Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

8 Issues per year


IMPACT FACTOR 2017: 2.590
5-year IMPACT FACTOR: 3.078

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

Online
ISSN
2191-0200
See all formats and pricing
More options …
Ahead of print

Issues

Rats selectively bred for showing divergent behavioral traits in response to stress or novelty or spontaneous yawning with a divergent frequency show similar changes in sexual behavior: the role of dopamine

Maria Rosaria Melis
  • Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, SS 554, km 4,500, Monserrato I-09042, Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabrizio Sanna
  • Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, SS 554, km 4,500, Monserrato I-09042, Cagliari, Italy
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Antonio Argiolas
  • Corresponding author
  • Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, SS 554, km 4,500, Monserrato I-09042, Cagliari, Italy
  • Neuroscience Institute, National Research Council of Italy, Section of Cagliari, SS 554, km 4,500, Monserrato I-09042, Cagliari, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-06 | DOI: https://doi.org/10.1515/revneuro-2018-0058

Abstract

Sexual behavior plays a fundamental role for reproduction in mammals and other animal species. It is characterized by an anticipatory and a consummatory phase, and several copulatory parameters have been identified in each phase, mainly in rats. Sexual behavior varies significantly across rats even when they are of the same strain and reared under identical conditions. This review shows that rats of the same strain selectively bred for showing a divergent behavioral trait when exposed to stress or novelty (i.e. Roman high and low avoidance rats, bred for their different avoidance response to the shuttle box, and high and low novelty exploration responders rats, bred for their different exploratory response to a novel environment) or a spontaneous behavior with divergent frequency (i.e. low and high yawning frequency rats, bred for their divergent yawning frequency) show similar differences in sexual behavior, mainly in copulatory pattern, but also in sexual motivation. As shown by behavioral pharmacology and intracerebral microdialysis experiments carried out mainly in Roman rats, these sexual differences may be due to a more robust dopaminergic tone present in the mesocorticolimbic dopaminergic system of one of the two sub-lines (e.g. high avoidance, high novelty exploration, and low yawning rat sub-lines). Thus, differences in genotype and/or in prenatal/postnatal environment lead not only to individual differences in temperament and environmental/emotional reactivity but also in sexual behavior. Because of the highly conserved mechanisms controlling reproduction in mammals, this may occur not only in rats but also in humans.

Keywords: bNEHR-bNELR rats; dopamine; LY-HY rats; RHA-RLA rats; sexual behavior

References

  • Afonso, V.M., Sison, M., Lovic, V., and Fleming, A.S. (2007). Medial prefrontal cortex lesions in the female rat affect sexual and maternal behavior and their sequential organization. Behav. Neurosci. 121, 515–526.CrossrefPubMedGoogle Scholar

  • Agmo, A. (1997). Male rat sexual behavior. Brain Res. Brain Res. Protoc. 1, 203–209.PubMedCrossrefGoogle Scholar

  • Agmo, A., Villalpando, A., Picker, Z., and Fernandez, H. (1995). Lesions of the medial prefrontal cortex and sexual behavior in the male rat. Brain Res. 696, 177–186.PubMedCrossrefGoogle Scholar

  • Argiolas, A. (1994). Nitric oxide is a central mediator of penile erection. Neuropharmacology 33, 1339–1344.PubMedCrossrefGoogle Scholar

  • Argiolas, A. (1999). Neuropeptides and sexual behaviour. Neurosci. Biobehav. Rev. 23, 1127–1142.PubMedCrossrefGoogle Scholar

  • Argiolas, A. (2005). Male erectile dysfunction: chemical pharmacology of penikle erection. Drug Discov. Today: Ther. Strateg. 2, 31–36.Google Scholar

  • Argiolas, A. and Melis, M.R. (1995). Neuromodulation of penile erection: an overview of the role of neurotransmitters and neuropeptides. Prog. Neurobiol. 47, 235–255.PubMedCrossrefGoogle Scholar

  • Argiolas, A. and Melis, M.R. (1998). The neuropharmacology of yawning. Eur. J. Pharmacol. 343, 1–16.PubMedCrossrefGoogle Scholar

