Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Ahead of print

Issues

Determining the early corticospinal-motoneuronal responses to strength training: a systematic review and meta-analysis

Joel Mason
  • Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Victoria 3199, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ashlyn K. Frazer
  • Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Victoria 3199, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alan J. Pearce
  • Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Melbourne, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alicia M. Goodwill / Glyn Howatson
  • Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
  • Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shapour Jaberzadeh
  • Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Victoria 3199, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dawson J. Kidgell
  • Corresponding author
  • Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Frankston, Victoria 3199, Australia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-12-25 | DOI: https://doi.org/10.1515/revneuro-2018-0054

Abstract

Several studies have used transcranial magnetic stimulation to probe the corticospinal-motoneuronal responses to a single session of strength training; however, the findings are inconsistent. This systematic review and meta-analysis examined whether a single bout of strength training affects the excitability and inhibition of intracortical circuits of the primary motor cortex (M1) and the corticospinal-motoneuronal pathway. A systematic review was completed, tracking studies between January 1990 and May 2018. The methodological quality of studies was determined using the Downs and Black quality index. Data were synthesised and interpreted from meta-analysis. Nine studies (n=107) investigating the acute corticospinal-motoneuronal responses to strength training met the inclusion criteria. Meta-analyses detected that after strength training compared to control, corticospinal excitability [standardised mean difference (SMD), 1.26; 95% confidence interval (CI), 0.88, 1.63; p<0.0001] and intracortical facilitation (ICF) (SMD, 1.60; 95% CI, 0.18, 3.02; p=0.003) were increased. The duration of the corticospinal silent period was reduced (SMD, −17.57; 95% CI, −21.12, −14.01; p=0.00001), but strength training had no effect on the excitability of the intracortical inhibitory circuits [short-interval intracortical inhibition (SICI) SMD, 1.01; 95% CI, −1.67, 3.69; p=0.46; long-interval intracortical inhibition (LICI) SMD, 0.50; 95% CI, −1.13, 2.13; p=0.55]. Strength training increased the excitability of corticospinal axons (SMD, 4.47; 95% CI, 3.45, 5.49; p<0.0001). This systematic review and meta-analyses revealed that the acute neural changes to strength training involve subtle changes along the entire neuroaxis from the M1 to the spinal cord. These findings suggest that strength training is a clinically useful tool to modulate intracortical circuits involved in motor control.

Keywords: corticospinal; cortical facilitation; cortical inhibition; motor evoked potential; strength training

References

  • Borenstein, M., Hedges, V., and Larry, P.T. (2010). A basic introduction to fixed-effect and random effects models for meta-analysis. Res. Synth. Meth. 1, 97–111.CrossrefGoogle Scholar

  • Brandner, C.R., Warmington, S.A., and Kidgell, D.J. (2015). Corticomotor excitability is increased following an acute bout of blood flow restriction resistance exercise. Fron. Hum. Neurosci. 9, 652.Google Scholar

  • Bunday, K.L. and Monica, P.A. (2012). Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr. Biol. 22, 2355–2361.PubMedCrossrefGoogle Scholar

  • Butefisch, C.M., Davis, B.C., Wise, S.P., Sawaki, L., Kopylev, L., Classen, J., and Cohen, L.G. (2000). Mechanisms of use-dependent plasticity in the human motor cortex. P. Natl. Acad. Sci. USA 97, 3661–3665.CrossrefGoogle Scholar

  • Carroll, T.J., Riek, S., and Carson, R.G. (2001). Corticospinal responses to motor training revealed by transcranial magnetic stimulation. Exerc. Sport Sci. Rev. 29, 54–59.PubMedGoogle Scholar

  • Carroll, T.J., Riek, S., and Carson, R.G. (2002). The sites of neural adaptation induced by resistance training in humans. J. Physiol. 544, 641–652.PubMedCrossrefGoogle Scholar

  • Carroll, T.J., Lee, M., Hsu, M., and Sayde, J. (2008). Unilateral practice of a ballistic movement causes bilateral increases in performance and corticospinal excitability. J. Appl. Physiol. 104, 1656–1664.CrossrefPubMedGoogle Scholar

  • Chen, R., Lozano, A.M., and Ashby, P. (1999). Mechanism of the silent period following transcranial magnetic stimulation. Evidence from epidural recordings. Exp. Br. Res. 128, 539–542.Google Scholar

  • Christie, A. and Kamen, G. (2013). Cortical inhibition is reduced following short-term training in young and older adults. AGE. 36, 749–758.Google Scholar

  • Cirillo, J., Todd, G., and Semmler, J.G. (2011). Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Euro. J. Neurosci. 34, 1847–1856.CrossrefGoogle Scholar

