitcu, I., Wilson, A.A., Zipursky, R.B., and Kapur, S. (2007). Striatal vs extrastriatal dopamine D2 receptors in antipsychotic response – a double-blind PET study in schizophrenia. Neuropsychopharmacology 32, 1209–1215.PubMedCrossrefGoogle Scholar

  • Agren, H. and Reibring, L. (1994). PET studies of präsynaptischen Monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry 27, 2–6.CrossrefGoogle Scholar

  • Agren, H., Reibring, L., Hartvig, P., Tedroff, J., Bjurling, P., Lundqvist, H., and Langström, B. (1992). PET studies with L-[11C]5-HTP and L-[11C]dopa in brains of healthy volunteers and patients with major depression. Clin. Neuropharmacol. 15 (Suppl. 1 Pt A), 235–236.CrossrefGoogle Scholar

  • Agren, H., Reibring, L., Hartvig, P., Tedroff, J., Bjurling, P., Lundqvist, H., and Langstrom, B. (1993). Monoamine metabolism in human prefrontal cortex and basal ganglia. Pet studies using [β-11C] l–5-hydroxytryptophan and [β-11C] L-dopa in healthy volunteers and patients with unipolar major depression. Depression 1, 71–83.CrossrefGoogle Scholar

  • Aminoff, E.M., Kveraga, K., and Bar, M. (2013). The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390.CrossrefPubMedGoogle Scholar

  • Amsterdam, J.D. and Newberg, A.B. (2007). A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls. Neuropsychobiology 55, 167–170.CrossrefPubMedGoogle Scholar

  • Amsterdam, J.D., Newberg, A.B., Soeller, I., and Shults, J. (2012). Greater striatal dopamine transporter density may be associated with major depressive episode. J. Affect. Disord. 141, 425–431.PubMedCrossrefGoogle Scholar

  • Arakawa, R., Ichimiya, T., Ito, H., Takano, A., Okumura, M., Takahashi, H., Takano, H., Yasuno, F., Kato, M., Okubo, Y., et al. (2009). Increase in thalamic binding of [(11)C]PE2I in patients with schizophrenia: a positron emission tomography study of dopamine transporter. J. Psychiatr. Res. 43, 1219–1223.PubMedCrossrefGoogle Scholar

  • Arakawa, R., Ito, H., Okumura, M., Takano, A., Takahashi, H., Takano, H., Okubo, Y., and Suhara, T. (2010). Extrastriatal dopamine D2 receptor occupancy in olanzapine-treated patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 260, 345–350.CrossrefPubMedGoogle Scholar

  • Argyelan, M., Szabo, Z., Kanyo, B., Tanacs, A., Kovacs, Z., Janka, Z., and Pavics, L. (2005). Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J. Affect. Disord. 89, 115–123.PubMedCrossrefGoogle Scholar

  • Barnas, C., Quiner, S., Tauscher, J., Hilger, E., Willeit, M., Küfferle, B., Asenbaum, S., Brücke, T., Rao, M.L., and Kasper, S. (2001). In vivo (123)I IBZM SPECT imaging of striatal dopamine 2 receptor occupancy in schizophrenic patients. Psychopharmacology (Berl). 157, 236–242.PubMedCrossrefGoogle Scholar

  • Bertolino, A., Breier, A., Callicott, J.H, Adler, C., Mattay, V.S., Shapiro, M., Frank, J.A., Pickar, D., and Weinberger, D.R. (2000). The relationship between dorsolateral prefrontal neuronal N-acetylaspartate and evoked release of striatal dopamine in schizophrenia. Neuropsychopharmacology 22, 125–132.CrossrefPubMedGoogle Scholar

  • Bigliani, V., Mulligan, R.S., Acton, P.D., Visvikis, D., Ell, P.J., Stephenson, C., Kerwin, R.W., and Pilowsky, L.S. (1999). In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs. [123I]epidepride single photon emission tomography (SPET) study. Br. J. Psychiatry 175, 231–238.PubMedCrossrefGoogle Scholar

  • Bose, S.K., Turkheimer, F.E., Howes, O.D., Mehta, M.A., Cunliffe, R., Stokes, P.R., and Grasby, P.M. (2008). Classification of schizophrenic patients and healthy controls using [18F]fluorodopa PET imaging. Schizophr. Res. 106, 148–155.PubMedCrossrefGoogle Scholar

  • Breier, A., Su, T.P., Saunders, R., Carson, R.E., Kolachana, B.S., de Bartolomeis, A., Weinberger, D.R., Weisenfeld, N., Malhotra, A.K., Eckelman, W.C., et al. (1997). Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc. Natl. Acad. Sci. USA 94, 2569–2574.CrossrefGoogle Scholar

  • Bressan, R.A., Erlandsson, K., Mulligan, R.S., Gunn, R.N., Cunningham, V.J., Owens, J., Ell, P.J., and Pilowsky, L.S. (2003). Evaluation of NMDA receptors in vivo in schizophrenic patients with [123I]CNS 1261 and SPET: preliminary findings. Ann. N. Y. Acad. Sci. 1003, 364–367.CrossrefPubMedGoogle Scholar

  • Broft, A., Slifstein, M., Osborne, J., Kothari, P., Morim, S., Shingleton, R., Kenney, L., Vallabhajosula, S., Attia, E., Martinez, D., et al. (2015). Striatal dopamine type 2 receptor availability in anorexia nervosa. Psychiatry Res. 233, 380–387.PubMedCrossrefGoogle Scholar

  • Brücke, T., Wenger, S., Podreka, I., and Asenbaum, S. (1991). Dopamine receptor classification, neuroanatomical distribution and in vivo imaging. Wien. Klin. Wochenschr. 103, 639–646.PubMedGoogle Scholar

  • Brunswick, D.J., Amsterdam, J.D., Mozley, P.D., and Newberg, A. (2003). Greater availability of brain dopamine transporters in major depression shown by [99mTc]TRODAT-1 SPECT imaging. Am. J. Psychiatry 160, 1836–1841.PubMedCrossrefGoogle Scholar

  • Buchsbaum, M.S., Christian, B.T., Lehrer, D.S., Narayanan, T.K., Shi, B., Mantil, J., Kemether, E., Oakes, T.R., and Mukherjee, J. (2006). D2/D3 dopamine receptor binding with [18F]fallypride in thalamus and cortex of patients with schizophrenia. Schizophr. Res. 85, 232–244.CrossrefPubMedGoogle Scholar

  • Bullich, S., Ros, D., Pavía, J., Cot, A., Lopez, N., and Catafau, A.M. (2009). Neurotransmission SPECT and MR registration combining mutual and gradient information. Med. Phys. 36, 4903–4910.CrossrefGoogle Scholar

  • Busto, U.E., Redden, L., Mayberg, H., Kapur, S., Houle, S., and Zawertailo, L.A. (2009). Dopaminergic activity in depressed smokers: a positron emission tomography study. Synapse 63, 681–689.CrossrefPubMedGoogle Scholar

  • Camardese, G., De Risio, L., Di Nicola, M., Pucci, L., Cocciolillo, F., Bria, P., Giordano, A., Janiri, L., and Di Giuda, D. (2014). Changes of dopamine transporter availability in depressed patients with and without anhedonia: a 123I-N-ω-fluoropropyl-carbomethoxy-3β-(4-iodophenyl)tropane SPECT study. Neuropsychobiology 70, 235–243.CrossrefPubMedGoogle Scholar

  • Campos, A.C., Fogaca, M.V., Sonego, A.B., and Guimaraes, F.S. (2016). Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacol. Res. 112, 119–127.PubMedCrossrefGoogle Scholar

  • Cannon, D.M., Klaver, J.M., Peck, S.A., Rallis-Voak, D., Erickson, K., and Drevets, W.C. (2009). Dopamine type-1 receptor binding in major depressive disorder assessed using positron emission tomography and [11C]NNC-112. Neuropsychopharmacology 34, 1277–1287.PubMedCrossrefGoogle Scholar

  • Caravaggio, F., Borlido, C., Wilson, A., and Graff-Guerrero, A. (2015). Examining endogenous dopamine in treated schizophrenia using [11C]-(+)-PHNO positron emission tomography: A pilot study. Clin. Chim. Acta 449, 60–62.CrossrefGoogle Scholar

  • Carlsson, M.L. (2001). On the role of prefrontal cortex glutamate for the antithetical phenomenology of obsessive compulsive disorder and attention deficit hyperactivity disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 25, 5–26.PubMedCrossrefGoogle Scholar

  • Catafau, A.M., Suarez, M., Bullich, S., Llop, J., Nucci, G., Gunn, R.N., Brittain, C., and Laruelle, M. (2009). Barcelona Clinical Imaging in Psychiatry Group. Within-subject comparison of striatal D2 receptor occupancy measurements using [123I]IBZM SPECT and [11C]Raclopride PET. Neuroimage 46, 447–458.PubMedCrossrefGoogle Scholar

  • Catafau, A.M., Bullich, S., Nucci, G., Burgess, C., Gray, F., and Merlo-Pich, E. (2011). Barcelona Clinical Imaging in Psychiatry Group. Contribution of SPECT measurements of D2 and 5-HT2A occupancy to the clinical development of the antipsychotic SB-773812. J. Nucl. Med. 52, 526–534.PubMedCrossrefGoogle Scholar

