Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Ahead of print


The potentials of umbilical cord-derived mesenchymal stem cells in the treatment of multiple sclerosis

Ahmad Mehdipour
  • Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ayyub Ebrahimi
  • Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Haliç University, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad-Reza Shiri-Shahsavar
  • Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jafar Soleimani-Rad
  • Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leila Roshangar
  • Department of Anatomical Sciences, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
  • Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Samiei / Abbas Ebrahimi-Kalan
  • Corresponding author
  • Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
  • Department of Radiology, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran, Email:
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2019-04-26 | DOI: https://doi.org/10.1515/revneuro-2018-0057


Stem cell therapy has indicated a promising treatment capacity for tissue regeneration. Multiple sclerosis is an autoimmune-based chronic disease, in which the myelin sheath of the central nervous system is destructed. Scientists have not discovered any cure for multiple sclerosis, and most of the treatments are rather palliative. The pursuit of a versatile treatment option, therefore, seems essential. The immunoregulatory and non-chronic rejection characteristics of mesenchymal stem cells, as well as their homing properties, recommend them as a prospective treatment option for multiple sclerosis. Different sources of mesenchymal stem cells have distinct characteristics and functional properties; in this regard, choosing the most suitable cell therapy approach seems to be challenging. In this review, we will discuss umbilical cord/blood-derived mesenchymal stem cells, their identified exclusive properties compared to another adult mesenchymal stem cells, and the expectations of their potential roles in the treatment of multiple sclerosis.

Keywords: cell therapy; immunomodulation; nanotechnology; tumorigenicity


  • Aggarwal, S. and Pittenger, M.F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822.CrossrefPubMedGoogle Scholar

  • Akimoto, K., Kimura, K., Nagano, M., Takano, S., To’a Salazar, G., Yamashita, T., and Ohneda, O. (2013). Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation. Stem Cells Dev. 22, 1370–1386.CrossrefPubMedGoogle Scholar

  • Al Jumah, M.A. and Abumaree, M.H. (2012). The immunomodulatory and neuroprotective effects of mesenchymal stem cells (MSCs) in experimental autoimmune encephalomyelitis (EAE): a model of multiple sclerosis (MS). Int. J. Mol. Sci. 13, 9298–9331.CrossrefPubMedGoogle Scholar

  • Alemi Serej, F., Pourhassan-Moghaddam, M., Ebrahimi Kalan, M., Mehdipour, A., Aliyari Serej, Z., and Ebrahimi-Kalan, A. (2018). Targeting the PI3K/Akt/mTOR signaling pathway: applications of nanotechnology. Crescent J. Med. Biol. Sci. 5, 7–13.Google Scholar

  • Aliyari, Z., Soleimanirad, S., Sayyah Melli, M., Tayefi Nasrabadi, H., and Nozad Charoudeh, H. (2015). IL2rg cytokines enhance umbilical cord blood CD34+ cells differentiation to T cells. Adv. Pharm. Bull. 5, 615–619.CrossrefGoogle Scholar

  • Alizadeh-Ghodsi, M., Zavvari, A., Ebrahimi-Kalan, A., Shiri-Shahsavar, M.R., and Yousefi, B. (2018). The hypothetical roles of arsenic in multiple sclerosis by induction of inflammation and aggregation of tau protein: a commentary. Nutr. Neurosci. 21, 92–96.CrossrefPubMedGoogle Scholar

  • Amariglio, N., Hirshberg, A., Scheithauer, B.W., Cohen, Y., Loewenthal, R., Trakhtenbrot, L., Paz, N., Koren-Michowitz, M., Waldman, D., Leider-Trejo, L., et al. (2009). Donor-derived brain tumor following neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 6, e1000029.CrossrefGoogle Scholar

  • Amati, E., Sella, S., Perbellini, O., Alghisi, A., Bernardi, M., Chieregato, K., Lievore, C., Peserico, D., Rigno, M., Zilio, A., et al. (2017). Generation of mesenchymal stromal cells from cord blood: evaluation of in vitro quality parameters prior to clinical use. Stem Cell Res. Ther. 8, 14–28.CrossrefPubMedGoogle Scholar

  • Amiri, F., Halabian, R., Harati, M.D., Bahadori, M., Mehdipour, A., Roushandeh, A.M., and Roudkenar, M.H. (2015). Positive selection of Wharton’s jelly-derived CD105+ cells by MACS technique and their subsequent cultivation under suspension culture condition: a simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematology 20, 208–216.CrossrefPubMedGoogle Scholar

  • Atiyeh, B.S., El Khatib, A.M., and Dibo, S.A. (2013). Pressure garment therapy (PGT) of burn scars: evidence-based efficacy. Ann. Burns Fire Disasters 26, 205–212.PubMedGoogle Scholar