  • Clark, B.C., Issac, L.A., Lane, J.L., Damron, V., and Hoffman, R.A. (2008). Neuromuscular plasticity during and following 3 wk of human forearm cast immobilization. J. Appl. Physiol. 105, 868–878.CrossrefPubMedGoogle Scholar

  • Clark, B.C., Taylor, J.L., Hoffman, R.L., Dearth, D.J., and Thomas, S.J. (2010). Cast immobilization increases long-interval intracortical inhibition. Muscle Nerve. 42, 363–372.CrossrefPubMedGoogle Scholar

  • Clark, B.C., Mahato, N.K., Nakazawa, M., Law, T.D., and Thomas, J.S. (2014). The power of the mind: the cortex as a critical determinant of muscle strength/weakness. J. Neurophysiol. 112, 3219–3226.PubMedCrossrefGoogle Scholar

  • Coco, M., Alagona, G., Rapisarda, G., Costanzo, E., Calogero, R.A., and Perciavalle, V. (2010). Elevated blood lactate is associated with increased motor cortex excitability. Somatosens Mot. Res. 27, 1–8.PubMedCrossrefGoogle Scholar

  • Cohen, J. (1988). Statistical Power for the Behavioral Sciences (Hillsdale: Lawrence Elbraum Associates).Google Scholar

  • Coombs, T.A., Frazer, A.K., Horvath, D.M., Pearce, A.J., Howatson, G., and Kidgell, D.J. (2016). Cross-education of wrist extensor strength is not influenced by non-dominant training in right-handers. Euro. Apply. Physiol. 116, 1757–1769.CrossrefGoogle Scholar

  • Dayan, E. and Cohen, L.G. (2011). Neuroplasticity subserving motor skill learning. Neuron 72, 443–454.PubMedCrossrefGoogle Scholar

  • Di Lazzaro, V. and Ziemann, U. (2013). The contribution of transcranial magnetic stimulation in the functional evaluation of microcircuits in human motor cortex. Front. Neural Circuits 7, 18.PubMedGoogle Scholar

  • Di Lazzaro, V., Restuccia, D., Oliviero, A., Profice, P., Ferrara, L., Insola, A., Mazzone, P., Tonali, P., and Rothwell, J.C. (1998). Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J. Physiol. 508, 625–633.CrossrefPubMedGoogle Scholar

  • Downs, S.H. and Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epi. Comm. Health 52, 377.CrossrefGoogle Scholar

  • Enoka, R.M. (1988). Muscle strength and its development. New perspectives. Sports Med. 6, 146–168.Google Scholar

  • Frazer, A.K., Williams, J., Spittle, M., and Kidgell, D.J. (2017). Cross-education of muscular strength is facilitated by homeostatic plasticity. Euro. Appl. Physiol. 117, 665–677.CrossrefGoogle Scholar

  • Goodall, S., Howatson, G., Thomas, K. (2018). Modulation of specific inhibitory networks in fatigued locomotor muscles of healthy males. Exp. Br. Res. 236, 463–473.CrossrefGoogle Scholar

  • Griffin, L. and Cafarelli, E. (2007). Transcranial magnetic stimulation during resistance training of the tibialis anterior muscle. J. Electromyogr. Kinesiol. 17, 446–452.PubMedCrossrefGoogle Scholar

  • Hendy, A.M. and Kidgell, D.J. (2013). Anodal tDCS applied during strength training enhances motor cortical plasticity. Med. Sci. Sport Exerc. 45, 1721–1729.CrossrefGoogle Scholar

  • Hendy, A.M. and Kidgell, D.J. (2014). Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Exp. Br. Res. 232, 3243–3252.CrossrefGoogle Scholar

  • Higgins, J.P., Altman, D.G., Gøtzsche, P.C., Jüni, P., Moher, D., Oxman, A.D., Savovic, J., Schulz, K.F., Weeks, L., Sterne, J.A., et al. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Brit. Med. J. 343, d5928.CrossrefGoogle Scholar

  • Hortobágyi, T., Richardson, S.P., Lomarev, M., Shamim, E., Meunier, S., Russman, H., Dang, N., and Hallett, M. (2009). Chronic low-frequency rTMS of primary motor cortex diminishes exercise training-induced gains in maximal voluntary force in humans. J. Appl. Physiol. 106, 403–411.PubMedCrossrefGoogle Scholar

  • Joseph, A. (2011). Plot Digitizer 2.5.1. Available from http://plotdigitizer.sourceforge.net/. Accessed date: 7, 2018.