  • Chavoix, C. and Insausti, R. (2017). Self-awareness and the medial temporal lobe in neurodegenerative diseases. Neurosci. Biobehav. Rev. 78, 1–12.CrossrefPubMedGoogle Scholar

  • Chen, K.C., Yang, Y.K., Howes, O., Lee, I.H., Landau, S., Yeh, T.L., Chiu, N.T., Chen, P.S., Lu, R.B., David, A.S., et al. (2013). Striatal dopamine transporter availability in drug-naive patients with schizophrenia: a case-control SPECT study with [99mTc]-TRODAT-1 and a meta-analysis. Schizophr. Bull. 39, 378–386.CrossrefGoogle Scholar

  • Cherlyn, S.Y., Woon, P.S., Liu, J.J., Ong, W.Y., Tsai, G.C., and Sim, K. (2010). Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci. Biobehav. Rev. 34, 958–977.PubMedCrossrefGoogle Scholar

  • Chiodo, A.L., Freeman, A.S., and Bunney, B.S. (1995). Dopamine Autoreceptor Signal Transduction and Regulation. Psychopharmacology – The fourth generation of progress. F.E. Bloom and D.J., eds. (New York, USA: Raven Press), pp. 221–226.Google Scholar

  • Chung, S.J., Lee, J.J., Ham, J.H., Lee, P.H., and Sohn, Y.H. (2016). Apathy and striatal dopamine defects in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 23, 62–65.CrossrefPubMedGoogle Scholar

  • Corripio, I., Perez, V., Catafau, A.M., Mena, E., Carrio, I., and Alvarez, E. (2006). Striatal D2 receptor binding as a marker of prognosis and outcome in untreated first-episode psychosis. Neuroimage 29, 662–666.PubMedCrossrefGoogle Scholar

  • Corripio, I., Escartí, M.J., Portella, M.J., Perez, V., Grasa, E., Sauras, R.B., Alonso, A., Safont, G., Camacho, M.V., Duenas, R., et al. (2011). Density of striatal D2 receptors in untreated first-episode psychosis: an I123-IBZM SPECT study. Eur. Neuropsychopharmacol. 21, 861–866.CrossrefPubMedGoogle Scholar

  • Cozzi, N.V. and Nichols, D.E. (1996). 5-HT2A receptor antagonists inhibit potassium-stimulated γ-aminobutyric acid release in rat frontal cortex. Eur. J. Pharmacol. 309, 25–31.PubMedCrossrefGoogle Scholar

  • Dao-Castellana, M.H., Paillere-Martinot, M.L., Hantraye, P., Attar-Levy, D., Remy, P., Crouzel, C., Artiges, E., Feline, A., Syrota, A., and Martinot, J.L. (1997). Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr. Res. 23, 167–174.CrossrefPubMedGoogle Scholar

  • Deeks, E.D. and Keating, G.M. (2008). Olanzapine/fluoxetine: a review of its use in the treatment of acute bipolar depression. Drugs 68, 1115–1137.PubMedCrossrefGoogle Scholar

  • de Haan, L., van Bruggen, M., Lavalaye, J., Booij, J., Dingemans, P.M., and Linszen, D. (2003). Subjective experience and D2 receptor occupancy in patients with recent-onset schizophrenia treated with low-dose olanzapine or haloperidol: a randomized, double-blind study. Am. J. Psychiatry 160, 303–209.CrossrefPubMedGoogle Scholar

  • de Kwaasteniet, B.P., Pinto, C., Ruhe, H.G., van Wingen, G.A., Booij, J., and Denys, D. (2014). Striatal dopamine D2/3 receptor availability in treatment resistant depression. PLoS One 9, e113612.CrossrefPubMedGoogle Scholar

  • Demjaha, A., Egerton, A., Murray, R.M., Kapur, S., Howes, O.D., Stone, J.M., and McGuire, P.K. (2014). Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol. Psychiatry 75, e11–13.CrossrefPubMedGoogle Scholar

  • Denys, D., van der Wee, N., Janssen, J., De Geus, F., and Westenberg, H.G. (2004). Low level of dopaminergic D2 receptor binding in obsessive-compulsive disorder. Biol. Psychiatry 55, 1041–1045.CrossrefPubMedGoogle Scholar

  • D’haenen, H.A. and Bossuyt, A. (1994). Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol. Psychiatry 35, 128–132.PubMedCrossrefGoogle Scholar

  • Di Giovanni, G., Di Matteo, V., Pierucci, M., Benigno, A., and Esposito, E. (2006). Central serotonin2C receptor: from physiology to pathology. Curr. Top. Med. Chem. 6, 1909–1925.CrossrefPubMedGoogle Scholar

  • Di Pietro, N.C. and Seamans, J.K. (2007). Dopamine and serotonin interactions in the prefrontal cortex: insights on antipsychotic drugs and their mechanism of action. Pharmacopsychiatry. 40 (Suppl. 1), S27–S33.Google Scholar

  • Dougherty, D.D., Bonab, A.A., Ottowitz, W.E., Livni, E., Alpert, N.M., Rauch, S.L., Fava, M., and Fischman, A.J. (2006). Decreased striatal D1 binding as measured using PET and [11C]SCH 23,390 in patients with major depression with anger attacks. Depress. Anxiety 23, 175–177.PubMedCrossrefGoogle Scholar

  • Ebert, D., Feistel, H., Kaschka, W., Barocka, A., and Pirner, A. (1994). Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation – preliminary results. Biol. Psychiatry 35, 880–885.CrossrefPubMedGoogle Scholar

  • Ebert, D., Feistel, H., Loew, T., and Pirner, A. (1996). Dopamine and depression – striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology (Berl.) 126, 91–94.CrossrefPubMedGoogle Scholar

  • Eichenbaum, H. (2017). The role of the hippocampus in navigation is memory. J. Neurophysiol. 117, 1785–1796.PubMedCrossrefGoogle Scholar

  • Elkashef, A.M., Doudet, D., Bryant, T., Cohen, R.M., Li, S.H., and Wyatt, R.J. (2000). 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Res. 100, 1–11.Google Scholar

  • Erro, R., Pappata, S., Amboni, M., Vicidomini, C., Longo, K., Santangelo, G., Picillo, M., Vitale, C., Moccia, M., Giordano, F., et al. (2012). Anxiety is associated with striatal dopamine transporter availability in newly diagnosed untreated Parkinson’s disease patients. Parkinsonism Relat. Disord. 18, 1034–1038.CrossrefPubMedGoogle Scholar

  • Fagerlund, B., Pinborg, L.H., Mortensen, E.L., Friberg, L., Baare, W.F., Gade, A., Svarer, C., and Glenthoj, B.Y. (2013). Relationship of frontal D(2/3) binding potentials to cognition: a study of antipsychotic-naive schizophrenia patients. Int. J. Neuropsychopharmacol. 16, 23–36.CrossrefPubMedGoogle Scholar

  • Farde, L., Wiesel, F.A., Hall, H., Halldin, C., Stone-Elander, S., and Sedvall, G. (1987). No D2 receptor increase in PET study of schizophrenia. Arch. Gen. Psychiatry 44, 671–672.PubMedCrossrefGoogle Scholar

  • Farde, L., Wiesel, F.A., Stone-Elander, S., Halldin, C., Nordström, A.L., Hall, H., and Sedvall, G. (1990). D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch. Gen. Psychiatry 47, 213–219.CrossrefPubMedGoogle Scholar

  • Felicio, A.C., Moriyama, T.S., Godeiro-Junior, C., Shih, M.C., Hoexter, M.Q., Borges, V., Silva, S.M., Amaro-Junior, E., Andrade, L.A., Ferraz, H.B., et al. (2010). Higher dopamine transporter desnity in Parkinson’s disease patients with depression. Psychopharmacology (Berl.) 211, 27–31.CrossrefGoogle Scholar

  • Ferre, S., Cortes, R., and Artigas, F. (1994). Dopaminergic regulation of the serotonergic raphe-striatal pathway: microdialysis studies in freely moving rats. J. Neurosci. 14, 4839–4846.CrossrefPubMedGoogle Scholar

  • Figee, M., de Koning, P., Klaassen, S., Vulink, N., Mantione, M., van den Munckhof, P., Schuurman, R., van Wingen, G., van Amelsvoort, T., Booij, J., et al. (2014). Deep brain stimulation induces striatal dopamine release in obsessive-compulsive disorder. Biol. Psychiatry. 75, 647–652.PubMedCrossrefGoogle Scholar

  • Frosini, D., Unti, E., Guidoccio, F., Del Gamba, C., Puccini, G., Volterrani, D., Bonuccelli, U., and Ceravolo, R. (2015). Mesolimbic dopaminergic dysfunction in Parkinson’s disease depression: evidence from a 123I-FP-CIT SPECT investigation. J. Neural Transm. (Vienna). 122, 1143–1147.PubMedCrossrefGoogle Scholar

  • Gefvert, O., Bergström, M., Langström, B., Lundberg, T., Lindstöom, L., and Yates, R. (1998). Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology (Berl.) 135, 119–126.CrossrefPubMedGoogle Scholar

  • Girault, J.A., Spampinato, U., Glowinski, J., and Besson, M.J. (1986). In vivo release of [3H]gamma-aminobutyric acid in the rat neostriatum – II. Opposing effects of D1 and D2 dopamine receptor stimulation in the dorsal caudate putamen. Neuroscience 19, 1109–1117.CrossrefPubMedGoogle Scholar