  • Argiolas, A. and Melis, M.R. (2004). The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol. Behav. 83, 309–317.CrossrefPubMedGoogle Scholar

  • Argiolas, A. and Melis, M.R. (2005). Central control of penile erection: role of the paraventricular nucleus of the hypothalamus. Prog. Neurobiol. 76, 1–21.CrossrefPubMedGoogle Scholar

  • Argiolas, A. and Melis, M.R. (2013). Neuropeptides and central control of sexual behavior from the past to the present: a review. Prog. Neurobiol. 108, 80–107.CrossrefGoogle Scholar

  • Argiolas, A., Collu, M., Gessa, G.L., Melis, M.R., and Serra, G. (1988). The oxytocin antagonist d(CH2)5Tyr(Me)-Orn8-vasotocin inhibits male copulatory behaviour in rats. Eur. J. Pharmacol. 149, 389–392.CrossrefPubMedGoogle Scholar

  • Argiolas, A., Collu, M., D’Aquila, P., Gessa, G.L., Melis, M.R., and Serra, G. (1989). Apomorphine stimulation of male copulatory behavior is prevented by the oxytocin antagonist d(CH2)5 Tyr(Me)-Orn8-vasotocin in rats. Pharmacol. Biochem. Behav. 33, 81–83.CrossrefPubMedGoogle Scholar

  • Argiolas, A., Melis, M.R., Murgia, S., and Schiöth, H.B. (2000). ACTH- and alpha-MSH-induced grooming, stretching, yawning and penile erection in male rats: site of action in the brain and role of melanocortin receptors. Brain Res. Bull. 51, 425–431.PubMedCrossrefGoogle Scholar

  • Balfour, M.E., Brown, J.L., Yu, L., and Coolen, L.M. (2006). Potential contributions of efferents from medial prefrontal cortex to neural activation following sexual behavior in the male rat. Neuroscience 137, 1259–1276.CrossrefPubMedGoogle Scholar

  • Baskerville, T.A. and Douglas, A.J. (2008). Interactions between dopamine and oxytocin in the control of sexual behaviour. Prog. Brain Res. 170, 277–290.PubMedCrossrefGoogle Scholar

  • Baskerville, T.A., Allard, J., Wayman, C., and Douglas, A.J. (2009). Dopamine-oxytocin interactions in penile erection. Eur. J. Neurosci. 30, 2151–2164.PubMedCrossrefGoogle Scholar

  • Bertolini, A. and Gessa, G.L. (1981). Behavioral effects of ACTH and MSH peptides. J. Endocrinol. Invest. 4, 241–251.CrossrefPubMedGoogle Scholar

  • Bisagno, V. and Cadet, J.L. (2014). Stress, sex, and addiction: potential roles of corticotropin-releasing factor, oxytocin, and arginine-vasopressin. Behav. Pharmacol. 25, 445–457.PubMedGoogle Scholar

  • Bodnar, R.J. (2013). Endogenous opiates and behavior: 2012. Peptides 50, 55–95.CrossrefPubMedGoogle Scholar

  • Brioni, J.D., Moreland, R.B., Cowart, M., Hsieh, G.C., Stewart, A.O., Hedlund, P., Donnelly-Roberts, D.L., Nakane, M., Lynch, J.J. 3rd, Kolasa, T., et al. (2004). Activation of dopamine D4 receptors by ABT-724 induces penile erection in rats. Proc. Natl. Acad. Sci. U S A 101, 6758–6763.CrossrefPubMedGoogle Scholar

  • Broadhurst, P.L. and Bignami, G. (1965). Correlative effects of psychogenetic selection: a study of the Roman high and low avoidance strains of rats. Behav. Res. Ther. 2, 273–280.Google Scholar

  • Buijs, R.M., Geffard, M., Pool, C.W., and Hoorneman, E.M. (1984). The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res. 323, 65–72.CrossrefPubMedGoogle Scholar

  • Carboni, E., Tanda, G.L., Frau, R., and Di Chiara, G. (1990). Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. J. Neurochem. 55, 1067–1070.PubMedCrossrefGoogle Scholar

