Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Ahead of print


The role of neurovascular unit damage in the occurrence and development of Alzheimer’s disease

Xin Liu
  • Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410000, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ DeRen Hou
  • Corresponding author
  • Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410000, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ FangBo Lin
  • Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410000, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jing Luo
  • Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410000, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ JingWen Xie
  • Department of Neurology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha 410000, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yan Wang / Yi Tian
Published Online: 2018-12-10 | DOI: https://doi.org/10.1515/revneuro-2018-0056


Alzheimer’s disease (AD) is a neurodegenerative disease with progressive cognitive impairment. It is the most common type of senile dementia, accounting for 65%–70% of senile dementia [Alzheimer’s Association (2016). 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 12, 459–509]. At present, the pathogenesis of AD is still unclear. It is considered that β-amyloid deposition, abnormal phosphorylation of tau protein, and neurofibrillary tangles are the basic pathological changes of AD. However, the role of neurovascular unit damage in the pathogenesis of AD has been attracting more and more attention in recent years. The composition of neurovascular unit and the role of neurovascular unit damage in the occurrence and development of AD were reviewed in this paper.

Keywords: Alzheimer’s disease (AD); blood–brain barrier (BBB); neurovascular unit


  • Alzheimer’s Association. (2016). 2016 Alzheimer’s disease facts and figures. Alzheimers Dement. 12, 459–509.PubMedGoogle Scholar

  • Bading, J.R., Yamada, S., Mackic, J.B., Kirkman, L., Miller, C., Calero, M., Ghiso, J., Frangione, B., and Zlokovic, B.V. (2002). Brain clearance of Alzheimer’s amyloid-β40 in the squirrel monkey: a SPECT study in a primate model of cerebral amyloid angiopathy. Drug Target 10, 359–368.CrossrefGoogle Scholar

  • Barros, L.F., San Martín, A., Ruminot, I., Sandoval, P.Y., Fernández-Moncada, I., Baeza-Lehnert, F., Arce-Molina, R., Contreras-Baeza, Y., Cortés-Molina, F., Galaz, A., et al. (2017). Near-critical GLUT1 and neurodegeneration. J. Neurosci. Res. 95, 2267–2274.CrossrefPubMedGoogle Scholar

  • Bell, R.D. and Zlokovic, B.V. (2009). Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol. 118, 103–113.CrossrefPubMedGoogle Scholar

  • Blusztajn, J.K. and Berse, B. (2000). The cholinergic neuronal phenotype in Alzheimer’s disease. Metab. Brain Dis. 15, 45–64.CrossrefPubMedGoogle Scholar

  • Cai, Z., Liu, N., Wang, C., Qin, B., Zhou, Y., Xiao, M., Chang, L., Yan, L.J., and Zhao, B. (2016). Role of RAGE in Alzheimer’s disease. Cell Mol. Neurobiol. 36, 483–495.CrossrefPubMedGoogle Scholar

  • Chen, W., Chan, Y., Wan, W., Li, Y., and Zhang, C. (2018). Aβ induces cell damage via RAGE-dependent endoplasmic reticulum stress in bEnd.3 cells. Exp. Cell Res. 362, 83–89.PubMedCrossrefGoogle Scholar

  • Deane, R., Du, Y.S., Submamaryan, R.K., LaRue, B., Jovanovic, S., Hogg, E., Welch, D., Manness, L., Lin, C., Yu, J., et al. (2003). RAGE mediates amyloid-beta peptide transport across the blood–brain barrier and accumulation in brain. Nat. Med. 9, 907–913.CrossrefPubMedGoogle Scholar

  • Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., Xu, F., Parisi, M., LaRue, B., Hu, H.W., et al. (2004). LRP/amyloid beta-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron 43, 333–344.PubMedCrossrefGoogle Scholar

  • Deane, R., Singh, I., Sagare, A.P., Bell, R.D., Ross, N.T., LaRue, B., Love, R., Perry, S., Paquette, N., Deane, R.J., et al. (2012). A multimodal RAGE-specific inhibitor reduces amyloid β-mediated brain disorder in a mouse model of Alzheimer disease. J. Clin. Invest. 122, 1377–1392.CrossrefGoogle Scholar

  • Donahue, J.E., Flaherty, S.L., Johanson, C.E., Duncan, J.A., Silverberg, G.D., Miller, M.C., Tavares, R., Yang, W., Wu, Q., Sabo, E., et al. (2006). RAGE, LRP-1, and amyloid-βeta protein in Alzheimer‘s disease. Acta Neuropathol. 112, 405–415.CrossrefGoogle Scholar