  • Aung, L.L., Mouradian, M.M., Dhib-Jalbut, S., and Balashov, K.E. (2015). MMP-9 expression is increased in B lymphocytes during multiple sclerosis exacerbation and is regulated by microRNA-320a. J. Neuroimmunol. 278, 185–189.CrossrefGoogle Scholar

  • Ayache, S.S. and Chalah, M.A. (2016). Stem cells therapy in multiple sclerosis – a new hope for progressive forms. J. Stem Cells Regen. Med. 12, 49–51.PubMedGoogle Scholar

  • Bai, L., Lennon, D.P., Eaton, V., Maier, K., Caplan, A.I., Miller, S.D., and Miller, R.H. (2009). Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 57, 1192–1203.CrossrefPubMedGoogle Scholar

  • Blakemore, W.F. (2008). Regeneration and repair in multiple sclerosis: the view of experimental pathology. J. Neurol. Sci. 265, 1–4.CrossrefPubMedGoogle Scholar

  • Bradl, M. and Lassmann, H. (2010). Oligodendrocytes: biology and pathology. Acta Neuropathol. 119, 37–53.CrossrefPubMedGoogle Scholar

  • Buc, M. (2013). Role of regulatory T cells in pathogenesis and biological therapy of multiple sclerosis. Mediat. Inflamm. 2013, 963748.Google Scholar

  • Buzanska, L., Machaj, E.K., Zablocka, B., Pojda, Z., and Domanska-Janik, K. (2002). Human cord blood-derived cells attain neuronal and glial features in vitro. J. Cell Sci. 115, 2131–2138.Google Scholar

  • Camps, A., Almolda, B., Gonzalez, B., and Castellano, B. (2016). Microimmunotherapeutic administration of cytokines improve the clinical symptoms in EAE an animal model of multiple sclerosis. Homeopathy 105, 10–10.CrossrefGoogle Scholar

  • Can, A. and Karahuseyinoglu, S. (2007). Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells. Stem Cells 25, 2886–2895.CrossrefPubMedGoogle Scholar

  • Carroll, P.D., Nankervis, C.A., Iams, J., and Kelleher, K. (2012). Umbilical cord blood as a replacement source for admission complete blood count in premature infants. J. Perinatol. 32, 97–102.CrossrefPubMedGoogle Scholar

  • Cheng, T., Yang, B., Li, D., Ma, S., Tian, Y., Qu, R., Zhang, W., Zhang, Y., Hu, K., Guan, F., et al. (2015). Wharton’s jelly transplantation improves neurologic function in a rat model of traumatic brain injury. Cell Mol. Neurobiol. 35, 641–649.CrossrefGoogle Scholar

  • Costantino, C.M., Hutton, J., Baecher-Allan, C., and Hafler, D.A. (2008). Multiple sclerosis and regulatory T cells. J. Clin. Immunol. 28, 697–706.CrossrefPubMedGoogle Scholar

  • da Silva Meirelles, L., Chagastelles, P.C., and Nardi, N.B. (2006). Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J. Cell Sci. 119, 2204–2213.CrossrefPubMedGoogle Scholar

  • Dalla Libera, D., Di Mitri, D., Bergami, A., Centonze, D., Gasperini, C., Grasso, M.G., Galgani, S., Martinelli, V., Comi, G., Avolio, C., et al. (2011). T regulatory cells are markers of disease activity in multiple sclerosis patients. PLoS One 6, e21386.CrossrefGoogle Scholar

  • Davies, J.E., Walker, J.T., and Keating, A. (2017). Concise review: Wharton’s jelly: the rich, but enigmatic, source of mesenchymal stromal cells. Stem Cells Transl. Med. 6, 1620–1630.PubMedCrossrefGoogle Scholar

  • Dhaeze, T., Peelen, E., Hombrouck, A., Peeters, L., Van Wijmeersch, B., Lemkens, N., Lemkens, P., Somers, V., Lucas, S., Broux, B., et al. (2015). Circulating follicular regulatory T cells are defective in multiple sclerosis. J. Immunol. 195, 832–840.PubMedCrossrefGoogle Scholar

  • Di Ianni, M., Del Papa, B., De Ioanni, M., Moretti, L., Bonifacio, E., Cecchini, D., Sportoletti, P., Falzetti, F., and Tabilio, A. (2008). Mesenchymal cells recruit and regulate T regulatory cells. Exp. Hematol. 36, 309–318.CrossrefGoogle Scholar

  • Divya, M.S., Roshin, G.E., Divya, T.S., Rasheed, V.A., Santhoshkumar, T.R., Elizabeth, K.E., James, J., and Pillai, R.M. (2012). Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res. Ther. 3, 1–16.Google Scholar

