Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Ahead of print

Issues

The role of fibroblast growth factors and their receptors in gliomas: the mutations involved

Vasiliki Georgiou
  • Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University of Cyprus, 6, Diogenis Str, Engomi 2404, Nicosia, Cyprus
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vasiliki GkretsiORCID iD: http://orcid.org/0000-0002-3671-4078
Published Online: 2018-10-31 | DOI: https://doi.org/10.1515/revneuro-2018-0051

Abstract

The central nervous system (CNS) comprises of neurons, which are responsible for impulse transmission, and glial cells, which surround neurons providing protection and nutrition. Glial cells are categorized into astrocytes, oligodendrocytes, microglial cells, and ependymal cells. Tumors forming from glial cells are called gliomas, and they are classified accordingly into astrocytomas, oligodendrogliomas, and ependymomas. Gliomas are characterized by high mortality rates and degree of malignancy, heterogeneity, and resistance to treatment. Among the molecular players implicated in glioma pathogenesis are members of the fibroblast growth factor (FGF) superfamily as well as their receptors (FGFRs). In the present study, we provide a review of the literature on the role of FGFs and FGFRs in glioma pathogenesis. We also demonstrate that FGFs, and particularly FGF1 and FGF2, bear a variety of mutations in gliomas, while FGFRs are also crucially involved. In fact, several studies show that in gliomas, FGFRs bear mutations, mainly in the tyrosine kinase domains. Specifically, it appears that FGFR1-TACC1 and FGFR3-TACC3 fusions are common in these receptors. A better understanding of the mutations and the molecular players involved in glioma formation will benefit the scientific community, leading to the development of more effective and innovative therapeutic approaches.

Keywords: fibroblast growth factor; fibroblast growth factor receptor; gliomas; metastasis; mutations

References

  • Allen, N.J. (2014). Astrocyte regulation of synaptic behavior. Annu. Rev. Cell Dev. Biol. 30, 439–463.Google Scholar

  • Allerstorfer, S., Sonvilla, G., Fischer, H., Spiegl-Kreinecker, S., Gauglhofer, C., Setinek, U., Czech, T., Marosi, C., Buchroithner, J., Pichler, J., et al. (2008). FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities. Oncogene 27, 4180–4190.Google Scholar

  • Annabi, B., Rojas-Sutterlin, S., Laflamme, C., Lachambre, M.P., Rolland, Y., Sartelet, H., and Beliveau, R. (2008). Tumor environment dictates medulloblastoma cancer stem cell expression and invasive phenotype. Mol. Cancer Res. 6, 907–916.Google Scholar

  • Becker, A.P., Scapulatempo-Neto, C., Carloni, A.C., Paulino, A., Sheren, J., Aisner, D.L., Musselwhite, E., Clara, C., Machado, H.R., Oliveira, R.S., et al. (2015). KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. J. Neuropathol. Exp. Neurol. 74, 743–754.Google Scholar

  • Beenken, A. and Mohammadi, M. (2009). The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8, 235–253.Google Scholar

  • Benford, H., Bolborea, M., Pollatzek, E., Lossow, K., Hermans-Borgmeyer, I., Liu, B., Meyerhof, W., Kasparov, S., and Dale, N. (2017). A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia 65, 773–789.Google Scholar

  • Blondel, O., Collin, C., McCarran, W.J., Zhu, S., Zamostiano, R., Gozes, I., Brenneman, D.E., and McKay, R.D. (2000). A glia-derived signal regulating neuronal differentiation. J. Neurosci. 20, 8012–8020.Google Scholar

  • Bouzier-Sore, A.K. and Pellerin, L. (2013). Unraveling the complex metabolic nature of astrocytes. Front. Cell Neurosci. 7, 179.Google Scholar

  • Brooks, A.N., Kilgour, E., and Smith, P.D. (2012). Molecular pathways: fibroblast growth factor signaling: a new therapeutic opportunity in cancer. Clin. Cancer Res. 18, 1855–1862.Google Scholar

  • Chen, K., Ohkubo, Y., Shin, D., Doetschman, T., Sanford, L.P., Li, H., and Vaccarino, F.M. (2008). Decrease in excitatory neurons, astrocytes and proliferating progenitors in the cerebral cortex of mice lacking exon 3 from the Fgf2 gene. BMC Neurosci. 9, 94.Google Scholar