  • Duits, F.H., Hernandez, G.M., Montaner, J., Goos, J.D., Montañola, A., Wattjes, M.P., Barkhof, F., Scheltens, P., Teunissen, C.E., and van der Flier, W.M. (2015). Matrix metalloproteinases in Alzheimer’s disease and concurrent cerebral microbleeds. J. Alzheimers Dis. 48, 711–720.CrossrefPubMedGoogle Scholar

  • Gąsiorowski, K., Brokos, B., Echeverria, V., Barreto, G.E., and Leszek, J. (2018). RAGE-TLR crosstalk sustains chronic inflammation in neurodegeneration. Mol. Neurobiol. 55, 1463–1476.CrossrefPubMedGoogle Scholar

  • Halliday, M.R., Rege, S.V., Ma, Q., Zhao, Z., Miller, C.A., Winkler, E.A., and Zloković, B.V. (2016). Accelerated pericyte degeneration and blood–brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer. J. Cereb. Blood Flow Metab. 36, 216–227.CrossrefPubMedGoogle Scholar

  • Hernández-Guillamon, M., Delgado, P., Ortega, L., Pares, M., Rosell, A., García-Bonill, L., Fernández-Cadenas, I., Borrell-Pagès, M., Boada, M., and Montaner, J. (2009). Neuronal TIMP-1 release accompanies astrocytic MMP-9 secretion and enhances astrocyte proliferation induced by β-amyloid 25–35 fragment. J. Neurosci. Res. 87, 2115–2125.CrossrefPubMedGoogle Scholar

  • Honjo, Y., Ayaki, T., Tomiyama, T., Horibe, T., Ito, H., Mori, H., Takahashi, R., and Kawakami, K. (2015). Increased GADD34 in oligodendrocytes in Alzheimer’s disease. Neurosci. Lett. 602, 50–55.CrossrefPubMedGoogle Scholar

  • Honjo, Y., Ayaki, T., Tomiyama, T., Horibe, T., Ito, H., Mori, H., Takahashi, R., and Kawakami, K. (2017). Decreased levels of PDI and P5 in oligodendrocytes in Alzheimer’s disease. Neuropathology 37, 495–501.PubMedCrossrefGoogle Scholar

  • Ikonomovic, M.D., Abrahamson, E.E., Isanski, B.A., Wuu, J., Mufson, E.J., and DeKosky, S.T. (2007). Superior frontal cortex cholinergic axon density in mild cognitive impairment and early Alzheimer disease. Arch. Neurol. 4, 1312–1317.Google Scholar

  • Iturria-Medina, Y., Sotero, R.C., Toussaint, P.J., Mateos-Pérez, J.M., and Evans, A.C. (2016). Alzheimer’s Disease Neuroimaging Initiative. Nat. Commun. 7, 11934.PubMedGoogle Scholar

  • Jaeger, L.B., Dohgu, S., Hwang, M.C., Farr, S.A., Murphy, M.P., Fleegal-DeMotta, M.A., Lynch, J.L., Robinson, S.M., Niehoff, M.L., Johnson, S.N., et al. (2009). Testing the neurovascular hypothesis of Alzheimer‘s disease: LRP-1 antisense reduces blood–brain barrier clearance, increases brain levels of amyloid-β protein, and impairs cognition. J. Alzheimer’s Dis. 17, 553–570.CrossrefGoogle Scholar

  • Kang, D.E., Pietrzik, C.U., Baum, L., Chevallier, N., Merriam, D.E., Kounnas, M.Z., Wagner, S.L., Troncoso, J.C., Kawas, C.H., Katzman, R., et al. (2000). Modulation of amyloid beta-protein clearance and Alzheimer’s disease susceptibility by the LDL receptor-related protein pathway. Clin. Invest. 106, 1159–1166.CrossrefGoogle Scholar

  • Kannan, M., Manivel, P., Geetha, K., Muthukumaran, J., Rao, H.S., and Krishna, R. (2012). Synthesis and in silico evaluation of 1N-methyl-1S-methyl-2-nitroethylene (NMSM) derivatives against Alzheimer disease: to understand their interacting mechanism with acetylcholinesterase. J. Chem. Biol. 5, 151–166.PubMedCrossrefGoogle Scholar