  • Donders, R., Vanheusden, M., Bogie, J.F., Ravanidis, S., Thewissen, K., Stinissen, P., Gyselaers, W., Hendriks, J.J., and Hellings, N. (2015). Human Wharton’s jelly-derived stem cells display immunomodulatory properties and transiently improve rat experimental autoimmune encephalomyelitis. Cell Transplant. 24, 2077–2098.PubMedCrossrefGoogle Scholar

  • Douvaras, P., Wang, J., Zimmer, M., Hanchuk, S., O’Bara, M.A., Sadiq, S., Sim, F.J., Goldman, J., and Fossati, V. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. 3, 250–259.CrossrefGoogle Scholar

  • Ebrahimi Kalan, A., Soleimani Rad, J., Kafami, L., Mohamadnezhad, D., Khaki, A.A., and Mohammadi Roushandeh, A. (2014). MS14, a marine herbal medicine, an immunosuppressive drug in experimental autoimmune encephalomyelitis. Iran. Red Crescent Med. J. 16, e16956.PubMedGoogle Scholar

  • El Omar, R., Beroud, J., Stoltz, J.F., Menu, P., Velot, E., and Decot, V. (2014). Umbilical cord mesenchymal stem cells: the new gold standard for mesenchymal stem cell-based therapies? Tissue Eng. Part B Rev. 20, 523–544.PubMedCrossrefGoogle Scholar

  • English, K., Ryan, J., Tobin, L., Murphy, M., Barry, F., and Mahon, B.P. (2009). Cell contact, prostaglandin E2 and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+ CD25 Highforkhead box P3+ regulatory T cells. Clin. Exp. Immunol. 156, 149–160.CrossrefPubMedGoogle Scholar

  • Farzaneh Taban, Z., Khatibi, S., Halabian, R., and Mohammadi Roushandeh, A. (2016). The effects of preconditioning on survival of mesenchymal stem cells in vitro. Gene Cell Tissue 3, e40229.Google Scholar

  • Fenollosa, R., Garcia-Rico, E., Alvarez, S., Alvarez, R., Yu, X., Rodriguez, I., Carregal-Romero, S., Villanueva, C., Garcia-Algar, M., Rivera-Gil, P., et al. (2014). Silicon particles as Trojan horses for potential cancer therapy. J. Nanobiotechnology. 12, 35–44.PubMedCrossrefGoogle Scholar

  • Fonseka, M., Ramasamy, R., Tan, B.C., and Seow, H.F. (2012). Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) inhibit the proliferation of K562 (human erythromyeloblastoid leukaemic cell line). Cell Biol. Int. 36, 793–801.PubMedCrossrefGoogle Scholar

  • Gajofatto, A. and Benedetti, M.D. (2015). Treatment strategies for multiple sclerosis: when to start, when to change, when to stop? World J. Clin. Cases 3, 545–555.PubMedCrossrefGoogle Scholar

  • Grade, S., Bernardino, L., and Malva, J.O. (2013). Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies. Int. J. Dev. Neurosci. 31, 692–700.CrossrefPubMedGoogle Scholar

  • Guan, J.Z., Guan, W.P., and Maeda, T. (2018). Vitamin E administration erases an enhanced oxidation in multiple sclerosis. Can. J. Physiol. Pharmacol. 96, 1181–1183.CrossrefPubMedGoogle Scholar

  • Harati, M.D., Amiri, F., Jaleh, F., Mehdipour, A., Harati, M.D., Molaee, S., Bahadori, M., Shokrgozar, M.A., Jalili, M.A., and Roudkenar, M.H. (2015). Targeting delivery of lipocalin 2-engineered mesenchymal stem cells to colon cancer in order to inhibit liver metastasis in nude mice. Tumour Biol. 36, 6011–6018.PubMedCrossrefGoogle Scholar

  • Hedley, L. (2012). Multiple sclerosis treatment options. PJ. 288, 247–250.Google Scholar

  • Hoang-Ngoc, M., Gebrane-Younes, J., Smadja, A., and Orcel, L. (1985). Structure and function of the fetal umbilical vessels. J. Gynecol. Obstet. Biol. Reprod. (Paris) 14, 973–979.PubMedGoogle Scholar

  • Hou, Z.-L., Liu, Y., Mao, X.-H., Wei, C.-Y., Meng, M.-Y., Liu, Y.-H., Zhuyun Yang, Z., Zhu, H., Short, M., Bernard, C., et al. (2013). Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis. Cell Adh. Migr. 7, 404–407.CrossrefGoogle Scholar

  • Ji, J., Ruan, J., and Cui, D. (2010). Advances of nanotechnology in the stem cells research and development. Nano. Biomed. Eng. 2, 67–90.Google Scholar