  • Collette, J.C., Choubey, L., and Smith, K.M. (2017). Glial and stem cell expression of murine Fibroblast Growth Factor Receptor 1 in the embryonic and perinatal nervous system. Peer J. 5, e3519.Google Scholar

  • Correa-Gillieron, E.M. and Cavalcante, L.A. (1999). Synaptogenesis in retino-receptive layers of the superior colliculus of the opossum Didelphis marsupialis. Brain Behav. Evol. 54, 71–84.Google Scholar

  • Di Stefano, A.L., Fucci, A., Frattini, V., Labussiere, M., Mokhtari, K., Zoppoli, P., Marie, Y., Bruno, A., Boisselier, B., Giry, M., et al. (2015). Detection, characterization, and inhibition of FGFR-TACC fusions in IDH wild-type glioma. Clin. Cancer Res. 21, 3307–3317.Google Scholar

  • Eisele, S.C. and Reardon, D.A. (2016). Adult brainstem gliomas. Cancer 122, 2799–2809.Google Scholar

  • Farmer, W.T. and Murai, K. (2017). Resolving astrocyte heterogeneity in the CNS. Front. Cell Neurosci. 11, 300.Google Scholar

  • Fortin, D., Rom, E., Sun, H., Yayon, A., and Bansal, R. (2005). Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J. Neurosci. 25, 7470–7479.Google Scholar

  • Frattini, V., Pagnotta, S.M., Tala, Fan, J.J., Russo, M.V., Lee, S.B., Garofano, L., Zhang, J., Shi, P., Lewis, G., et al. (2018). A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature 553, 222–227.Google Scholar

  • Fukai, J., Yokote, H., Yamanaka, R., Arao, T., Nishio, K., and Itakura, T. (2008). EphA4 promotes cell proliferation and migration through a novel EphA4-FGFR1 signaling pathway in the human glioma U251 cell line. Mol. Cancer Ther. 7, 2768–2778.Google Scholar

  • Fuller, C.E., Jones, D.T.W., and Kieran, M.W. (2017). New classification for central nervous system tumors: implications for diagnosis and therapy. Am. Soc. Clin. Oncol. Educ. Book. 37, 753–763.Google Scholar

  • Gallo, L.H., Nelson, K.N., Meyer, A.N., and Donoghue, D.J. (2015). Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev. 26, 425–449.Google Scholar

  • Gergely, F., Karlsson, C., Still, I., Cowell, J., Kilmartin, J., and Raff, J.W. (2000). The TACC domain identifies a family of centrosomal proteins that can interact with microtubules. Proc. Natl. Acad. Sci. USA 97, 14352–14357.Google Scholar

  • Gouaze-Andersson, V., Delmas, C., Taurand, M., Martinez-Gala, J., Evrard, S., Mazoyer, S., Toulas, C., and Cohen-Jonathan-Moyal, E. (2016). FGFR1 induces glioblastoma radioresistance through the PLCgamma/Hif1alpha pathway. Cancer Res. 76, 3036–3044.Google Scholar

  • Granberg, K.J., Annala, M., Lehtinen, B., Kesseli, J., Haapasalo, J., Ruusuvuori, P., Yli-Harja, O., Visakorpi, T., Haapasalo, H., Nykter, M., et al. (2017). Strong FGFR3 staining is a marker for FGFR3 fusions in diffuse gliomas. Neuro. Oncol. 19, 1206–1216.Google Scholar

  • Grant, R., Kolb, L., and Moliterno, J. (2014). Molecular and genetic pathways in gliomas: the future of personalized therapeutics. CNS Oncol. 3, 123–136.Google Scholar

  • Gupta, A., Shaller, N., and McFadden, K.A. (2017). Pediatric thalamic gliomas: an updated review. Arch. Pathol. Lab. Med. 141, 1316–1323.Google Scholar

  • Haley, E.M. and Kim, Y. (2014). The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett. 346, 1–5.Google Scholar

  • Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.Google Scholar

  • Jakel, S. and Dimou, L. (2017). Glial cells and their function in the adult brain: a journey through the history of their ablation. Front. Cell Neurosci. 11, 24.Google Scholar

  • Jebelli, J., Su, W., Hopkins, S., Pocock, J., and Garden, G.A. (2015). Glia: guardians, gluttons, or guides for the maintenance of neuronal connectivity? Ann. NY Acad. Sci. 1351, 1–10.Google Scholar