  • Glenthoj, B.Y., Mackeprang, T., Svarer, C., Rasmussen, H., Pinborg, L.H., Friberg, L., Baare, W., Hemmingsen, R., and Videbaek, C. (2006). Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol. Psychiatry 60, 621–629.PubMedCrossrefGoogle Scholar

  • Gothard, K.M., Mosher, C.P., Zimmerman, P.E., Putnam, P.T., Morrow, J.K., and Fuglevand, A.J. (2018). New perspectives on the neurophysiology of primate amygdala emerging from the study of naturalistic social behaviors. Wiley Interdiscip. Rev. Cogn. Sci. 9, Epub 2017 Aug 11.Google Scholar

  • Grace, A.A. and Bunney, B.S. (1979). Paradoxical GABA excitation of nigral dopaminergic cells: indirect mediation through reticulata inhibitory neurons. Eur. J. Pharmacol. 59, 211–218.PubMedCrossrefGoogle Scholar

  • Graef, S., Schönknecht, P., Sabri, O., and Hegerl, U. (2011). Cholinergic receptor subtypes and their role in cognition, emotion, and vigilance control: an overview of preclinical and clinical findings. Psychopharmacology (Berl.) 215, 205–229.CrossrefPubMedGoogle Scholar

  • Graff-Guerrero, A., Mizrahi, R., Agid, O., Marcon, H., Barsoum, P., Rusjan, P., Wilson, A.A., Zipursky, R., and Kapur, S. (2009). The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: a clinical [11C]-(+)-PHNO PET study. Neuropsychopharmacology 34, 1078–1086.PubMedCrossrefGoogle Scholar

  • Gray, N.S., Pilowsky, L.S., Gray, J.A., and Kerwin, R.W. (1995). Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schizophr. Res. 17, 95–107.PubMedCrossrefGoogle Scholar

  • Grosso, A., Cambiaghi, M., Concina, G., Sacco, T., and Sacchetti, B. (2015). Auditory cortex involvement in emotional learning and memory. Neuroscience 299, 45–55.PubMedCrossrefGoogle Scholar

  • Hadland, K.A., Rushworth, M.F., Gaffan, D., and Passingham, R.E. (2003). The effect of cingulate lesions on social behaviour and emotion. Neuropsychologia 41, 919–931.CrossrefPubMedGoogle Scholar

  • Hajos, M. and Rogers, B.N. (2010). Targeting α7 nicotinic acetylcholine receptors in the treatment of schizophrenia. Curr. Pharm. Des. 16, 538–554.PubMedCrossrefGoogle Scholar

  • Hesse, S., Müller, U., Lincke, T., Barthel, H., Villmann, T., Angermeyer, M.C., Sabri, O., and Stengler-Wenzke, K. (2005). Serotonin and dopamine transporter imaging in patients with obsessive-compulsive disorder. Psychiatry Res. 140, 63–72.PubMedCrossrefGoogle Scholar

  • Hietala, J., Syvalahti, E., Vuorio, K., Nagren, K., Lehikoinen, P., Ruotsalainen, U., Räkköläinen, V., Lehtinen, V., and Wegelius, U. (1994). Striatal D2 dopamine receptor characteristics in neuroleptic-naive schizophrenic patients studied with positron emission tomography. Arch. Gen. Psychiatry 51, 116–123.CrossrefPubMedGoogle Scholar

  • Hietala, J., Syvalahti, E., Vuorio, K., Räkköläinen, V., Bergman, J., Haaparanta, M., Solin, O., Kuoppamäki, M., Kirvelä, O., Ruotsalainen, U., et al. (1995). Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 346, 1130–1131.CrossrefPubMedGoogle Scholar

  • Hietala, J., Syvalahti, E., Vilkman, H., Vuorio, K., Räkköläinen, V., Bergman, J., Haaparanta, M., Solin, O., Kuoppamäki, M., Eronen, E., et al. (1999). Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr. Res. 35, 41–50.PubMedCrossrefGoogle Scholar

  • Hirvonen, J., Karlsson, H., Kajander, J., Markkula, J., Rasi-Hakala, H., Nagren, K., Salminen, J.K., and Hietala, J. (2008). Striatal dopamine D2 receptors in medication-naive patients with major depressive disorder as assessed with [11C]raclopride PET. Psychopharmacology (Berl.) 197, 581–590.CrossrefPubMedGoogle Scholar

  • Hiser, J. and Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol. Psychiatry. 83, 638–647.CrossrefPubMedGoogle Scholar

  • Ho, P.S., Ho, K.K., Huang, W.S., Yen, C.H., Shih, M.C., Shen, L.H., Ma, K.H., and Huang, S.Y. (2013). Association study of serotonin transporter availability and SLC6A4 gene polymorphisms in patients with major depression. Psychiatry Res. 212, 216–222.PubMedCrossrefGoogle Scholar

  • Hoexter, M.Q., Fadel, G., Felício, A.C., Calzavara, M.B., Batista, I.R., Reis, M.A., Shih, M.C., Pitman, R.K., Andreoli, S.B., Mello, M.F., et al. (2012). Higher striatal dopamine transporter density in PTSD: an in vivo SPECT study with [99mTc]TRODAT-1. Psychopharmacology (Berl). 224, 337–345.CrossrefGoogle Scholar

  • Howes, O.D., Montgomery, A.J., Asselin, M.C., Murray, R.M., Valli, I., Tabraham, P., Bramon-Bosch, E., Valmaggia, L., Johns, L., Broome, M., et al. (2009). Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch. Gen. Psychiatry. 66, 13–20.PubMedCrossrefGoogle Scholar

  • Hsiao, M.C., Lin, K.J., Liu, C.Y., Tzen, K.Y., and Yen, T.C. (2003). Dopamine transporter change in drug-naive schizophrenia: an imaging study with [99mTc]-TRODAT-1. Schizophr. Res. 65, 39–46.CrossrefPubMedGoogle Scholar

  • Ichikawa, J. and Meltzer, H.Y. (1995). DOI, a 5-HT2A/2C receptor agonist, potentiates amphetamine-induced dopamine release in rat striatum. Brain Res. 698, 204–208.PubMedCrossrefGoogle Scholar

  • Ichikawa, J. and Meltzer, H.Y. (2000). The effect of serotonin(1A) receptor agonism on antipsychotic drug-induced dopamine release in rat striatum and nucleus accumbens. Brain Res. 858, 252–263.CrossrefPubMedGoogle Scholar

  • Joo, Y.H., Kim, J.H., Son, Y.D., Kim, H.K., Shin, Y.J., Lee, S.Y., and Kim, J.H. (2018). The relationship between excitement symptom severity and extrastriatal dopamine D2/3 receptor availability in patients with schizophrenia: a high-resolution PET study with [18F]fallypride. Eur. Arch. Psychiatry Clin. Neurosci. 268, 529–540.CrossrefPubMedGoogle Scholar

  • Karlsson, P., Farde, L., Halldin, C., and Sedvall, G. (2002). PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am. J. Psychiatry 159, 761–767.PubMedCrossrefGoogle Scholar

  • Kasper, S., Tauscher, J., Kufferle, B., Barnas, C., Hesselmann, B., Asenbaum, S., Podreka, I., and Brucke, T. (1998). Sertindole and dopamine D2 receptor occupancy in comparison to risperidone, clozapine and haloperidol – a 123I-IBZM SPECT study. Psychopharmacology (Berl.) 136, 367–373.CrossrefPubMedGoogle Scholar

  • Kim, C.H., Koo, M.S., Cheon, K.A., Ryu, Y.H., Lee, J.D., and Lee, H. (2003). Dopamine transporter density of basal ganglia assessed with [123I]IPT SPET in obsessive-compulsive disorder. Eur. J. Nucl. Med. Mol. Imaging 30, 1637–1643.PubMedCrossrefGoogle Scholar

  • Kim, J.H., Son, Y.D., Kim, H.K., Lee, S.Y., Cho, S.E., Kim, Y.B., and Cho, Z.H. (2011). Antipsychotic-associated mental side effects and their relationship to dopamine D2 receptor occupancy in striatal subdivisions: a high-resolution PET study with [11C]raclopride. J. Clin. Psychopharmacol. 31, 507–511.PubMedCrossrefGoogle Scholar

  • Kim, E., Howes, O.D., Veronese, M., Beck, K., Seo, S., Park, J.W., Lee, J.S., Lee, Y.S., and Kwon, J.S. (2017). Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [18F]DOPA PET study. Neuropsychopharmacology. 42, 941–950.PubMedCrossrefGoogle Scholar

  • Klimke, A., Larisch, R., Janz, A., Vosberg, H., Muller-Gartner, H.W., and Gaebel, W. (1999). Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res. 90, 91–101.PubMedCrossrefGoogle Scholar

  • Konradi, C. and Heckers, S. (2003). Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol. Ther. 97, 153–179.PubMedCrossrefGoogle Scholar

  • Kosaka, J., Takahashi, H., Ito, H., Takano, A., Fujimura, Y., Matsumoto, R., Nozaki, S., Yasuno, F., Okubo, Y., Kishimoto, T., et al. (2010). Decreased binding of [11C]NNC112 and [11C]SCH23390 in patients with chronic schizophrenia. Life Sci. 22, 86, 814–818.Google Scholar

  • Koukouli, F. and Maskos, U. (2015). The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem. Pharmacol. 97, 378–387.PubMedCrossrefGoogle Scholar