  • Katiuscia, S., Franco, C., Federico, D.A., Davide, M., Sergio, D., and Giuliano, G. (2009). Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Brain Res. 1297, 124–134.CrossrefPubMedGoogle Scholar

  • Kidgell, D.J., Stokes, M.A., Castricum, T.J., and Pearce, A.J. (2010). Neurophysiological responses after short-term strength training of the biceps brachii muscle. J. Strength Cond. Res. 24, 3123–3132.CrossrefPubMedGoogle Scholar

  • Kidgell, D.J., Bonanno, D.R., Frazer, A.K., Howatson, G., and Pearce, A.J. (2017). Corticospinal responses following strength training: a systematic review and meta-analysis. Euro. J. Neurosci. 46, 2648–2661.CrossrefGoogle Scholar

  • Kleim, J.A., Barbay, S., Cooper, N.R., Hogg, T.M., Reidel, C.N., Remple, M.S., and Nudo, R.J. (2002). Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol. Learn Mem. 77, 63–77.PubMedCrossrefGoogle Scholar

  • Kujirai, T., Caramia, M.D., Rothwell, J.C., Day, B.L., Thompson, P.D., Ferbert, A., Wroe, S., Asselman, P., and Marsden, C.D. (1993). Corticocortical inhibition in human motor cortex. J. Physiol. 471, 501–519.CrossrefPubMedGoogle Scholar

  • Latella, C., Kidgell, D.J., and Pearce, A.J. (2012). Reduction in corticospinal inhibition in the trained and untrained limb following unilateral leg strength training. Eur. J. Appl. Physiol. 112, 3097–3107.PubMedCrossrefGoogle Scholar

  • Latella, C., Hendy, A.M., Pearce, A.J., Vanderwesthuizen, D., and Teo, W.-P. (2016). The time-course of acute changes in corticospinal excitability, intra-cortical inhibition and facilitation following a single-session heavy strength training of the biceps brachii. Front. Hum. Neurosci. 10, 607. doi:10.1007/s00421-017-3709-7.PubMedGoogle Scholar

  • Latella, C., Teo, W.-P., Harris, D., Major, B., VanderWesthuizen, D., and Hendy, A.M. (2017). Effects of acute resistance training modality on corticospinal excitability, intra-cortical and neuromuscular responses. Eur. J. Appl. Physiol. 117, 2211–2224.PubMedCrossrefGoogle Scholar

  • Latella, C., Hendy, A.M., Vanderwesthuizen, D., and Teo, W.P. (2018). The modulation of corticospinal excitability and inhibition following acute resistance exercise in males and females. Eur. J. Sport Sci. 18, 984–993.PubMedCrossrefGoogle Scholar

  • Legrand, D., Vaes, B., Matheï, C., Adriaensen, W., Van Pottelbergh, G., and Degryse, J.M. (2014). Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J. Am. Geri. Soc. 62, 1030–1038.CrossrefGoogle Scholar

  • Leung, M., Rantalainen, T., Teo, W.P., and Kidgell, D.J. (2015). Motor cortex excitability is not differentially modulated following skill and strength training. Neuroscience 305, 99–108.PubMedCrossrefGoogle Scholar

  • Leung, M., Rantalainen, T., Teo, W.P., and Kidgell, D.J. (2017). The corticospinal responses of metronome-paced, but not self-paced strength training are similar to motor skill training. Eur. J. Appl. Physiol. 117, 2479–2492.PubMedCrossrefGoogle Scholar

  • Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C., Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., and Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med. 6, e1000100.PubMedCrossrefGoogle Scholar

  • Manca, A., Ginatempo, F., Cabboi, M.P., Mercante, B., Ortu, E., Dragone, D., De Natale, E.R., Dvir, Z., Rothwell, J.C., and Deriu, F. (2016). No evidence of neural adaptations following chronic unilateral isometric training of the intrinsic muscles of the hand: a randomized controlled study. Eur. J. Appl. Physiol. 116, 1993–2005.CrossrefPubMedGoogle Scholar

  • Manca, A., Hortobagyi, T., Rothwell, J.C., and Deriu, F. (2018). Neurophysiological adaptations in theuntrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J. Appl. Physiol. 124, 1502–1518.PubMedCrossrefGoogle Scholar

  • Mason, J., Frazer, A.K., Horvath, D.M., Pearce, A.J., Avela, J., Howatson, G., and Kidgell, D.J. (2017). Adaptations in corticospinal excitability and inhibition are not spatially confined to the agonist muscle following strength training. Eur. J. Appl. Physio. 117, 1359–1371.CrossrefGoogle Scholar