  • Carboni, E., Silvagni, A., Vacca, C., and Di Chiara, G. (2006). Cumulative effect of norepinephrine and dopamine carrier blockade on extracellular dopamine increase in the nucleus accumbens shell, bed nucleus of stria terminalis and prefrontal cortex. J. Neurochem. 96, 473–481.CrossrefPubMedGoogle Scholar

  • Carrasco, J., Márquez, C., Nadal, R., Tobeña, A., Fernández-Teruel, A., and Armario, A. (2008). Characterization of central and peripheral components of the hypothalamus-pituitary-adrenal axis in the inbred Roman rat strains. Psychoneuroendocrinology 33, 437–445.PubMedCrossrefGoogle Scholar

  • Carter, C.S. and Altemus, M. (1997). Integrative functions of lactational hormones in social behavior and stress management. Ann. N.Y. Acad. Sci. 807, 164–74.PubMedCrossrefGoogle Scholar

  • Carter, C.S., DeVries, A.C., Taymans, S.E., Roberts, R.L., Williams, J.R., and Getz, L.L. (1997a). Peptides, steroids, and pair bonding. Ann. N.Y. Acad. Sci. 807, 260–272.CrossrefGoogle Scholar

  • Carter, C.S., Lederhendler, I., and Kirkpatrick, B. (1997b). The integrative neurobiology of affiliation. Introduction. Ann. N.Y. Acad. Sci. 807, xiii–xviii.Google Scholar

  • Carvalho, J. and Nobre, P. (2010). Sexual desire in women: an integrative approach regarding psychological, medical, and relationship dimensions. J. Sex. Med. 7, 1807–1815.PubMedCrossrefGoogle Scholar

  • Carvalho, J. and Nobre, P. (2011). Biopsychosocial determinants of men’s sexual desire: testing an integrative model. J. Sex. Med. 8, 754–763.PubMedCrossrefGoogle Scholar

  • Castanon, N., Dulluc, J., Le Moal, M., and Mormede, P. (1994). Maturation of the behavioral and neuroendocrine difference between the Roman rat lines. Physiol. Behav. 55, 775–782.CrossrefGoogle Scholar

  • Clinton, S.M., Miller, S., Watson, S.J., and Akil, H. (2008). Prenatal stress does not alter innate novelty-seeking behavioral traits, but differentially affects individual differences in neuroendocrine stress responsivity. Psychoneuroendocrinology 33, 162–177.CrossrefPubMedGoogle Scholar

  • Clinton, S.M., Stead, J.D., Miller, S., Watson, S.J., and Akil, H. (2011). Developmental underpinnings of differences in rodent novelty-seeking and emotional reactivity. Eur. J. Neurosci. 34, 994–1005.CrossrefPubMedGoogle Scholar

  • Cloninger, C.R. (1987). A systematic method for clinical description and classification of personality variants. A proposal. Arch. Gen. Psychiatry 44, 573–588.CrossrefGoogle Scholar

  • Cohen, J.L., Ata, A.E., Jackson, N.L., Rahn, E.J., Ramaker, R.C., Cooper, S., Kerman, I.A., and Clinton, S.M. (2017). Differential stress induced c-Fos expression and identification of region-specific miRNA-mRNA networks in the dorsal raphe and amygdala of high-responder/low-responder rats. Behav. Brain Res. 319, 110–123.CrossrefPubMedGoogle Scholar

  • Collins, G.T., Newman, A.H., Grundt, P., Rice, K.C., Husbands, S.M., Chauvignac, C., Chen, J., Wang, S., and Woods, J.H. (2007). Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology 193, 159–170.CrossrefPubMedGoogle Scholar

  • Collins, G.T., Truccone, A., Haji-Abdi, F., Newman, A.H., Grundt, P., Rice, K.C., Husbands, S.M., Greedy, B.M., Enguehard-Gueiffier, C., Gueiffier, A., et al. (2009). Proerectile effects of dopamine D2-like agonists are mediated by the D3 receptor in rats and mice. J. Pharmacol. Exp. Ther. 329, 210–217.CrossrefPubMedGoogle Scholar