  • Kubota, M., Nagashima, T., Takano, H., Kodaka, F., Fujiwara, H., Takahata, K., Moriguchi, S., Kimura, Y., Higuchi, M., Okubo, Y., et al. (2017). Affinity states of striatal dopamine D2 receptors in antipsychotic-free patients with schizophrenia. Int. J. Neuropsychopharmacol. 20, 928–935.CrossrefPubMedGoogle Scholar

  • Küfferle, B., Brücke, T., Topitz-Schratzberger, A., Tauscher, J., Gössler, R., Vesely, C., Asenbaum, S., Podreka, I., and Kasper, S. (1996). Striatal dopamine-2 receptor occupancy in psychotic patients treated with risperidone. Psychiatry Res. 68, 23–30.CrossrefPubMedGoogle Scholar

  • Küfferle, B., Tauscher, J., Asenbaum, S., Vesely, C., Podreka, I., Brücke, T., and Kasper, S. (1997). IBZM SPECT imaging of striatal dopamine-2 receptors in psychotic patients treated with the novel antipsychotic substance quetiapine in comparison to clozapine and haloperidol. Psychopharmacology (Berl.) 133, 323–328.PubMedCrossrefGoogle Scholar

  • Künstler, U., Hohdorf, K., Regenthal, R., Seese, A., and Gertz, H.J. (2000). Diminution of hand writing area and D2-dopamine receptor blockade. Results from treatment with typical and atypical neuroleptics. Nervenarzt 71, 373–379.PubMedGoogle Scholar

  • Kumakura, Y., Cumming, P., Vernaleken, I., Buchholz, H.G., Siessmeier, T., Heinz, A., Kienast, T., Bartenstein, P., and Gründer, G. (2007). Elevated [18F]fluorodopamine turnover in brain of patients with schizophrenia: an [18F]fluorodopa/positron emission tomography study. J. Neurosci. 27, 8080–8087.CrossrefPubMedGoogle Scholar

  • Laakso, A., Vilkman, H., Alakare, B., Haaparanta, M., Bergman, J., Solin, O., Peurasaari, J., Räkköläinen, V., Syvälahti, E., and Hietala, J. (2000). Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography. Am. J. Psychiatry 157, 269–271.PubMedCrossrefGoogle Scholar

  • Laasonen-Balk, T., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Lehtonen, J., and Tiihonen, J. (1999). Striatal dopamine transporter density in major depression. Psychopharmacology (Berl.) 144, 282–285.PubMedCrossrefGoogle Scholar

  • Laruelle, M. and Abi-Dargham, A. (1999). Dopamine as the wind of the psychotic fire: new evidence from brain imaging studies. J. Psychopharmacol. 13, 358–371.PubMedCrossrefGoogle Scholar

  • Laruelle, M., Abi-Dargham, A., van Dyck, C.H., Gil, R., D’Souza, C.D., Erdos, J., McCance, E., Rosenblatt, W., Fingado, C., Zoghbi, S.S., et al. (1996). Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc. Natl. Acad. Sci. USA 93, 9235–9240.CrossrefGoogle Scholar

  • Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., and Innis, R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46, 56–72.PubMedCrossrefGoogle Scholar

  • Laruelle, M., Abi-Dargham, A., van Dyck, C., Gil, R., D’Souza, D.C., Krystal, J., Seibyl, J., Baldwin, R., and Innis, R. (2000). Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [123I]β-CIT. Biol. Psychiatry 47, 371–379.CrossrefGoogle Scholar

  • Lavalaye, J., Linszen, D.H., Booij, J., Dingemans, P.M., Reneman, L., Habraken, J.B., Gersons, B.P., and van Royen, E.A. (2001). Dopamine transporter density in young patients with schizophrenia assessed with [123I]FP-CIT SPECT. Schizophr. Res. 47, 59–67.CrossrefPubMedGoogle Scholar

  • Ledermann, K., Jenewein, J., Sprott, H., Hasler, G., Schnyder, U., Warnock, G., Johayem, A., Kollias, S., Buck, A., and Martin-Soelch, C. (2016). Relation of dopamine receptor 2 binding to pain perception in female fibromyalgia patients with and without depression – a [11C] raclopride PET-study. Eur. Neuropsychopharmacol. 26, 320–330.CrossrefGoogle Scholar

  • Ledermann, K., Jenewein, J., Sprott, H., Hasler, G., Schnyder, U., Warnock, G., Johayem, A., Kollias, S., Buck, A., and Martin-Soelch, C. (2017). Altered dopamine responses to monetary rewards in female fibromyalgia patients with and without depression: a [11C]Raclopride Bolus-plus-Infusion PET Study. Psychother. Psychosom. 86, 181–182.CrossrefPubMedGoogle Scholar

  • Lee, L.T., Tsai, H.C., Chi, M.H., Chang, W.H., Chen, K.C., Lee, I.H., Chen, P.S., Yao, W.J., Chiu, N.T., and Yang, Y.K. (2015). Lower availability of striatal dopamine transporter in generalized anxiety disorder: a preliminary two-ligand SPECT study. Int. Clin. Psychopharmacol. 30, 175–178.PubMedCrossrefGoogle Scholar

  • Lehrer, D.S., Christian, B.T., Kirbas, C., Chiang, M., Sidhu, S., Short, H., Wang, B., Shi, B., Chu, K.W., Merrill, B., et al. (2010). [18F]-fallypride binding potential in patients with schizophrenia compared to healthy controls. Schizophr. Res. 122, 43–52.PubMedCrossrefGoogle Scholar

  • Lehto, S., Tolmunen, T., Joensuu, M., Saarinen, P.I., Vanninen, R., Ahola, P., Tiihonen, J., Kuikka, J., and Lehtonen, J. (2006). Midbrain binding of [123I]nor-β-CIT in atypical depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 1251–1255.CrossrefPubMedGoogle Scholar

  • Lehto, S.M., Kuikka, J., Tolmunen, T., Hintikka, J., Viinamäki, H., Vanninen, R., Haatainen, K., Koivumaa-Honkanen, H., Honkalampi, K., and Tiihonen, J. (2008a). Temporal cortex dopamine D2/3 receptor binding in major depression. Psychiatry Clin. Neurosci. 62, 345–348.CrossrefGoogle Scholar

  • Lehto, S.M., Tolmunen, T., Kuikka, J., Valkonen-Korhonen, M., Joensuu, M., Saarinen, P.I., Vanninen, R., Ahola, P., Tiihonen, J., and Lehtonen, J. (2008b). Midbrain serotonin and striatum dopamine transporter binding in double depression: a one-year follow-up study. Neurosci. Lett. 441, 291–295.CrossrefGoogle Scholar

  • Lenox, R.H. and Wang, L. (2003). Molecular basis of lithium action: integration of lithium-responsive signaling and gene expression networks. Mol. Psychiatry 8, 135–144.PubMedCrossrefGoogle Scholar

  • Lindstrom, L.H., Gefvert, O., Hagberg, G., Lundberg, T., Bergström, M., Hartvig, P., and Langström, B. (1999). Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(β-11C)DOPA and PET. Biol Psychiatry 46, 681–688.PubMedCrossrefGoogle Scholar

  • Lowry, C.A., Johnson, P.L., Hay-Schmidt, A., Mikkelsen, J., and Shekhar, A. (2005). Modulation of anxiety circuits by serotonergic systems. Stress 8, 233–246.CrossrefPubMedGoogle Scholar

  • Luparini, M.R., Garrone, B., Pazzagli, M., Pinza, M., and Pepeu, G. (2004). A cortical GABA-5HT interaction in the mechanism of action of the antidepressant trazodone. Prog. Neuropsychopharmacol. Biol. Psychiatry. 28, 1117–1127.CrossrefPubMedGoogle Scholar

  • Majurim, J., Joutsa, J., Johansson, J., Voon, V., Alakurtti, K., Parkkola, R., Lahti, T., Alho, H., Hirvonen, J., Arponen, E., et al. (2017). Dopamine and opioid neurotransmission in behavioral addictions: a comparative PET study in pathological gambling and binge eating. Neuropsychopharmacology. 42, 1169–1177.CrossrefPubMedGoogle Scholar

  • Malison, R.T., Price, L.H., Berman, R., van Dyck, C.H., Pelton, G.H., Carpenter, L., Sanacora, G., Owens, M.J., Nemeroff, C.B., Rajeevan, N., et al. (1998). Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 β-carbomethoxy-3β-(4-iodophenyl)tropane and single photon emission computed tomography. Biol. Psychiatry 44, 1090–1098.CrossrefGoogle Scholar

  • Mamo, D., Graff, A., Mizrahi, R., Shammi, C.M., Romeyer, F, and Kapur, S. (2007). Differential effects of aripiprazole on D2, 5-HT2, and 5-HT1A receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am. J. Psychiatry. 164, 1411–1417.CrossrefGoogle Scholar

  • Mane, A., Gallego, J., Lomena, F., Mateos, J.J., Fernandez-Egea, E., Horga, G., Cot, A., Pavia, J., Bernardo, M., and Parellada, E. (2011). A 4-year dopamine transporter (DAT) imaging study in neuroleptic-naive first episode schizophrenia patients. Psychiatry Res. 194, 79–84.PubMedCrossrefGoogle Scholar

  • Maron, E., Nutt, D.J., Kuikka, J., and Tiihonen, J. (2010). Dopamine transporter binding in females with panic disorder may vary with clinical status. J. Psychiatr. Res. 44, 56–59.CrossrefPubMedGoogle Scholar