  • Karahuseyinoglu, S., Cinar, O., Kilic, E., Kara, F., Akay, G.G., Demiralp, D.O., Tukun, A., Uckan, D., and Can, A. (2007). Biology of stem cells in human umbilical cord stroma: in situ and in vitro surveys. Stem Cells. 25, 319–331.CrossrefPubMedGoogle Scholar

  • Kohm, A.P., Carpentier, P.A., Anger, H.A., and Miller, S.D. (2002). Cutting edge: CD4+ CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716.CrossrefPubMedGoogle Scholar

  • Kolf, C.M., Cho, E., and Tuan, R.S. (2007). Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther. 9, 204–204.PubMedCrossrefGoogle Scholar

  • Korn, T. (2008). Pathophysiology of multiple sclerosis. J. Neurol. 255 (Suppl 6), 2–6.PubMedCrossrefGoogle Scholar

  • Kuan, T.L.T., Amini, F., and Seghayat, M.S. (2017). Feasibility and toxicity of hematopoietic stem cell transplant in multiple sclerosis. Iran. J. Basic Med. Sci. 20, 729–738.PubMedGoogle Scholar

  • Kubinova, S. and Sykova, E. (2010). Nanotechnologies in regenerative medicine. Minim Invasive Ther. Allied Technol. 19, 144–156.PubMedCrossrefGoogle Scholar

  • Kuchroo, P., Dave, V., Vijayan, A., Viswanathan, C., and Ghosh, D. (2015). Paracrine factors secreted by umbilical cord-derived mesenchymal stem cells induce angiogenesis in vitro by a VEGF-independent pathway. Stem Cells Dev. 24, 437–450.CrossrefPubMedGoogle Scholar

  • Kyurkchiev, D., Bochev, I., Ivanova-Todorova, E., Mourdjeva, M., Oreshkova, T., Belemezova, K., and Kyurkchiev, S. (2014). Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J. Stem Cells 6, 552–570.CrossrefPubMedGoogle Scholar

  • Le Blanc, K. and Mougiakakos, D. (2012). Multipotent mesenchymal stromal cells and the innate immune system. Nat. Rev. Immunol. 12, 383–396.CrossrefPubMedGoogle Scholar

  • Leite, C., Silva, N.T., Mendes, S., Ribeiro, A., de Faria, J.P., Lourenco, T., dos Santos, F., Andrade, P.Z., Cardoso, C.M., Vieira, M., et al. (2014). Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage. PLoS One 9, e111059.PubMedCrossrefGoogle Scholar

  • Li, J., Fan, C., Pei, H., Shi, J., and Huang, Q. (2013). Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv. Mater. 25, 4386–4396.CrossrefPubMedGoogle Scholar

  • Li, J.F., Zhang, D.J., Geng, T., Chen, L., Huang, H., Yin, H.L., Zhang, Y.Z., Lou, J.Y., Cao, B., and Wang, Y.L. (2014). The potential of human umbilical cord-derived mesenchymal stem cells as a novel cellular therapy for multiple sclerosis. Cell Transplant. 23, 113–122.CrossrefGoogle Scholar

  • Li, T., Xia, M., Gao, Y., Chen, Y., and Xu, Y. (2015). Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin. Biol. Ther. 15, 1293–1306.CrossrefPubMedGoogle Scholar

  • Liang, J., Zhang, H., Hua, B., Wang, H., Wang, J., Han, Z., and Sun, L. (2009). Allogeneic mesenchymal stem cells transplantation in treatment of multiple sclerosis. Mult. Scler. 15, 644–646.CrossrefPubMedGoogle Scholar

  • Liu, R., Zhang, Z., Lu, Z., Borlongan, C., Pan, J., Chen, J., Qian, L., Liu, Z., Zhu, L., Zhang, J., et al. (2013). Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinflammation and remyelination. Stem Cells Dev. 22, 1053–1062.CrossrefPubMedGoogle Scholar

  • Liu, Q., Zheng, H., Chen, X., Peng, Y., Huang, W., Li, X., Li, G., Xia, W., Sun, Q., and Xiang, A.P. (2015). Human mesenchymal stromal cells enhance the immunomodulatory function of CD8(+)CD28(-) regulatory T cells. Cell Mol. Immunol. 12, 708–718.CrossrefPubMedGoogle Scholar

  • Luz-Crawford, P., Kurte, M., Bravo-Alegría, J., Contreras, R., Nova-Lamperti, E., Tejedor, G., Noël, D., Jorgensen, C., Figueroa, F., Djouad, F., et al. (2013). Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res. Ther. 4, 65–76.PubMedCrossrefGoogle Scholar

  • Lv, M., Zhang, Y., Liang, L., Wei, M., Hu, W., Li, X., and Huang, Q. (2012). Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line. Nanoscale 4, 3861–3866.CrossrefPubMedGoogle Scholar