  • Cools, A.R., Brachten, R., Heeren, D., Willemen, A., and Ellenbroek, B. (1990). Search after neurobiological profile of individual-specific features of Wistar rats. Brain Res. Bull. 24, 49–69.CrossrefPubMedGoogle Scholar

  • Coppens, C.M., de Boer, S.F., Steimer, T., and Koolhaas, J.M. (2012). Impulsivity and aggressive behavior in Roman high and low avoidance rats: baseline differences and adolescent social stress induced changes. Physiol. Behav. 105, 1156–1160.CrossrefPubMedGoogle Scholar

  • Corda, M.G., Lecca, D., Piras, G., Di Chiara, G., and Giorgi, O. (1997). Biochemical parameters of dopaminergic and GABAergic neurotransmission in the CNS of Roman high-avoidance and Roman low-avoidance rats. Behav. Genet. 27, 527–536.PubMedCrossrefGoogle Scholar

  • Corda, M.G., Piras, G., Piludu, M.A., and Giorgi, O. (2014). Differential effects of voluntary ethanol consumption on dopamine output in the nucleus accumbens shell of Roman high- and low-avoidance rats: a behavioral and brain microdialysis study. World J. Neurosci. 4, 279–292.CrossrefGoogle Scholar

  • Cummings, J.A., Gowl, B.A., Westenbroek, C., Clinton, S.M., Akil, H., and Becker, J.B. (2011). Effects of a selectively bred novelty-seeking phenotype on the motivation to take cocaine in male and female rats. Biol. Sex Differ. 11, 3.Google Scholar

  • Cummings, J.A., Clinton, S.M., Perry, A.N., Akil, H., and Becker, J.B. (2013). Male rats that differ in novelty exploration demonstrate distinct patterns of sexual behaviour. Behav. Neurosci. 127, 47–58.PubMedCrossrefGoogle Scholar

  • Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine containing neurons in the central nervous system. I: demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, 1–55.Google Scholar

  • Davis, B.A., Clinton, S.M., Akil, H., and Becker, J.B. (2008). The effects of novelty-seeking phenotypes and sex differences on acquisition of cocaine self-administration in selectively bred high-responder and low-responder rats. Pharmacol. Biochem. Behav. 90, 331–338.PubMedCrossrefGoogle Scholar

  • Davis, J.F., Loos, M., Di Sebastiano, A.R., Brown, J.L., Lehman, M.N., and Coolen, L.M. (2010). Lesions of the medial prefrontal cortex cause maladaptive sexual behavior in male rats. Biol. Psychiatry 67, 1199–1204.PubMedCrossrefGoogle Scholar

  • Depoortère, R., Bardin, L., Rodrigues, M., Abrial, E., Allaga, M., and Newman-Tancredi, A. (2009). Penile erection and yawning induced by dopamine D2-like receptor agonists in rats: influence of strain and contribution of dopamine D2, but not D3 and D4 receptors. Behav. Pharmacol. 20, 303–311.CrossrefPubMedGoogle Scholar

  • Derefinko, K.J., Peters, J.R., Eisenlohr-Moul, T.A., Walsh, E.C., Adams, Z.W., and Lunam, D.R. (2014). Relations between trait impulsivity, behavioral impulsivity, physiological arousal, and risky sexual behavior among young men. Arch. Sex. Behav. 43, 1149–1158.CrossrefPubMedGoogle Scholar

  • Diaz-Romero, M., Arias-Montaño, J.A., Eguibar, J.R., and Flores, G. (2005). Enhanced binding of dopamine D1 receptors in caudate-putamen subregions in high-yawning Sprague–Dawley rats. Synapse 56, 69–73.PubMedCrossrefGoogle Scholar

  • Díaz-Morán, S., Palència, M., Mont-Cardona, C., Cañete, T., Blázquez, G., Martínez-Membrives, E., López-Aumatell, R., Tobeña, A., and Fernández-Teruel, A. (2012). Coping style and stress hormone responses in genetically heterogeneous rats: comparison with the Roman rat strains. Behav. Brain Res. 228, 203–210.CrossrefPubMedGoogle Scholar

  • Dominguez, J.M., Muschamp, J.W., Schmich, J.M., and Hull, E.M. (2004). Nitric oxide mediates glutamate-evoked dopamine release in the medial preoptic area. Neuroscience 125, 203–210.CrossrefPubMedGoogle Scholar