  • Kisler, K., Nelson, A.R., Montagne, A., and Zloković, B.V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 18, 419–434.PubMedCrossrefGoogle Scholar

  • Kumar, V., Sulaj, A., Fleming, T., and Nawroth, P.P. (2018). Purification and characterization of the soluble form of the receptor for advanced glycation end-products (sRAGE): a novel fast, economical and convenient method. Exp. Clin. Endocrinol. Diabet. 126, 141–147.CrossrefGoogle Scholar

  • Leijenaar, J.F., van Maurik, I.S., Kuijer, J.P.A., vanderFlier, W.M., Scheltens, P., Barkhof, F., and Prins, N.D. (2017). Lower cerebral blood flow in subjects with Alzheimer’s dementia, mild cognitive impairment, and subjective cognitive decline using two-dimensional phase-contrast magnetic resonance imaging. Alzheimers Dement(Amst.) 9, 76–83.PubMedGoogle Scholar

  • Martel, C.L., Mackic, J.B., McComb, J.G., Ghiso, J., and Zloković, B.V. (1996). Blood–brain barrier uptake of the 40 and 42 amino acid sequences of circulating Alzheimer’s amyloid β in guinea pigs. Neurosci. Lett. 206, 157–160.PubMedCrossrefGoogle Scholar

  • Martin, E. and Delarasse, C. (2018). Complex role of chemokine mediators in animal models of Alzheimer’s Disease. Biomed. J. 41, 34–40.CrossrefPubMedGoogle Scholar

  • Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., Yarasheski, K.E., and Bateman, R.J. (2010). Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330, 1774.CrossrefPubMedGoogle Scholar

  • Miller, M.C., Tavares, R., Johanson, C.E., Hovanesian, V., Donahue, J.E., Gonzalez, L., Silverberg, G.D., and Stopa, E.G. (2008). Hippocampal RAGE immunoreactivity in early and advanced Alzheimer’s disease. Brain Res. 1230, 273–280.CrossrefPubMedGoogle Scholar

  • Mroczko, B., Groblewska, M., Zboch, M., Kulczyńska, A., Koper, O.M., Szmitkowski, M., Kornhuber, J., and Lewczuk, P. (2014). Concentrations of matrix metalloproteinases and their tissue inhibitors in the cerebrospinal fluid of patients with Alzheimer’s disease. J. Alzheimers Dis. 40, 351–357.CrossrefPubMedGoogle Scholar

  • Mustaly-Kalimi, S., Littlefield, A.M., and Stutzmann, G.E. (2018). Calcium signaling deficits in glia and autophagic pathways contributing to neurodegenerative disease. Antioxid. Redox Signal. 29, 1158–1175.PubMedCrossrefGoogle Scholar

  • Nelson, A.R., Sweeney, M.D., Sagare, A.P., and Zloković, B.V. (2016). Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim. Biophys. Acta 1862, 887–900.CrossrefPubMedGoogle Scholar

  • Nelson, A.R., Sagare, A.P., and Zloković, B.V. (2017). Role of clusterin in the brain vascular clearance of amyloid-β. Proc. Natl. Acad. Sci. USA 114, 8681–8682.CrossrefGoogle Scholar

  • Norden, D.M. and Godbout, J.P. (2018). Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. 39, 19–34.Google Scholar

  • Poddar, J., Pradhan, M., Ganguly, G., and Chakrabarti, S. (2018). Biochemical deficits and cognitive decline in brain aging: intervention by dietary supplements. J. Chem. Neuroanat. doi: 10.1016/j.jchemneu.2018.04.002. [Epub ahead of print].PubMedGoogle Scholar

  • Ramanathan, A., Nelson, A.R., Sagare, A.P., and Zloković, B.V. (2015). Impaired vascular-mediated clearance of brain amyloid β in Alzheimer’s disease: the role, regulation and restoration of LRP1. Front. Aging Neurosci. 7, 136.PubMedGoogle Scholar

  • Ranjit, G., Yamin, S., Monique, S., Shi, D.Y., Ann, M.S., David, S., Kwang-Sik, K., Berislav, Z., and Vijay, K.K. (2000). β-Amyloid-induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-1. Am. J. Physiol. Cell Physiol 279, C1772–C1781.Google Scholar