  • Jiang, H., Cui, Y., Wang, J., and Lin, S. (2017). Impact of epidemiological characteristics of supratentorial gliomas in adults brought about by the 2016 world health organization classification of tumors of the central nervous system. Oncotarget 8, 20354–20361.Google Scholar

  • Kang, W. and Hebert, J.M. (2015). FGF signaling is necessary for neurogenesis in young mice and sufficient to reverse its decline in old mice. J. Neurosci. 35, 10217–10223.Google Scholar

  • Khalid, A. and Javaid, M.A. (2016). Fibroblast growth factors and their emerging cancer-related aspects. J. Cancer Sci. Ther. 8, 190–205.Google Scholar

  • Kohno, D., Koike, M., Ninomiya, Y., Kojima, I., Kitamura, T., and Yada, T. (2016). Sweet taste receptor serves to activate glucose- and leptin-responsive neurons in the hypothalamic arcuate nucleus and participates in glucose responsiveness. Front. Neurosci. 10, 502.Google Scholar

  • Korc, M. and Friesel, R.E. (2009). The role of fibroblast growth factors in tumor growth. Curr. Cancer Drug Targets 9, 639–651.Google Scholar

  • Kuroda, M., Muramatsu, R., Maedera, N., Koyama, Y., Hamaguchi, M., Fujimura, H., Yoshida, M., Konishi, M., Itoh, N., Mochizuki, H., et al. (2017). Peripherally derived FGF21 promotes remyelination in the central nervous system. J. Clin. Invest. 127, 3496–3509.Google Scholar

  • Lehtinen, B., Raita, A., Kesseli, J., Annala, M., Nordfors, K., Yli-Harja, O., Zhang, W., Visakorpi, T., Nykter, M., Haapasalo, H., et al. (2017). Clinical association analysis of ependymomas and pilocytic astrocytomas reveals elevated FGFR3 and FGFR1 expression in aggressive ependymomas. BMC Cancer 17, 310.Google Scholar

  • Ludwig, P. and Bhimji, S.S. (2017). Histology, Glial Cells, StatPearls Publishing LLC.Google Scholar

  • Mei, S.C. and Wu, R.T. (2008). The G-rich promoter and G-rich coding sequence of basic fibroblast growth factor are the targets of thalidomide in glioma. Mol Cancer Ther. 7, 2405–2414.Google Scholar

  • Morrison, R.S., Gross, J.L., Herblin, W.F., Reilly, T.M., LaSala, P.A., Alterman, R.L., Moskal, J.R., Kornblith, P.L., and Dexter, D.L. (1990). Basic fibroblast growth factor-like activity and receptors are expressed in a human glioma cell line. Cancer Res. 50, 2524–2529.Google Scholar

  • Nair, A.G., Pathak, R.S., Iyer, V.R., and Gandhi, R.A. (2014). Optic nerve glioma: an update. Int. Ophthalmol. 34, 999–1005.Google Scholar

  • Nelson, K.N., Meyer, A.N., Siari, A., Campos, A.R., Motamedchaboki, K., and Donoghue, D.J. (2016). Oncogenic gene fusion FGFR3-TACC3 is regulated by tyrosine phosphorylation. Mol. Cancer Res. 14, 458–469.Google Scholar

  • Nortley, R. and Attwell, D. (2017). Control of brain energy supply by astrocytes. Curr. Opin. Neurobiol. 47, 80–85.Google Scholar

  • Ohkubo, Y., Uchida, A.O., Shin, D., Partanen, J., and Vaccarino, F.M. (2004). Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J. Neurosci. 24, 6057–6069.Google Scholar

  • Ornitz, D.M. and Itoh, N. (2001). Fibroblast growth factors. Genome Biol. 2, REVIEWS3005.Google Scholar

  • Ornitz, D.M. and Itoh, N. (2015). The fibroblast growth factor signaling pathway. Wiley Interdiscip. Rev. Dev. Biol. 4, 215–266.Google Scholar

  • Park, S.H., Won, J., Kim, S.I., Lee, Y., Park, C.K., Kim, S.K., and Choi, S.H. (2017). Molecular testing of brain tumor. J. Pathol. Transl. Med. 51, 205–223.Google Scholar