  • Mazzocchio, R., Rothwell, J.C., Day, B.L., and Thompson, P.D. (1994). Effect of tonic voluntary activity on the excitability of human motor cortex. J. Physiol. 472, 261–267.Google Scholar

  • McDonnell, M., Orekhov, Y., and Ziemann, U. (2006). The role of GABAB receptors in intracortical inhibition in the human motor cortex. Exp. Br. Res. 173, 86–93.CrossrefGoogle Scholar

  • Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G. (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Internal Medicine 151, 264–269.CrossrefGoogle Scholar

  • Moreland, J.D., Richardson, A.J., Goldsmith, C.H., and Clase, C.M. (2004). Muscle weakness and falls in older adults: a systematic review and meta-analysis. J. Am. Geris. Soc. 52, 1121–1129.CrossrefGoogle Scholar

  • Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., Boroojerdi, B., Poewe, W., and Hallett, M. (2002). Early consolidation in human primary motor cortex. Nature 415, 640–644.CrossrefPubMedGoogle Scholar

  • Nielsen, J. and Petersen, N. (1995). Changes in the effect of magnetic brain stimulation accompanying voluntary dynamic contraction in man. J. Physiol. 484, 777–789.CrossrefPubMedGoogle Scholar

  • Nuzzo, J.L., Barry, B.K., Gandevia, S.C., and Taylor, J.L. (2016). Acute strength training increases responses to stimulation of corticospinal axons. Med. Sci. Sports Exerc. 48, 139–150.PubMedCrossrefGoogle Scholar

  • Rogasch, N.C., Daskalakis, Z.J., and Fitzgerald, P.B. (2014). Cortical inhibition, excitation, and connectivity in schizophrenia: a review of insights from transcranial magnetic stimulation. Schizo. Bull. 40, 685–696.CrossrefGoogle Scholar

  • Ruotsalainen, I., Ahtiainen, J., Kidgell, D.J., and Avela, J. (2014). Changes in corticospinal excitability during an acute bout of resistance exercise in the elbow flexors. Eur. J. Appl. Physiol. 114, 1545–1553.PubMedCrossrefGoogle Scholar

  • Sanes, J.N. and Donoghue, J.P. (2000). Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23, 393–415.PubMedCrossrefGoogle Scholar

  • Selvanayagam, V.S., Riek, S., and Carroll, T.J. (2011). Early neural responses to strength training. J. Appl. Physiol. 111, 367–375.PubMedCrossrefGoogle Scholar

  • Spink, M.J., Fotoohabadi, M.R., Wee, E., Hill, K.D., Lord, S.R., and Menz, H.B. (2011). Foot and ankle strength, range of motion, posture, and deformity are associated with balance and functional ability in older adults. Arch. Phys. Med. Rehabil. 92, 68–75.PubMedCrossrefGoogle Scholar

  • Suzuki, T., Bean, J.F., and Roger, F.A. (2002). Muscle power of the ankle flexors predicts functional performance in community-dwelling older women. J. Am. Geri. Soc. 49, 1161–1167.Google Scholar

  • Taylor, J.L. (2006). Stimulation at the cervicomedullary junction in human subjects. J. Electromyogr. Kinesiol. 16, 215–223.PubMedCrossrefGoogle Scholar

  • Taylor, J.L. and Gandevia, S.C. (2004). Noninvasive stimulation of the human corticospinal tract. J. Appl. Physiol. 96, 1496–1503.CrossrefPubMedGoogle Scholar

  • Taylor, J.L. and Martin, P.G. (2009). Voluntary motor output is altered by spike-yiming-dependent changes in the human corticospinal pathway. J. Neurosci. 29, 11708.PubMedCrossrefGoogle Scholar

  • Ugawa, Y., Terao, Y., Hanajima, R., Sakai, K., and Kanazawa, I. (1995). Facilitatory effect of tonic voluntary contraction on responses to motor cortex stimulation. Electroenceph. Clin. Neurophysiol. 97, 451–454.CrossrefGoogle Scholar

  • Weier, A.T., Pearce, A.J., and Kidgell, D.J. (2012). Strength training reduces intracortical inhibition. Acta Physiol. 206, 109–119.CrossrefGoogle Scholar

  • Wilson, S.A., Lockwood, R.J., Thickbroom, G.W., and Mastaglia, F.L. (1993). The muscle silent period following transcranial magnetic cortical stimulation. J. Neurol. Sci. 114, 216–222.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Dr. Dawson J. Kidgell, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, PO Box 527, Frankston, Victoria 3199, Australia


Received: 2018-05-29

Accepted: 2018-08-30

Published Online: 2018-12-25


Citation Information: Reviews in the Neurosciences, 20180054, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0054.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in