  • Sagare, A., Deane, R., Bell, P.D., Johnson, B., Hamm, K., Pendu, R., Marky, A., Lenting, P.J., Wu, Z., Zarcone, T., et al. (2007). Clearance of amyloid-β by circulating lipoprotein receptors. Clearance of amyloid-beta by circulating lipoprotors. Nat. Med. 13, 1029–1031.Google Scholar

  • Sagare, A.P., Bel, R.D., Zhao, Z., Ma, Q., Winkler, E.A., Ramanathan, A., and Zloković, B.V. (2013a). Pericyte loss influences Alzheimer-like neurodegeneration in mice. Nat. Commun. 4, 2932.CrossrefGoogle Scholar

  • Sagare, A.P., Bell, R.D., and Zloković, B.V. (2013b). Neurovascular defects and faulty amyloid-β vascular clearance in Alzheimer’s disease. J. Alzheimers Dis. 33, S87–S100.Google Scholar

  • Sanderson, R.D., Bandari, S.K., and Vlodavsky, I. (2017). Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol. doi: 10.1016/j.matbio.2017.10.007. [Epub ahead of print].PubMedGoogle Scholar

  • Sá Santos, S., Santos, S.M., Pinto, A.R., Ramu, V.G., Heras, M., Bardaji, E., Tavares, I., and Castanho, M.A. (2016). Amidated and ibuprofen-conjugated kyotorphin promote neuronal rescue and memory recovery in cerebral hypoperfusion dementia model. Front. Aging Neurosci. 8, 1.PubMedGoogle Scholar

  • Sengillo, J.D., Winkler, E.A., Walker, C.T., Sullivan, J.S., Johnson, M., and Zloković, B.V. (2013). Deficiency in mural vascular cells coincides with blood–brain barrier disruption in Alzheimer’s dissease. Brain Pathol. 23, 303–310.CrossrefGoogle Scholar

  • Shibata, M., Yamada, S., Kumar, S.R., Calero, M., Bading, J., Frangione, B., Holtzman, D.M., Miller, C.A., Strickland, D.K., Ghiso, J., et al. (2000). Clearance of Alzheimer’s amyloid-β1-40 peptide from brain by LDL receptor related protein-1 at the blood–brain barrier. Clin. Invest. 106, 1489–1499.CrossrefGoogle Scholar

  • Simpson, I.A., Carruthers, A., and Vannucci, S.J. (2007). Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood. Flow. Metab. 27, 1766–1791.CrossrefPubMedGoogle Scholar

  • Sweeney, M.D., Sagare, A.P., and Zloković, B.V. (2015). Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer’s disease. J. Cereb. Blood Flow Metab. 35, 1055–1068.PubMedCrossrefGoogle Scholar

  • Sweeney, M.D., Ayyadurai, S., and Zloković, B.V. (2016). Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783.PubMedCrossrefGoogle Scholar

  • Sweeney, M.D., Sagare, A.P., and Zloković, B.V. (2018). Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol. 14, 133–150.PubMedCrossrefGoogle Scholar

  • Szablewski, L. (2017). Glucose transporters in brain: in health and in Alzheimer’s disease. J. Alzheimers Dis. 55, 1307–1320.PubMedGoogle Scholar

  • Tamaki, C., Ohtsuki, S., Iwatsubo, T., Hashimoto, T., Yamada, K., Yabuki, C., and Terasaki, T. (2006). Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid β-peptide by the liver. Pharm. Res. 23, 1407–1416.PubMedCrossrefGoogle Scholar

  • Tarasoff-Conway, J.M., Carare, R.O., Osorio, R.S., Glodzik, L., Butler, T., Fieremans, E., Axel, L., Rusinek, H., Nicholson, C., Zloković, B.V., et al. (2015). Clearance systems in the brain–implications for Alzheimer disease. Nat. Rev. Neurol. 11, 457–470.PubMedCrossrefGoogle Scholar

  • Tomobe, K., Okuma, Y., and Nomura, Y. (2007). Impairment of CREB phosphorylation in the hippocampal CA1 region of the senescence-accelerated mouse (SAM) P8. Brain Res. 1141, 214–217.PubMedCrossrefGoogle Scholar

  • Uchida, Y., Tachikawa, M., Obuchi, W., Hoshi, Y., Tomioka, Y., Ohtsuki, S., and Terasaki, T. (2013). A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Fluids Barriers CNS 10, 21.PubMedGoogle Scholar

  • Winkler, E.A., Sagare, A.P., and Zloković, B.V. (2014). The pericyte: a forgotten cell type with important implications for Alzheimer’s disease? Brain Pathol. 24, 371–386.PubMedCrossrefGoogle Scholar