  • Ma, S., Liang, S., Jiao, H., Chi, L., Shi, X., Tian, Y., Yang, B., and Guan, F. (2014). Human umbilical cord mesenchymal stem cells inhibit C6 glioma growth via secretion of dickkopf-1 (DKK1). Mol. Cell Biochem. 385, 277–286.PubMedCrossrefGoogle Scholar

  • Martino, G., Franklin, R.J., Baron Van Evercooren, A., and Kerr, D.A. (2010). Stem cell transplantation in multiple sclerosis: current status and future prospects. Nat. Rev. Neurol. 6, 247–255.PubMedCrossrefGoogle Scholar

  • Mayer, F.A. (1996). Wharton’s jelly of the umbilical cord. In: Extracellular matrix: tissue function. (Netherlands: Comper, W.D. CRC Press), pp. 443–448.Google Scholar

  • Meng, M., Liu, Y., Wang, W., Wei, C., Liu, F., Du, Z., Xie, Y., Tang, W., Hou, Z., and Li, Q. (2018). Umbilical cord mesenchymal stem cell transplantation in the treatment of multiple sclerosis. Am. J. Transl. Res. 10, 212–223.PubMedGoogle Scholar

  • Nakamura, Y., Tanaka, Y., Ando, T., Sato, Y., Yujiri, T., and Tanizawa, Y. (2007). Successful engraftment of the second reduced-intensity conditioning cord blood transplantation (CBT) for a patient who developed graft rejection and infectious complications after the first CBT for AML. Bone Marrow Transplant. 40, 395–396.PubMedCrossrefGoogle Scholar

  • Nanaev, A.K., Kohnen, G., Milovanov, A.P., Domogatsky, S.P., and Kaufmann, P. (1997). Stromal differentiation and architecture of the human umbilical cord. Placenta 18, 53–64.PubMedCrossrefGoogle Scholar

  • National Multiple Sclerosis Society. (2018). Umbilical cord blood donation. Available at: https://www.nationalmssociety.org/Research/Participate-in-Research-Studies/Donate-to-Tissue-Banks/Umbilical-Cord-Blood-Donation. Accessed: 8 Jul 2018.

  • Nejati-Koshki, K., Pilehvar-Soltanahmadi, Y., Alizadeh, E., Ebrahimi-Kalan, A., Mortazavi, Y., and Zarghami, N. (2017). Development of emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine. Drug. Dev. Ind. Pharm. 43, 1978–1988.PubMedCrossrefGoogle Scholar

  • Nicaise, A.M., Johnson, K.M., Willis, C.M., Guzzo, R.M., and Crocker, S.J. (2018). TIMP-1 promotes oligodendrocyte differentiation through receptor-mediated signaling. Mol. Neurobiol., DOI: 10.1007/s12035-018-1310-7. [Epub ahead of print]PubMedGoogle Scholar

  • Nikbin, B., Bonab, M.M., and Talebian, F. (2007). Microchimerism and stem cell transplantation in multiple sclerosis. Int. Rev. Neurobiol. 79, 173–202.CrossrefPubMedGoogle Scholar

  • Noori-Zadeh, A., Mesbah-Namin, S.A., Bistoon-beigloo, S., Bakhtiyari, S., Abbaszadeh, H.-A., Darabi, S., Rajabibazl, M., and Abdanipour, A. (2016). Regulatory T cell number in multiple sclerosis patients: a meta-analysis. Mult. Scler. Relat. Disord. 5, 73–76.CrossrefPubMedGoogle Scholar

  • Oh, D.Y., Cui, P., Hosseini, H., Mosse, J., Toh, B.H., and Chan, J. (2012). Potently immunosuppressive 5-fluorouracil-resistant mesenchymal stromal cells completely remit an experimental autoimmune disease. J. Immunol. 188, 2207–2217.CrossrefPubMedGoogle Scholar

  • Okada, H. and Khoury, S.J. (2012). Type17 T-cells in central nervous system autoimmunity and tumors. J. Clin. Immunol. 32, 802–808.CrossrefPubMedGoogle Scholar

  • Onwuha-Ekpete, L.C., Tokmina-Roszyk, D., and Fields, G.B. (2016). Selective inhibition of matrix metalloproteinase-9 reduces clinical severity in a murine model of multiple sclerosis via a reduced immune response. J. Immunol. 196, 139.112-139.112.Google Scholar

  • Plantone, D., Renna, R., Sbardella, E., and Koudriavtseva, T. (2015). Concurrence of multiple sclerosis and brain tumors. Front. Neurol. 6, 40–43.PubMedGoogle Scholar