  • Martinot, J.L., Huret, J.D., Peron-Magnan, P., Mazoyer, B.M., Baron, J.C., Caillard, V., Syrota, A., and Loo, H. (1989). Striatal D2 dopaminergic receptor status ascertained in vivo by positron emission tomography and 76Br-bromospiperone in untreated schizophrenics. Psychiatry Res. 29, 357–358.CrossrefPubMedGoogle Scholar

  • Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C., Hardy, P., Poirier, M.F., Mazoyer, B., Beaufils, B., Maziere, B., Allilaire, J.F., and Syrota, A. (1991). The estimated density of D2 striatal receptors in schizophrenia. A study with positron emission tomography and 76Br-bromolisuride. Br. J. Psychiatry 158, 346–350.CrossrefPubMedGoogle Scholar

  • Martinot, J.L., Paillere-Martinot, M.L., Loc’h, C., Lecrubier, Y., Dao-Castellana, M.H., Aubin, F., Allilaire, J.F., Mazoyer, B., Maziere, B., and Syrota, A. (1994). Central D2 receptors and negative symptoms of schizophrenia. Br. J. Psychiatry 164, 27–34.CrossrefPubMedGoogle Scholar

  • Martinot, M., Bragulat, V., Artiges, E., Dolle, F., Hinnen, F., Jouvent, R., and Martinot, J. (2001). Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am. J. Psychiatry. 158, 314–316.CrossrefPubMedGoogle Scholar

  • Mateos, J.J., Lomena, F., Parellada, E., Font, M., Fernandez, E., Pavia, J., Prats, A., Pons, F., and Bernardo, M. (2005). Decreased striatal dopamine transporter binding assessed with [123I] FP-CIT in first-episode schizophrenic patients with and without short-term antipsychotic-induced parkinsonism. Psychopharmacology (Berl.) 181, 401–406.CrossrefPubMedGoogle Scholar

  • Mateos, J.J., Lomena, F., Parellada, E., Font, M., Fernandez, E., Pavia, J., Prats, A., and Bernardo, M. (2006). Striatal dopamine transporter density decrease in first episode schizophrenic patients treated with risperidone. Rev. Esp. Med. Nucl. 25, 159–165.PubMedGoogle Scholar

  • Mateos, J.J., Lomena, F., Parellada, E., Mireia, F., Fernandez-Egea, E., Pavia, J., Prats, A., Pons, F., and Bernardo, M. (2007). Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology (Berl.) 191, 805–811.PubMedCrossrefGoogle Scholar

  • McEvoy, J.P. and Allen, T.B. (2002). The importance of nicotinic acetylcholine receptors in schizophrenia, bipolar disorder and Tourette’s syndrome. Curr. Drug Targets CNS Neurol. Disord. 1, 433–442.CrossrefPubMedGoogle Scholar

  • McGowan, S., Lawrence, A.D., Sales, T., Quested, D., and Grasby, P. (2004). Presynaptic dopaminergic dysfunction in schizophrenia: a positron emission tomographic [18F]fluorodopa study. Arch. Gen. Psychiatry. 61, 134–142.CrossrefPubMedGoogle Scholar

  • Meisenzahl, E.M., Dresel, S., Frodl, T., Schmitt, G.J., Preuss, U.W., Rossmüller, B., Tatsch, K., Mager, T., Hahn, K., and Möller, H.J. (2000). D2 receptor occupancy under recommended and high doses of olanzapine: an iodine-123-iodobenzamide SPECT study. J. Psychopharmacol. 14, 364–370.CrossrefPubMedGoogle Scholar

  • Meisenzahl, E.M., Schmitt, G., Gründer, G., Dresel, S., Frodl, T., la Fougere, C., Scheuerecker, J., Schwarz, M., Boerner, R., Stauss, J., et al. (2008). Striatal D2/D3 receptor occupancy, clinical response and side effects with amisulpride: an iodine-123-iodobenzamide SPET study. Pharmacopsychiatry 41, 169–175.CrossrefPubMedGoogle Scholar

  • Meyer, P., Bohnen, N.I., Minoshima, S., Koeppe, R.A., Wernette, K., Kilbourn, M.R., Kuhl, D.E., Frey, K.A., and Albin, R.L. (1999). Striatal presynaptic monoaminergic vesicles are not increased in Tourette’s syndrome. Neurology 53, 371–374.PubMedCrossrefGoogle Scholar

  • Meyer, J.H., Kruger, S., Wilson, A.A., Christensen, B.K., Goulding, V.S., Schaffer, A., Minifie, C., Houle, S., Hussey, D., and Kennedy, S.H. (2001). Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12, 4121–4125.PubMedCrossrefGoogle Scholar

  • Meyer, J.H., McNeely, H.E., Sagrati, S., Boovariwala, A., Martin, K., Verhoeff, N.P., Wilson, A.A., and Houle, S. (2006). Elevated putamen D2 receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am. J. Psychiatry 163, 1594–1602.CrossrefPubMedGoogle Scholar

  • Mineur, Y.S. and Picciotto, M.R. (2010). Nicotine receptors and depression: revisiting and revising the cholinergic hypothesis. Trends Pharmacol. Sci. 31, 580–586.PubMedCrossrefGoogle Scholar

  • Mitchell, N.D. and Baker, G.B. (2010). An update on the role of glutamate in the pathophysiology of depression. Acta Psychiatr. Scand. 122, 192–210.PubMedCrossrefGoogle Scholar

  • Mizrahi, R., Addington, J., Rusjan, P.M., Suridjan, I., Ng, A., Boileau, I., Pruessner, J.C., Remington, G., Houle, S., and Wilson, A.A. (2012). Increased stress-induced dopamine release in psychosis. Biol. Psychiatry. 71, 561–567.CrossrefPubMedGoogle Scholar

  • Montgomery, A.J., Stokes, P., Kitamura, Y., and Grasby, P.M. (2007). Extrastriatal D2 and striatal D2 receptors in depressive illness: pilot PET studies using [11C]FLB 457 and [11C]raclopride. J. Affect. Disord. 101, 113–122.CrossrefPubMedGoogle Scholar

  • Moresco, R.M,. Pietra, L., Henin, M., Panzacchi, A., Locatelli, M., Bonaldi, L., Carpinelli, A., Gobbo, C., Bellodi, L., Perani, D., et al. (2007). Fluvoxamine treatment and D2 receptors: a pet study on OCD drug-naïve patients. Neuropsychopharmacology 32, 197–205.PubMedCrossrefGoogle Scholar

  • Moriyama, T.S., Felicio, A.C., Chagas, M.H., Tardelli, V.S., Ferraz, H.B., Tumas, V., Amaro-Junior, E., Andrade, L.A., Crippa, J.A., and Bressan, R.A. (2011). Increased dopamine transporter density in Parkinson’s disease patients with social anxiety disorder. J. Neurol. Sci. 310, 53–57.CrossrefPubMedGoogle Scholar

  • Nakajima, S., Caravaggio, F., Mamo, D.C., Mulsant, B.H., Chung, J.K., Plitman, E., Iwata, Y., Gerretsen, P., Uchida, H., Suzuki, T., et al. (2015). Dopamine D₂/₃ receptor availability in the striatum of antipsychotic-free older patients with schizophrenia – a [11C]-raclopride PET study. Schizophr. Res. 164, 263–267.CrossrefGoogle Scholar

  • Neumeister, A., Willeit, M., Praschak-Rieder, N., Asenbaum, S., Stastny, J., Hilger, E., Pirker, W., Konstantinidis, A., and Kasper, S. (2001). Dopamine transporter availability in symptomatic depressed patients with seasonal affective disorder and healthy controls. Psychol. Med. 31, 1467–1473.PubMedGoogle Scholar

  • Nikolaus, S., Beu, M., Antke, C., and Müller HW. (2010). Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders – results from in vivo imaging studies. Rev. Neurosci. 21, 119–139.PubMedGoogle Scholar

  • Nikolaus, S., Hautzel, H., Heinzel, A., and Müller, H.W. (2012). Key players in major and bipolar depression – a retrospective analysis of in vivo imaging studies. Behav. Brain Res. 232, 358–390.PubMedCrossrefGoogle Scholar

  • Nikolaus, S., de Souza Silva, M.A., Hautzel, H., and Müller, H.W. (2013). The neurotachykinin NK1 receptor – a novel target for diagnostics and therapy. Curr. Mol. Imaging 2, 130–147.CrossrefGoogle Scholar

  • Nikolaus, S., Hautzel, H., Heinzel, A., and Müller, H.W. (2014a). Neurochemical dysfunction in treated and nontreated schizophrenia – a retrospective analysis of in vivo imaging studies. Rev. Neurosci. 25, 25–96.Google Scholar

  • Nikolaus, S., Hautzel, H., and Müller, H.W. (2014b). Focus on GABAA receptor function – a comparative analysis of in vivo imaging studies on neuropsychiatric disorders. Nuklearmedizin 53, 227–237.CrossrefGoogle Scholar

  • Nikolaus, S., Müller, H.W., and Hautzel, H. (2016). Different patterns of 5-HT receptor and transporter dysfunction in neuropsychiatric disorders – a comparative analysis of in vivo imaging findings. Rev. Neurosci. 27, 27–59.PubMedGoogle Scholar

  • Nikolaus, S., Müller, H.W., and Hautzel, H. (2017). Different patterns of dopaminergic and serotonergic dysfunction in manic, depressive and euthymic phases of bipolar disorder. Nuklearmedizin 56, 191–200.PubMedCrossrefGoogle Scholar