  • Parker, B.C., Annala, M.J., Cogdell, D.E., Granberg, K.J., Sun, Y., Ji, P., Li, X., Gumin, J., Zheng, H., Hu, L., et al. (2013). The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J. Clin. Invest. 123, 855–865.Google Scholar

  • Peña-Ortiz, M., Germán-Castelán, L., and González-Arenas, A. (2016). Growth factors and kinases in glioblastoma growth. Adv. Mod. Oncol. Res. 2, 248–260.Google Scholar

  • Prelaj, A., Rebuzzi, S.E., Caffarena, G., Giron Berrios, J.R., Pecorari, S., Fusto, C., Caporlingua, A., Caporlingua, F., Di Palma, A., Magliocca, F.M., et al. (2018). Therapeutic approach in glioblastoma multiforme with primitive neuroectodermal tumor components: case report and review of the literature. Oncol. Lett. 15, 6641–6647.Google Scholar

  • Qaddoumi, I., Orisme, W., Wen, J., Santiago, T., Gupta, K., Dalton, J.D., Tang, B., Haupfear, K., Punchihewa, C., Easton, J., et al. (2016). Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol. 131, 833–845.Google Scholar

  • Rash, B.G., Lim, H.D., Breunig, J.J., and Vaccarino, F.M. (2011). FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis. J. Neurosci. 31, 15604–15617.Google Scholar

  • Reni, M., Mazza, E., Zanon, S., Gatta, G., and Vecht, C.J. (2017). Central nervous system gliomas. Crit. Rev. Oncol. Hematol. 113, 213–234.Google Scholar

  • Rodriguez, F.J., Vizcaino, M.A., and Lin, M.T. (2016). Recent advances on the molecular pathology of glial neoplasms in children and adults. J. Mol. Diagn. 18, 620–634.Google Scholar

  • Singh, D., Chan, J.M., Zoppoli, P., Niola, F., Sullivan, R., Castano, A., Liu, E.M., Reichel, J., Porrati, P., Pellegatta, S., et al. (2012). Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337, 1231–1235.Google Scholar

  • Smith, S.J., Diksin, M., Chhaya, S., Sairam, S., Estevez-Cebrero, M.A., and Rahman, R. (2017). The invasive region of glioblastoma defined by 5ALA guided surgery has an altered cancer stem cell marker profile compared to central tumour. Int. J. Mol. Sci. 18, pii: E2452.Google Scholar

  • Sobol-Milejska, G., Mizia-Malarz, A., Musiol, K., Chudek, J., Bozentowicz-Wikarek, M., Wos, H., and Mandera, M. (2017). Serum levels of vascular endothelial growth factor and basic fibroblast growth factor in children with brain tumors. Adv. Clin. Exp. Med. 26, 571–575.Google Scholar

  • Tan, S.K., Jermakowicz, A., Mookhtiar, A.K., Nemeroff, C.B., Schurer, S.C., and Ayad, N.G. (2018). Drug repositioning in glioblastoma: a pathway perspective. Front. Pharmacol. 9, 218.Google Scholar

  • Tsai, H.H., Li, H., Fuentealba, L.C., Molofsky, A.V., Taveira-Marques, R., Zhuang, H., Tenney, A., Murnen, A.T., Fancy, S.P., Merkle, F., et al. (2012). Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358–362.Google Scholar

  • Ullian, E.M., Sapperstein, S.K., Christopherson, K.S., and Barres, B.A. (2001). Control of synapse number by glia. Science 291, 657–661.Google Scholar

  • Uwechue, N.M., Marx, M.C., Chevy, Q., and Billups, B. (2012). Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J. Physiol. 590, 2317–2331.Google Scholar

  • Vaccarino, F.M., Ganat, Y., Zhang, Y., and Zheng, W. (2001). Stem cells in neurodevelopment and plasticity. Neuropsychopharmacology 25, 805–815.Google Scholar

  • Wang, F., Yang, L., Shi, L., Li, Q., Zhang, G., Wu, J., Zheng, J., and Jiao, B. (2015). Nuclear translocation of fibroblast growth factor-2 (FGF2) is regulated by Karyopherin-beta2 and Ran GTPase in human glioblastoma cells. Oncotarget 6, 21468–21478.Google Scholar

  • Wang, Z., Zhang, C., Sun, L., Liang, J., Liu, X., Li, G., Yao, K., Zhang, W., and Jiang, T. (2016). FGFR3, as a receptor tyrosine kinase, is associated with differentiated biological functions and improved survival of glioma patients. Oncotarget 7, 84587–84593.Google Scholar