  • Qiu, J., Zhang, R., Li, J., Sang, Y., Tang, W., Rivera Gil, P., and Liu, H. (2015). Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. Int. J. Nanomed. 10, 6709–6724.Google Scholar

  • Rafieemehr, H., Kheirandish, M., and Soleimani, M. (2015). Improving the neuronal differentiation efficiency of umbilical cord blood-derived mesenchymal stem cells cultivated under appropriate conditions. Iran. J. Basic Med. Sci. 18, 1100–1106.PubMedGoogle Scholar

  • Revilla, A., Gonzalez, C., Iriondo, A., Fernandez, B., Prieto, C., Marin, C., and Liste, I. (2016). Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine. J. Tissue Eng. Regen. Med. 10, 893–907.PubMedCrossrefGoogle Scholar

  • Riordan, N.H., Morales, I., Fernandez, G., Allen, N., Fearnot, N.E., Leckrone, M.E., Markovich, D.J., Mansfield, D., Avila, D., Patel, A.N., et al. (2018). Clinical feasibility of umbilical cord tissue-derived mesenchymal stem cells in the treatment of multiple sclerosis. J. Transl. Med. 16, 57–68.CrossrefPubMedGoogle Scholar

  • Ruenraroengsak, P., Chen, S., Hu, S., Melbourne, J., Sweeney, S., Thorley, A.J., Skepper, J.N., Shaffer, M.S., Tetley, T.D., and Porter, A.E. (2016). Translocation of functionalized multi-walled carbon nanotubes across human pulmonary alveolar epithelium: dominant role of epithelial type 1 cells. ACS Nano 10, 5070–5085.CrossrefPubMedGoogle Scholar

  • Sakaguchi, S. (2004). Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562.CrossrefPubMedGoogle Scholar

  • Samadikuchaksaraei, A., Mehdipour, A., Habibi Roudkenar, M., Verdi, J., Joghataei, M.T., As’adi, K., Amiri, F., Dehghan Harati, M., Gholipourmalekabadi, M., and Karkuki Osguei, N. (2016). A dermal equivalent engineered with TGF-beta3 expressing bone marrow stromal cells and amniotic membrane: cosmetic healing of full-thickness skin wounds in rats. Artif Organs 40, E266–E279.Google Scholar

  • Sanmano, B., Mizoguchi, M., Suga, Y., Ikeda, S., and Ogawa, H. (2005). Engraftment of umbilical cord epithelial cells in athymic mice: in an attempt to improve reconstructed skin equivalents used as epithelial composite. J. Dermatol. Sci. 37, 29–39.CrossrefGoogle Scholar

  • Sarugaser, R., Hanoun, L., Keating, A., Stanford, W.L., and Davies, J.E. (2009). Human mesenchymal stem cells self-renew and differentiate according to a deterministic hierarchy. PLoS One 4, e6498.PubMedCrossrefGoogle Scholar

  • Satoh, N., Takenouchi, S., Hashimoto, S., Fujiwara, M., and Koike, T. (2007). Switching of donor cells after urgent second cord blood transplantation for suspected graft failure. Int. J. Hematol. 86, 451–454.PubMedCrossrefGoogle Scholar

  • Schmidt, N.O., Przylecki, W., Yang, W., Ziu, M., Teng, Y., Kim, S.U., Black, P.M., Aboody, K.S., and Carroll, R.S. (2005). Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7, 623–630.CrossrefPubMedGoogle Scholar

  • Sher, F., Balasubramaniyan, V., Boddeke, E., and Copray, S. (2008a). Oligodendrocyte differentiation and implantation: new insights for remyelinating cell therapy. Curr. Opin. Neurol. 21, 607–614.CrossrefGoogle Scholar

  • Sher, F., Rossler, R., Brouwer, N., Balasubramaniyan, V., Boddeke, E., and Copray, S. (2008b). Differentiation of neural stem cells into oligodendrocytes: involvement of the polycomb group protein Ezh2. Stem Cells 26, 2875–2883.CrossrefGoogle Scholar

  • Shirazi, H.A., Rasouli, J., Ciric, B., Rostami, A., and Zhang, G.-X. (2015). 1,25-Dihydroxyvitamin D3 enhances neural stem cell proliferation and oligodendrocyte differentiation. Exp. Mol. Pathol. 98, 240–245.CrossrefPubMedGoogle Scholar

  • Shiri-Shahsavar, M.R., Mirshafiee, A., Parastouei, K., Ebrahimi-Kalan, A., Yekaninejad, S., Soleymani, F., Chahardoli, R., Mazaheri Nezhad Fard, R., and Saboor-Yaraghi, A.A. (2016). A novel combination of docosahexaenoic acid, all-trans retinoic acid, and 1, 25-dihydroxyvitamin d3 reduces T-Bet gene expression, serum interferon gamma, and clinical scores but promotes ppargamma gene expression in experimental autoimmune encephalomyelitis. J. Mol. Neurosci. 60, 498–508.PubMedGoogle Scholar