  • Norbak-Emig, H., Ebdrup, B.H., Fagerlund, B., Svarer, C., Rasmussen, H., Friberg, L., Allerup, P.N., Rostrup, E., Pinborg, L.H., and Glenthoj, B.Y. (2016). Frontal D2/3 receptor availability in schizophrenia patients before and after their first antipsychotic treatment: relation to cognitive functions and psychopathology. Int. J. Neuropsychopharmacol. 19, 1–10.Google Scholar

  • Nordström, A.L., Farde, L., Pauli, S., Litton, J.E., and Halldin, C. (1992). PET analysis of central [11C]raclopride binding in healthy young adults and schizophrenic patients – reliability and age effects. Human Psychopharmacol. 7, 157–165.CrossrefGoogle Scholar

  • Nordström, A.L., Farde, L., Nyberg, S., Karlsson, P., Halldin, C., and Sedvall, G. (1995a). D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am. J. Psychiatry 152, 1444–1449.CrossrefGoogle Scholar

  • Nordström, A.L., Farde, L., Eriksson, L., and Halldin C. (1995b). No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N-methylspiperone. Psychiatry Res. 61, 67–83.CrossrefGoogle Scholar

  • Nozaki, S., Kato, M., Takano, H., Ito, H., Takahashi, H., Arakawa, R., Okumura, M., Fujimura, Y., Matsumoto, R., Ota, M., et al. (2009). Regional dopamine synthesis in patients with schizophrenia using L-[β-11C]DOPA PET. Schizophr. Res. 108, 78–84.CrossrefPubMedGoogle Scholar

  • Nuss, P. (2015). Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr. Dis. Treat. 11, 165–175.PubMedGoogle Scholar

  • O’Donovan, S.M., Sullivan, C.R., and McCullumsmith, R.E. (2017). The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr. 3, 32.CrossrefPubMedGoogle Scholar

  • Olver, J.S., O’Keefe, G., Jones, G.R., Burrows, G.D., Tochon-Danguy, H.J., Ackermann, U., Scott, A., and Norman, T.R. (2009). Dopamine D1 receptor binding in the striatum of patients with obsessive-compulsive disorder. J. Affect. Disord. 114, 321–326.CrossrefPubMedGoogle Scholar

  • Paquet, F., Soucy, J.P., Stip, E., Levesque, M., Elie, A., and Bedard, M.A. (2004). Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. J. Neuropsychiatry Clin. Neurosci. 16, 47–56.PubMedCrossrefGoogle Scholar

  • Palacios, J.M., Camps, M., Cortes, R., and Probst, A. (1988). Mapping dopamine receptors in the human brain. J. Neural Transm. (Suppl.) 27, 227–235.PubMedGoogle Scholar

  • Parsey, R.V., Oquendo, M.A., Zea-Ponce, Y., Rodenhiser, J., Kegeles, L.S., Pratap, M., Cooper, T.B., Van Heertum, R., Mann, J.J., and Laruelle, M. (2001). Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol. Psychiatry 50, 313–322.CrossrefPubMedGoogle Scholar

  • Pedro, B.M., Pilowsky, L.S., Costa, D.C., Hemsley, D.R., Ell, P.J., Verhoeff, N.P., Kerwin, R.W., and Gray, N.S. (1994). Stereotypy, schizophrenia and dopamine D2 receptor binding in the basal ganglia. Psychol. Med. 24, 423–429.CrossrefPubMedGoogle Scholar

  • Pehrson, A.L. and Sanchez, C. (2015). Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des. Devel. Ther. 19, 603–624.Google Scholar

  • Perani, D., Garibotto, V., Gorini, A., Moresco, R.M., Henin, M., Panzacchi, A., Matarrese, M., Carpinelli, A., Bellodi, L., and Fazio, F. (2008). In vivo PET study of 5HT2A serotonin and D2 dopamine dysfunction in drug-naive obsessive-compulsive disorder. Neuroimage 42, 306–314.CrossrefGoogle Scholar

  • Perez, V., Catafau, A.M., Corripio, I., Martín, J.C., and Alvarez, E. (2003). Preliminary evidence of striatal D2 receptor density as a possible biological marker of prognosis in naive schizophrenic patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 27, 767–770.CrossrefPubMedGoogle Scholar

  • Pickar, D., Su, T.P., Weinberger, D.R., Coppola, R., Malhotra, A.K., Knable, M.B., Lee, K.S., Gorey, J., Bartko, J.J., Breier, A., et al. (1996). Individual variation in D2 dopamine receptor occupancy in clozapine-treated patients. Am. J. Psychiatry 153, 1571–1578.PubMedCrossrefGoogle Scholar

  • Pilowsky, L.S., Costa, D.C., Ell, P.J., Murray, R.M., Verhoeff, N.P., and Kerwin, R.W. (1992). Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 340, 199–202.PubMedCrossrefGoogle Scholar

  • Pilowsky, L.S., Costa, D.C., Ell, P.J., Murray, R.M., Verhoeff, N.P., and Kerwin, R.W. (1993). Antipsychotic medication, D2 dopamine receptor blockade and clinical response: a 123I IBZM SPET (single photon emission tomography) study. Psychol. Med. 23, 791–797.CrossrefPubMedGoogle Scholar

  • Pilowsky, L.S., Costa, D.C., Ell, P.J., Verhoeff, N.P., Murray, R.M., and Kerwin, R.W. (1994). D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. An 123I-IBZM single photon emission computerised tomography study. Br. J. Psychiatry 164, 16–26.CrossrefPubMedGoogle Scholar

  • Poels, E.M., Girgis, R.R., Thompson, J.L., Slifstein, M., and Abi-Dargham, A. (2013). In vivo binding of the dopamine-1 receptor PET tracers [11C]NNC112 and [11C]SCH23390: a comparison study in individuals with schizophrenia. Psychopharmacology (Berl). 228, 167–174.CrossrefGoogle Scholar

  • Pogarell, O., Koch, W., Karch, S., Dehning, S., Müller, N., Tatsch, K., Poepperl, G., and Möller, H.J. (2012). Dopaminergic neurotransmission in patients with schizophrenia in relation to positive and negative symptoms. Pharmacopsychiatry 45 (Suppl 1), S36–S41.Google Scholar

  • Reith, J., Benkelfat, C., Sherwin, A., Yasuhara, Y., Kuwabara, H., Andermann, F., Bachneff, S., Cumming, P., Diksic, M., Dyve, S.E., et al. (1994). Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc. Natl. Acad. Sci. USA 91, 11651–11654.CrossrefGoogle Scholar

  • Remy, P., Doder, M., Lees, A., Turjanski, N., and Brooks, D. (2005). Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128, 1314–1322.PubMedCrossrefGoogle Scholar

  • Ring, H.A., Trimble, M.R., Costa, D.C., Moriarty, J., Verhoeff, N.P.L.G., and Ell, P.J. (1994). Striatal dopamine receptor binding in epileptic psychoses. Biol. Psychiatry 35, 375–380.PubMedCrossrefGoogle Scholar

  • Romeo, B., Choucha, W., Fossati, P., and Rotge, J.Y. (2018). Meta-analysis of central and peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. J. Psychiatry Neurosci. 43, 58–66.PubMedCrossrefGoogle Scholar

  • Ryding, E., Ahnlide, J.A., Lindström, M., Rosen, I., and Träskman-Bendz, L. (2006). Regional brain serotonin and dopamine transporter binding capacity in suicide attempters relate to impulsiveness and mental energy. Psychiatry Res. 48, 195–203.Google Scholar

  • Safont, G., Corripio, I., Escartí, M.J., Portella, M.J., Perez, V., Ferrer, M., Camacho, V., Sauras, R.B., Alonso, A., Grasa, E.M., et al. (2011). Cannabis use and striatal D2 receptor density in untreated first-episode psychosis: an in vivo SPECT study. Schizophr. Res. 129, 169–171.CrossrefGoogle Scholar

  • Saijo, T., Takano, A., Suhara, T., Arakawa, R., Okumura, M., Ichimiya, T., Ito, H., and Okubo, Y. (2010). Electroconvulsive therapy decreases dopamine D2 receptor binding in the anterior cingulate in patients with depression: a controlled study using positron emission tomography with radioligand [11C]FLB 457. J. Clin. Psychiatry 71, 793–799.CrossrefGoogle Scholar

  • Sarchiapone, M., Carli, V., Camardese, G., Cuomo, C., Di Giuda, D., Calcagni, M.L., Focacci, C., and De Risio, S. (2006). Dopamine transporter binding in depressed patients with anhedonia. Psychiatry Res. 147, 243–248.PubMedCrossrefGoogle Scholar

  • Savitz, J., Hodgkinson, C.A., Martin-Soelch, C., Shen, P.H., Szczepanik, J., Nugent, A.C., Herscovitch, P., Grace, A.A., Goldman, D., and Drevets, W.C. (2013). DRD2/ANKK1 Taq1A polymorphism (rs1800497) has opposing effects on D2/3 receptor binding in healthy controls and patients with major depressive disorder. Int. J. Neuropsychopharmacol. 16, 2095–2101.PubMedCrossrefGoogle Scholar