  • Weinhard, L., di Bartolomei, G., Bolasco, G., Machado, P., Schieber, N.L., Neniskyte, U., Exiga, M., Vadisiute, A., Raggioli, A., Schertel, A., et al. (2018). Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 9, 1228.Google Scholar

  • Welcome, M.O. and Mastorakis, N.E. (2018). Emerging concepts in brain glucose metabolic functions: from glucose sensing to how the sweet taste of glucose regulates its own metabolism in astrocytes and neurons. Neuromolecular Med. 20, 281–300.Google Scholar

  • Weller, M., van den Bent, M., Tonn, J.C., Stupp, R., Preusser, M., Cohen-Jonathan-Moyal, E., Henriksson, R., Le Rhun, E., Balana, C., Chinot, O., et al. (2017). European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol. 18, e315–e329.Google Scholar

  • Wu, Y., Dissing-Olesen, L., MacVicar, B.A., and Stevens, B. (2015). Microglia: dynamic mediators of synapse development and plasticity. Trends Immunol. 36, 605–613.Google Scholar

  • Xie, J., Ma, Y.H., Wan, M., Zhan, R.Y., and Zhou, Y.Q. (2014). Expression of dedifferentiation markers and multilineage markers in U251 glioblastoma cells with silenced EGFR and FGFR genes. Oncol. Lett. 7, 131–136.Google Scholar

  • Xin, W. and Bonci, A. (2018). Functional astrocyte heterogeneity and implications for their role in shaping neurotransmission. Front. Cell Neurosci. 12, 141.Google Scholar

  • Yamada, S., Yamaguchi, F., Brown, R., Berger, M.S., and Morrison, R.S. (1999). Suppression of glioblastoma cell growth following antisense oligonucleotide-mediated inhibition of fibroblast growth factor receptor expression. Glia 28, 66–76.Google Scholar

  • Yang, X., Qiao, D., Meyer, K., and Friedl, A. (2009). Signal transducers and activators of transcription mediate fibroblast growth factor-induced vascular endothelial morphogenesis. Cancer Res. 69, 1668–1677.Google Scholar

  • Yun, Y.R., Won, J.E., Jeon, E., Lee, S., Kang, W., Jo, H., Jang, J.H., Shin, U.S., and Kim, H.W. (2010). Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 218142.Google Scholar

  • Zhang, X., Peng, L., Liang, Z., Kou, Z., Chen, Y., Shi, G., Li, X., Liang, Y., Wang, F., and Shi, Y. (2018). Effects of aptamer to U87-EGFRvIII cells on the proliferation, radiosensitivity, and radiotherapy of glioblastoma cells. Mol. Ther. Nucleic Acids 10, 438–449.Google Scholar

  • Zhou, Y.X., Flint, N.C., Murtie, J.C., Le, T.Q., and Armstrong, R.C. (2006). Retroviral lineage analysis of fibroblast growth factor receptor signaling in FGF2 inhibition of oligodendrocyte progenitor differentiation. Glia 54, 578–590.Google Scholar

About the article

Vasiliki Georgiou

Vasiliki Georgiou is a senior-year student at the Biological Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus.

Vasiliki Gkretsi

Vasiliki Gkretsi is currently an assistant professor at the Biomedical Sciences Program of the Department of Life Sciences at European University Cyprus. She received her Diploma in Biology from the National and Kappodistrean University of Athens, Greece, in 2001 and her PhD from the University of Pittsburgh Medical School, Pittsburgh, USA, in 2006. She then worked as post-doctoral fellow at the BSRC Al. Fleming in Athens, Greece, and between 2009 and 2014, she served as a research assistant professor at the Centre for Research and Technology-Hellas (CE.R.T.H). She is the recipient of numerous awards including the prestigious European Association for the Study of the Liver (EASL) Sheila Sherlock award 2012, which was renewed in 2013. Her research focuses on the study of the role of extracellular matrix, cell adhesion, and the cytoskeleton in cancer progression and metastasis. Her work has been published in 33 peer-reviewed international scientific journals and has received over 500 citations (Scopus, h index=14).


Received: 2018-05-25

Accepted: 2018-08-10

Published Online: 2018-10-31


Citation Information: Reviews in the Neurosciences, 20180051, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0051.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in