  • Winkler, E.A., Nishida, Y., Sagare, A.P., Rege, S.V., Bell, R.D., Perlmutter, D., Sengillo, J.D., Hillman, S., Kong, P., Nelson, A.R., et al. (2015). GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530.CrossrefPubMedGoogle Scholar

  • Wu, Y., Ma, Y., Liu, Z., Geng, Q., Chen, Z., and Zhang, Y. (2017). Alterations of myelin morphology and oligodendrocyte development in early stage of Alzheimer’s disease mouse model. Neurosci. Lett. 642, 102–106.CrossrefPubMedGoogle Scholar

  • Xin, S.H., Tan, L., Cao, X., Yu, J.T., and Tan, L. (2018). Clearance of amyloid beta and tau in Alzheimer’s Disease: from mechanisms to therapy. Neurotox. Res. 34, 733–748.CrossrefPubMedGoogle Scholar

  • Zhang, G.R., Cheng, X.R., Zhou, W.X., and Zhang, Y.X. (2009). Age-related expression of calcium/calmodulin-dependent protein kinase II A in the hippocampus and cerebral cortex of senescence accelerated mouse prone/8 mice is modulated by anti-Alzheimer’s disease drugs. Neuroscience 159, 308–315.CrossrefGoogle Scholar

  • Zhao, Z., Sagare, A.P., Ma, Q., Halliday, M.R., Kong, P., Kisler, K., Winkler, E.A., Ramanathan, A., Kanekiyo, T., Bu, G., et al. (2015). Central role for PICALM in amyloid-β blood–brain barrier transcytosis and clearance. Nat. Neurosci. 18, 978–987.PubMedCrossrefGoogle Scholar

  • Zhao, H., Wang, Q., Cheng, X., Li, X., Li, N., Liu, T., Li, J., Yang, Q., Dong, R., Zhang, Y., et al. (2018). Inhibitive effect of resveratrol on the inflammation in cultured astrocytes and microglia induced by Aβ. Neuroscience 379, 390–404.CrossrefGoogle Scholar

  • Zloković, B.V. (1995). Cerebrovascular permeability to peptides: manipulations of transport systems at the blood–brain barrier. Pharm. Res. 12, 1395–1406.CrossrefPubMedGoogle Scholar

  • Zloković, B.V. (2011). Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738.CrossrefPubMedGoogle Scholar

  • Zloković, B.V. and Apuzzo, M.L. (1997). Cellular and molecular neurosurgery: pathways from concept to reality–part I: target disorders and concept approaches to gene therapy of the central nervous system. Neurosurgery. 40, 789–803.CrossrefPubMedGoogle Scholar

  • Zloković, B.V., Begley, D.J., and Chain-Eliash, D.G. (1985a). Blood–brain barrier permeability to leucine-enkephalin, D-alanine2-D-leucine5-enkephalin and their N-terminal amino acid (tyrosine). Brain Res. 336, 125–132.CrossrefGoogle Scholar

  • Zloković, B.V., Segal, M.B., Begley, D.J., Davson, H., and Rakić, L. (1985b). Permeability of the blood–cerebrospinal fluid and blood–brain barriers to thyrotropin-releasing hormone. Brain Res. 358, 191–199.CrossrefGoogle Scholar

  • Zloković, B.V., Lipovac, M.N., Begley, D.J., Davson, H., and Rakić, L. (1987). Transport of leucine-enkephalin across the blood–brain barrier in the perfused guinea pig brain. J. Neurochem. 49, 310–315.CrossrefPubMedGoogle Scholar

  • Zloković, B.V., Hyman, S., McComb, J.G., Lipovac, M.N., Tang, G., and Davson, H. (1990). Kinetics of arginine-vasopressin uptake at the blood–brain barrier. Biochim. Biophys. Acta 1025, 191–198.CrossrefPubMedGoogle Scholar

  • Zloković, B.V., Deane, R., Sagare, A.P., Bell, R.D., and Winkler, E.A. (2010). Low-density lipoprotein receptor-related protein-1: a serial clearance homeostatic mechanism controlling Alzheimer’s amyloid β-peptide elimination from the brain. J. Neurochem. 115, 1077–1089.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-06-06

Accepted: 2018-08-30

Published Online: 2018-12-10

Citation Information: Reviews in the Neurosciences, 20180056, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0056.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in