  • Schmitt, G.J., Meisenzahl, E.M., Dresel, S., Tatsch, K., Rossmüller, B., Frodl, T., Preuss, U.W., Hahn, K., and Möller, H.J. (2002). Striatal dopamine D2 receptor binding of risperidone in schizophrenic patients as assessed by 123I-iodobenzamide SPECT: a comparative study with olanzapine. J. Psychopharmacol. 16, 200–206.CrossrefPubMedGoogle Scholar

  • Schmitt, G.J., Meisenzahl, E.M., Frodl, T., La Fougere, C., Hahn, K., Möller, H.J., and Dresel, S. (2005). The striatal dopamine transporter in first-episode, drug-naive schizophrenic patients: evaluation by the new SPECT-ligand[99mTc]TRODAT-1. J. Psychopharmacol. 19, 488–493.CrossrefPubMedGoogle Scholar

  • Schmitt, G.J., Frodl, T., Dresel, S., la Fougere, C., Bottlender, R., Koutsouleris, N., Hahn, K., Möller, H.J., and Meisenzahl, E.M. (2006). Striatal dopamine transporter availability is associated with the productive psychotic state in first episode, drug-naive schizophrenic patients. Eur. Arch. Psychiatry Clin. Neurosci. 256, 115–121.CrossrefGoogle Scholar

  • Schmitt, G.J., la Fougere, C., Dresel, S., Frodl, T., Hahn, K., Möller, H.J., and Meisenzahl, E.M. (2008). Dual-isotope SPECT imaging of striatal dopamine: first episode, drug naïve schizophrenic patients. Schizophr. Res. 101, 133–141.CrossrefPubMedGoogle Scholar

  • Schmitt, G.J., Meisenzahl, E.M., Frodl, T., La Fougere, C., Hahn, K., Möller, H.J., and Dresel, S. (2009). Increase of striatal dopamine transmission in first episode drug-naive schizophrenic patients as demonstrated by [123I]IBZM SPECT. Psychiatry Res. 173, 183–189.PubMedCrossrefGoogle Scholar

  • Schneier, F.R., Liebowitz, M.R., Abi-Dargham, A., Zea-Ponce, Y., Lin, S.H., and Laruelle, M. (2000). Low dopamine D(2) receptor binding potential in social phobia. Am. J. Psychiatry. 157, 457–459.CrossrefPubMedGoogle Scholar

  • Schneier, F.R., Martinez, D., Abi-Dargham, A., Zea-Ponce, Y., Simpson, H.B., Liebowitz, M.R., and Laruelle, M. (2008). Striatal dopamine D2 receptor availability in OCD with and without comorbid social anxiety disorder: preliminary findings. Depress. Anxiety 25, 1–7.PubMedCrossrefGoogle Scholar

  • Schneier, F.R., Abi-Dargham, A., Martinez, D., Slifstein, M., Hwang, D.R., Liebowitz, M.R., and Laruelle, M. (2009). Dopamine transporters, D2 receptors, and dopamine release in generalized social anxiety disorder. Depress. Anxiety 26, 411–418.CrossrefPubMedGoogle Scholar

  • Schwarz, J., Scherer, J., Trenkwalder, C., Mozley, P.D., and Tatsch, K. (1998). Reduced striatal dopaminergic innervation shown by IPT and SPECT in patients under neuroleptic treatment: need for levodopa therapy? Psychiatry Res. 83, 23–28.PubMedCrossrefGoogle Scholar

  • Seeman, P. and Lee, T. (1975). Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 188, 1217–1219.PubMedCrossrefGoogle Scholar

  • Shah, P.J., Ogilvie, A.D., Goodwin, G.M., and Ebmeier, K.P. (1997). Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol. Med. 27, 1247–1256.CrossrefPubMedGoogle Scholar

  • Shan, L., Bao, A.M., and Swaab, D.F. (2017). Changes in histidine decarboxylase, histamine N-methyltransferase and histamine receptors in neuropsychiatric disorders. Handb. Exp. Pharmacol. 241, 259–276.CrossrefPubMedGoogle Scholar

  • Shotbolt, P., Stokes, P.R., Owens, S.F., Toulopoulou, T., Picchioni, M.M., Bose, S.K., Murray, R.M., and Howes, O.D. (2011). Striatal dopamine synthesis capacity in twins discordant for schizophrenia. Psychol. Med. 41, 2331–2338.CrossrefPubMedGoogle Scholar

  • Slifstein, M., van de Giessen, E., Van Snellenberg, J., Thompson, J.L., Narendran, R., Gil, R., Hackett, E., Girgis, R., Ojeil, N., Moore, H., et al. (2015). Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. J. Am. Med. Assoc. Psychiatry 72, 316–324.Google Scholar

  • Smith, M., Wolf, A.P., Brodie, J.D., Arnett, C.D., Barouche, F., Shiue, C.Y., Fowler, J.S., Russell, J.A., MacGregor, R.R., Wolkin, A., et al. (1988). Serial [18F]N-methylspiroperidol PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol. Psychiatry. 23, 653–663.CrossrefPubMedGoogle Scholar

  • Staley, J.K., Sanacora, G., Tamagnan, G., Maciejewski, P.K., Malison, R.T., Berman, R.M., Vythilingam, M., Kugaya, A., Baldwin, R.M., Seibyl, J.P., et al. (2006). Sex differences in diencephalon serotonin transporter availability in major depression. Biol. Psychiatry 59, 40–47.PubMedCrossrefGoogle Scholar

  • Stein, D.J., Westenberg, H.G., and Liebowitz, M.R. (2002). Social anxiety disorder and generalized anxiety disorder: serotonergic and dopaminergic neurocircuitry. J. Clin. Psychiatry 63 (Suppl. 6), 12–19.PubMedGoogle Scholar

  • Suhara, T., Nakayama, K., Inoue, O., Fukuda, H., Shimizu, M., Mori, A., and Tateno, Y. (1992). D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl). 106, 14–18.PubMedCrossrefGoogle Scholar

  • Suhara, T., Okubo, Y., Yasuno, F., Sudo, Y., Inoue, M., Ichimiya, T., Nakashima, Y., Nakayama. K., Tanada, S., Suzuki, K., et al. (2002). Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch. Gen. Psychiatry. 59, 25–30.CrossrefPubMedGoogle Scholar

  • Suridjan, I., Rusjan, P., Addington, J., Wilson, A.A., Houle, S., and Mizrahi, R. (2013). Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J. Psychiatry Neurosci. 38, 98–106.PubMedCrossrefGoogle Scholar

  • Talvik, M., Nordstrom, A.L., Olsson, H., Halldin, C., and Farde, L. (2003). Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. Int. J. Neuropsychopharmacol. 6, 361–370.PubMedCrossrefGoogle Scholar

  • Talvik, M., Nordstrom, A.L., Okubo, Y., Olsson, H., Borg, J., Halldin, C., and Farde, L. (2006). Dopamine D2 receptor binding in drug-naïve patients with schizophrenia examined with raclopride-11C and positron emission tomography. Psychiatry Res. 148, 165–173.CrossrefPubMedGoogle Scholar

  • Tauscher, J., Küfferle, B., Asenbaum, S., Brücke, T., and Kasper, S. (1997). Previous treatment as a confounding variable in studies with novel antipsychotics: two cases of high dopamine-2 receptor occupancy with quetiapine. Psychopharmacology (Berl.) 133, 102–105.CrossrefPubMedGoogle Scholar

  • Tauscher, J., Küfferle, B., Asenbaum, S., Fischer, P., Pezawas, L., Barnas, C., Tauscher-Wisniewski, S., Brücke, T., and Kasper, S. (1999). In vivo 123I IBZM SPECT imaging of striatal dopamine-2 receptor occupancy in schizophrenic patients treated with olanzapine in comparison to clozapine and haloperidol. Psychopharmacology (Berl.) 141, 175–181.CrossrefPubMedGoogle Scholar

  • Taylor, S.F. and Tso, I.F. (2015). GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr. Res. 167, 84–90.PubMedCrossrefGoogle Scholar

  • Thompson, J.L., Rosell, D.R., Slifstein, M., Girgis, R.R., Xu, X., Ehrlich, Y., Kegeles, L.S., Hazlett, E.A., Abi-Dargham, A., and Siever, L.J. (2014). Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [11C]NNC112. Psychopharmacology (Berl). 231, 4231–4240.CrossrefGoogle Scholar

  • Tibbo, P., Silverstone, P.H., McEwan, A.J., Scott, J., Joshua, A., and Golberg, K. (1997). A single photon emission computed tomography scan study of striatal dopamine D2 receptor binding with 123I-epidepride in patients with schizophrenia and controls. J. Psychiatry Neurosci. 22, 39–45.PubMedGoogle Scholar

  • Tiihonen, J., Kuikka, J., Bergstrom, K., Lepola, U., Koponen, H., and Leinonen, E. (1997). Dopamine reuptake site densities in patients with social phobia. Am. J. Psychiatry 154, 239–242.PubMedCrossrefGoogle Scholar

  • Tolmunen, T., Joensuu, M., Saarinen, P.I., Mussalo, H., Ahola, P., Vanninen, R., Kuikka, J., Tiihonen, J., and Lehtonen, J. (2004). Elevated midbrain serotonin transporter availability in mixed mania: a case report. BMC Psychiatry 4, 27.CrossrefGoogle Scholar

  • Tseng, H.H., Chen, K.C., Chen, P.S., Lee, I.H., Chang, W.H., Yao, W.J., Chiu, N.T., and Yang, Y.K. (2017). Dopamine transporter availability in drug-naïve patients with schizophrenia and later psychotic symptoms severity. Schizophr Res. 190, 185–186.PubMedCrossrefGoogle Scholar