  • Shroff, G. (2018). A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells. Stem Cells Cloning 11, 1–11.PubMedGoogle Scholar

  • Song, B., Sun, G., Herszfeld, D., Sylvain, A., Campanale, N.V., Hirst, C.E., Caine, S., Parkington, H.C., Tonta, M.A., Coleman, H.A., et al. (2012). Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Res. 8, 259–273.CrossrefGoogle Scholar

  • Sorensen, P.S. (2014). New management algorithms in multiple sclerosis. Curr. Opin. Neurol. 27, 246–259.CrossrefPubMedGoogle Scholar

  • Speiran, K., Bailey, D.P., Fernando, J., Macey, M., Barnstein, B., Kolawole, M., Curley, D., Watowich, S.S., Murray, P.J., Oskeritzian, C., et al. (2009). Endogenous suppression of mast cell development and survival by IL-4 and IL-10. J. Leukoc. Biol. 85, 826–836.PubMedCrossrefGoogle Scholar

  • Sturm, D., Gurevitz, S.L., and Turner, A. (2014). Multiple sclerosis: a review of the disease and treatment options. Consult. Pharm. 29, 469–479.CrossrefPubMedGoogle Scholar

  • Sullivan, M.J. (2008). Banking on cord blood stem cells. Nat. Rev. Cancer. 8, 555–563.CrossrefPubMedGoogle Scholar

  • Sun, L., Wang, D., Liang, J., Zhang, H., Feng, X., Wang, H., Hua, B., Liu, B., Ye, S., Hu, X., et al. (2010). Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis Rheum. 62, 2467–2475.PubMedCrossrefGoogle Scholar

  • Sun, T. and Ma, Q.-H. (2013). Repairing neural injuries using human umbilical cord blood. Mol. Neurobiol. 47, 938–945.PubMedCrossrefGoogle Scholar

  • Svobodova, E., Krulova, M., Zajicova, A., Pokorna, K., Prochazkova, J., Trosan, P., and Holan, V. (2012). The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population. Stem Cells Dev. 21, 901–910.PubMedCrossrefGoogle Scholar

  • Swamynathan, P., Venugopal, P., Kannan, S., Thej, C., Kolkundar, U., Bhagwat, S., Ta, M., Majumdar, A.S., and Balasubramanian, S. (2014). Are serum-free and xeno-free culture conditions ideal for large scale clinical grade expansion of Wharton’s jelly derived mesenchymal stem cells? A comparative study. Stem Cell Res. Ther. 5, 88–104.CrossrefGoogle Scholar

  • Tipnis, S., Viswanathan, C., and Majumdar, A.S. (2010). Immunosuppressive properties of human umbilical cord-derived mesenchymal stem cells: role of B7-H1 and IDO. Immunol. Cell Biol. 88, 795–806.PubMedCrossrefGoogle Scholar

  • Todeschi, M.R., El Backly, R., Capelli, C., Daga, A., Patrone, E., Introna, M., Cancedda, R., and Mastrogiacomo, M. (2015). Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev. 24, 1570–1581.PubMedCrossrefGoogle Scholar

  • Tondreau, T., Meuleman, N., Delforge, A., Dejeneffe, M., Leroy, R., Massy, M., Mortier, C., Bron, D., and Lagneaux, L. (2005). Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells 23, 1105–1112.PubMedCrossrefGoogle Scholar

  • Tong, C.K., Vellasamy, S., Tan, B.C., Abdullah, M., Vidyadaran, S., Seow, H.F., and Ramasamy, R. (2011). Generation of mesenchymal stem cell from human umbilical cord tissue using a combination enzymatic and mechanical disassociation method. Cell Biol. Int. 35, 221–226.CrossrefPubMedGoogle Scholar

  • Vizza, E., Correr, S., Goranova, V., Heyn, R., Angelucci, P.A., Forleo, R., and Motta, P.M. (1996). The collagen skeleton of the human umbilical cord at term. A scanning electron microscopy study after 2N-NaOH maceration. Reprod. Fertil. Dev. 8, 885–894.PubMedCrossrefGoogle Scholar

  • von Kaisenberg, C.S., Krenn, V., Ludwig, M., Nicolaides, K.H., and Brand-Saberi, B. (1998). Morphological classification of nuchal skin in human fetuses with trisomy 21, 18, and 13 at 12–18 weeks and in a trisomy 16 mouse. Anat. Embryol. (Berl.) 197, 105–124.CrossrefGoogle Scholar