  • Tune, L., Barta, P., Wong, D., Powers, R.E., Pearlson, G., Tien, A.Y., and Wagner, H.N. (1996). Striatal dopamine D2 receptor quantification and superior temporal gyrus: volume determination in 14 chronic schizophrenic subjects. Psychiatry Res. 67, 155–158.PubMedCrossrefGoogle Scholar

  • Tuppurainen, H., Kuikka, J., Viinamäki, H., Husso-Saastamoinen, M., Bergström, K., and Tiihonen, J. (2003). Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol. Psychiatry. 8, 453–455.CrossrefPubMedGoogle Scholar

  • Tuppurainen, H., Kuikka, J.T., Laakso, M.P., Viinamäki, H., Husso, M., and Tiihonen, J. (2006). Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 256, 382–387.PubMedCrossrefGoogle Scholar

  • Tseng, H.H., Watts, J.J., Kiang, M., Suridjan, I., Wilson, A.A., Houle, S., Rusjan, P.M., and Mizrahi, R. (2018). Nigral stress-induced dopamine release in clinical high risk and antipsychotic-naïve schizophrenia. Schizophr. Bull. 44, 542–551.PubMedCrossrefGoogle Scholar

  • Uchida, H., Graff-Guerrero, A., Mulsant, B.H., Pollock, B.G., and Mamo, D.C. (2009). Long-term stability of measuring D2 receptors in schizophrenia patients treated with antipsychotics. Schizophr. Res. 109, 130–133.CrossrefPubMedGoogle Scholar

  • Vallabhajosula, S., Hirschowitz, J., and Machac, J. (1997). Effect of haloperidol dose on iodine-123-IBZM brain SPECT imaging in schizophrenic patients. J. Nucl. Med. 38, 203–207.PubMedGoogle Scholar

  • Valli, I., Howes, O., Tyrer, P., McGuire, P., and Grasby, P.M. (2008). Longitudinal PET imaging in a patient with schizophrenia did not show marked changes in dopaminergic function with relapse of psychosis. Am. J. Psychiatry 165, 1613–1614.CrossrefGoogle Scholar

  • Van der Wee, N.J., Stevens, H., Hardeman, J.A., Mandl, R.C., Denys, D.A., van Megen, H.J., Kahn, R.S., and Westenberg, H.M. (2004). Enhanced dopamine transporter density in psychotropic-naive patients with obsessive-compulsive disorder shown by [123I]β-CIT SPECT. Am. J. Psychiatry 161, 2201–2206.PubMedCrossrefGoogle Scholar

  • Van der Wee, N.J., van Veen, J.F., Stevens, H., van Vliet, I.M., van Rijk, P.P., and Westenberg, H.G. (2008). Increased serotonin and dopamine transporter binding in psychotropic medication-naive patients with generalized social anxiety disorder shown by 123I-β-(4-iodophenyl)-tropane SPECT. J. Nucl. Med. 49, 757–763.PubMedCrossrefGoogle Scholar

  • Vernaleken, I., Siessmeier, T., Buchholz, H.G., Härtter, S., Hiemke, C., Stoeter, P., Rösch, F., Bartenstein, P., and Gründer, G. (2004). High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int. J. Neuropsychopharmacol. 7, 421–430.CrossrefPubMedGoogle Scholar

  • Viinamäkki, H., Kuikka, J., Tiihonen, J., and Lehtonen, J. (1998). Change in monoamine transporter density related to clinical recovery: a case-control study. Nord. J. Psychiatry 52, 39–44.CrossrefGoogle Scholar

  • Vulink, N.C., Planting, R.S., Figee, M., Booij, J., and Denys, D. (2016). Reduced striatal dopamine D2/3 receptor availability in body dysmorphic disorder. Eur. Neuropsychopharmacol. 26, 350–356.CrossrefPubMedGoogle Scholar

  • Weinstein, J.J., van de Giessen, E., Rosengard, R.J., Xu, X., Ojeil, N., Brucato, G., Gil, R.B., Kegeles, L.S., Laruelle, M., Slifstein, M., et al. (2018). PET imaging of dopamine-D2 receptor internalization in schizophrenia. Mol. Psychiatry. 23, 1506–1511.CrossrefPubMedGoogle Scholar

  • Willner, P. (1983). Dopamine and depression: a review of recent evidence. I. Empirical studies. Brain Res. 287, 211–224.Google Scholar

  • Wing, Y.K., Lam, S.P., Zhang, J., Leung, E., Ho, C.L., Chen, S., Cheung, M.K., Li, S.X., Chan, J.W., Mok, V., et al. (2015). Reduced striatal dopamine transmission in REM sleep behavior disorder comorbid with depression. Neurology 84, 516–522.CrossrefPubMedGoogle Scholar

  • Wong, D.F., Wagner, H.N. Jr., Tune, L.E., Dannals, R.F., Pearlson, G.D., Links, J.M., Tamminga, C.A., Broussolle, E.P., Ravert, H.T., Wilson, A.A., et al. (1986). Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234, 1558–1563.PubMedCrossrefGoogle Scholar

  • Wong, D.F., Pearlson, G.D., Tune, L.E., Young, L.T., Meltzer, C.C., Dannals, R.F., Ravert, H.T., Reith, J., Kuhar, M.J., and Gjedde, A. (1997). Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J. Cereb. Blood Flow Metab. 17, 331–342.PubMedCrossrefGoogle Scholar

  • Wong, D.F., Brasic, J.R., Singer, H.S., Schretlen, D.J., Kuwabara, H., Zhou, Y., Nandi, A., Maris, M.A., Alexander, M., Ye, W., et al. (2008). Mechanisms of dopaminergic and serotonergic neurotransmission in Tourette syndrome: clues from an in vivo neurochemistry study with PET. Neuropsychopharmacology 33, 1239–1251.CrossrefGoogle Scholar

  • Wulff, S., Pinborg, L.H., Svarer, C., Jensen, L.T., Nielsen, M.O., Allerup, P., Bak, N., Rasmussen, H., Frandsen, E., Rostrup, E., et al. (2015). Striatal D(2/3) binding potential values in drug-naïve first-episode schizophrenia patients correlate with treatment outcome. Schizophr. Bull. 41, 1143–1152.CrossrefPubMedGoogle Scholar

  • Xiberas, X., Martinot, J.L., Mallet, L., Artiges, E., Loc’H, C., Maziere, B., and Paillere-Martinot, M.L. (2001). Extrastriatal and striatal D2 dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br. J. Psychiatry. 179, 503–598.PubMedCrossrefGoogle Scholar

  • Yang, Y.K, Chiu, N.T., Chen, C.C., Chen, M., Yeh, T.L., and Lee, I.H. (2003). Correlation between fine motor activity and striatal dopamine D2 receptor density in patients with schizophrenia and healthy controls. Psychiatry Res. 123, 191–197.PubMedCrossrefGoogle Scholar

  • Yang, Y.K., Yu, L., Yeh, T.L., Chiu, N.T., Chen, P.S., and Lee, I.H. (2004). Associated alterations of striatal dopamine D2/D3 receptor and transporter binding in drug-naive patients with schizophrenia: a dual-isotope SPECT study. Am. J. Psychiatry 161, 1496–1498.PubMedCrossrefGoogle Scholar

  • Yang, Y.K., Yeh, T.L., Yao, W.J., Lee, I.H., Chen, P.S., Chiu, N.T., and Lu, R.B. (2008). Greater availability of dopamine transporters in patients with major depression--a dual-isotope SPECT study. Psychiatry Res. 162, 230–235.PubMedCrossrefGoogle Scholar

  • Yasuno, F., Suhara, T., Okubo, Y., Sudo, Y., Inoue, M., Ichimiya, T., Takano, A., Nakayama, K., Halldin, C., and Farde, L. (2004). Low dopamine D2 receptor binding in subregions of the thalamus in schizophrenia. Am. J. Psychiatry 161, 1016–1022.PubMedCrossrefGoogle Scholar

  • Yatham, L.N., Liddle, P.F., Shiah, I.S., Lam, R.W., Ngan, E., Scarrow, G., Imperial, M., Stoessl, J., Sossi, V., and Ruth, T.J. (2002a). PET study of [18F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am. J. Psychiatry 159, 768–774.CrossrefGoogle Scholar

  • Yatham, L.N., Liddle, P.F., Lam, R.W., Shiah, I.S., Lane, C., Stoessl, A.J., Sossi, V., and Ruth, T.J. (2002b). PET study of the effects of valproate on dopamine D2 receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania. Am. J. Psychiatry. 159, 1718–1723.CrossrefGoogle Scholar

  • Yen, C.H., Shih, M.C., Cheng, C.Y., Ma, K.H., Lu, R.B., and Huang, S.Y. (2016). Incongruent reduction of dopamine transporter availability in different subgroups of alcohol dependence. Medicine (Baltimore). 95, e4048.PubMedCrossrefGoogle Scholar

  • Yoder, K.K., Hutchins, G.D., Morris, E.D., Brashear, A., Wang, C., and Shekhar, A. (2004). Dopamine transporter density in schizophrenic subjects with and without tardive dyskinesia. Schizophr. Res. 71, 371–375.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-04-18

Accepted: 2018-06-30

Published Online: 2018-10-01

Citation Information: Reviews in the Neurosciences, 20180037, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0037.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in