  • Wang, Z., Ruan, J., and Cui, D. (2009a). Advances and prospect of nanotechnology in stem cells. Nanoscale Res. Lett. 4, 593–605.CrossrefGoogle Scholar

  • Wang, M., Yang, Y., Yang, D., Luo, F., Liang, W., Guo, S., and Xu, J. (2009b). The immunomodulatory activity of human umbilical cord blood-derived mesenchymal stem cells in vitro. Immunology 126, 220–232.CrossrefGoogle Scholar

  • Wang, S., Bates, J., Li, X., Schanz, S., Chandler-Militello, D., Levine, C., Maherali, N., Studer, L., Hochedlinger, K., Windrem, M., et al. (2013). Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264.PubMedCrossrefGoogle Scholar

  • Wang, Y., Chen, X., Cao, W., and Shi, Y. (2014). Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat. Immunol. 15, 1009–1016.PubMedCrossrefGoogle Scholar

  • Wang, W., Deng, Z., Xu, X., Li, Z., Jung, F., Ma, N., and Lendlein, A. (2017a). Functional nanoparticles and their interactions with mesenchymal stem cells. Curr. Pharm. Des. 23, 3814–3832.Google Scholar

  • Wang, D., Huang, S., Yuan, X., Liang, J., Xu, R., Yao, G., Feng, X., and Sun, L. (2017b). The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol. Immunol. 14, 423–431.CrossrefGoogle Scholar

  • Watson, N., Divers, R., Kedar, R., Mehindru, A., Mehindru, A., Borlongan, M.C., and Borlongan, C.V. (2015). Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 17, 18–24.CrossrefPubMedGoogle Scholar

  • Wei, M., Chen, N., Li, J., Yin, M., Liang, L., He, Y., Song, H., Fan, C., and Huang, Q. (2012). Polyvalent immunostimulatory nanoagents with self-assembled CpG oligonucleotide-conjugated gold nanoparticles. Angew. Chem. Int. Ed. 51, 1202–1206.CrossrefGoogle Scholar

  • Weiss, M.L., Anderson, C., Medicetty, S., Seshareddy, K.B., Weiss, R.J., VanderWerff, I., Troyer, D., and McIntosh, K.R. (2008). Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26, 2865–2874.CrossrefPubMedGoogle Scholar

  • Xu, C., Yu, P., Han, X., Du, L., Gan, J., Wang, Y., and Shi, Y. (2014). TGF-β promotes immune responses in the presence of mesenchymal stem cells. J. Immunol. 192, 103–109.PubMedCrossrefGoogle Scholar

  • Yang, D., Li, T., Xu, M., Gao, F., Yang, J., Yang, Z., and Le, W. (2014). Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine (Lond.) 9, 2445–2455.PubMedCrossrefGoogle Scholar

  • Yang, H., Sun, J., Wang, F., Li, Y., Bi, J., and Qu, T. (2016). Umbilical cord-derived mesenchymal stem cells reversed the suppressive deficiency of T regulatory cells from peripheral blood of patients with multiple sclerosis in a co-culture – a preliminary study. Oncotarget 7, 72537–72545.Google Scholar

  • Ye, Z., Wang, Y., Xie, H.Y., and Zheng, S.S. (2008). Immunosuppressive effects of rat mesenchymal stem cells: involvement of CD4+CD25+ regulatory T cells. Hepatobiliary Pancreat Dis. Int. 7, 608–614.PubMedGoogle Scholar

  • You, D.G., Deepagan, V.G., Um, W., Jeon, S., Son, S., Chang, H., Yoon, H.I., Cho, Y.W., Swierczewska, M., Lee, S., et al. (2016). ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 6, 23200.PubMedCrossrefGoogle Scholar

  • Zhang, R., Lee, P., Lui, V.C., Chen, Y., Liu, X., Lok, C.N., To, M., Yeung, K.W., and Wong, K.K. (2015). Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine 11, 1949–1959.PubMedCrossrefGoogle Scholar

  • Zhang, Z., Sun, Q., Zhong, J., Yang, Q., Li, H., Du, C., Liang, B., and Shuai, X. (2014). Magnetic resonance imaging-visible and pH-sensitive polymeric micelles for tumor targeted drug delivery. J. Biomed. Nanotechnol. 10, 216–226.PubMedCrossrefGoogle Scholar

  • Zozulya, A.L. and Wiendl, H. (2008). The role of regulatory T cells in multiple sclerosis. Nat. Clin. Pract. Neurol. 4, 384–398.PubMedCrossrefGoogle Scholar

About the article

Received: 2018-06-13

Accepted: 2019-02-15

Published Online: 2019-04-26

Conflict of interest statement: The authors declare no conflicts of interest.

Citation Information: Reviews in the Neurosciences, 20180057, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0057.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in