  • Dominguez, J.M., Gil, M., and Hull, E.M. (2006). Preoptic glutamate facilitates male sexual behavior. J. Neurosci. 26, 1699–1703.CrossrefPubMedGoogle Scholar

  • Dornan, W.A. and Malsbury, C.W. (1989). Neuropeptides and male sexual behavior. Neurosci. Biobehav. Rev. 13, 1–15.CrossrefPubMedGoogle Scholar

  • Driscoll, P. and Battig, K. (1982). Behavioral, emotional and neurochemical profiles of rats selected for extreme differences in active, two-way avoidance performance. Genetics of the Brain. I. Lieblich, ed. (Amsterdam: Elsevier), pp. 95–123.Google Scholar

  • Driscoll, P., Dedek, J., Martin, J.R., and Zivkovic, B. (1983). Two-way avoidance and acute shock stress induced alterations of regional noradrenergic, dopaminergic and serotonergic activity in Roman high- and low-avoidance rats. Life Sci. 33, 1719–1725.CrossrefPubMedGoogle Scholar

  • Driscoll, P., Lieblich, I., and Cohen, E. (1986). Amphetamine-induced stereotypic responses in Roman high- and Roman low-avoidance rats. Pharmacol. Biochem. Behav. 24, 1329–1332.PubMedCrossrefGoogle Scholar

  • Driscoll, P., Escorihuela, R.M., Fernández-Teruel, A., Giorgi, O., Schwegler, H., Steimer, T., Wiersma, A., Corda, M.G., Flint, J., Koolhaas, J.M., et al. (1998). Genetic selection and differential stress responses: the Roman lines/strains of rats. Ann. N. Y. Acad. Sci. 851, 501–510.CrossrefPubMedGoogle Scholar

  • Durcan, M.J., Fulker, D.W., and Campbell, I.C. (1984). Differences in the stereotypy response but not the hypomotility response to apomorphine in the Roman high and low avoiding strains of rats. Psychopharmacology 82, 215–220.PubMedCrossrefGoogle Scholar

  • Eguibar, J.R. and Moyaho, A. (1997). Inhibition of grooming by pilocarpine differs in high- and low-yawning sublines of Sprague-Dawley rats. Pharmacol. Biochem. Behav. 58, 317–322.PubMedCrossrefGoogle Scholar

  • Eguibar, J.R., Romero-Carbente, J.C., and Moyaho, A. (2003). Behavioral differences between selectively bred rats: D1 versus D2 receptors in yawning and grooming. Pharmacol. Biochem. Behav. 74, 827–832.CrossrefPubMedGoogle Scholar

  • Eguibar, J.R., Cortes, C., Isidro, O., and Ugarte, A. (2015). Central administration of oxytocin differentially increases yawning, penile erections and scratching in high- (HY) and low-yawning (LY) sublines of Sprague-Dawley rats. Pharmacol. Biochem. Behav. 134, 6–11.CrossrefPubMedGoogle Scholar

  • Eguibar, J.R., Cortes, C., Toriz, C.G., Romero-Carbente, J.C., Gonzales-Flores, O., and Fernandez-Guasti, A. (2016). Differential organization of male copulatory patterns in high- and low-yawning-frequency sublines versus outbred Sprague-Dawley rats. Physiol. Behav. 153, 84–90.CrossrefPubMedGoogle Scholar

  • Escorihuela, R.M., Tobeña, A., Driscoll, P., and Fernández-Teruel, A. (1995). Effects of training, early handling, and perinatal flumazenil on shuttle box acquisition in Roman low-avoidance rats: toward overcoming a genetic deficit. Neurosci. Biobehav. Rev. 19, 353–367.CrossrefPubMedGoogle Scholar

  • Escorihuela, R.M., Fernández-Teruel, A., Tobeña, A., Langhans, W., Bättig, K., and Driscoll, P. (1997). Labyrinth exploration, emotional reactivity, and conditioned fear in young Roman/Verh inbred rats. Behav. Genet. 27, 573–578.CrossrefPubMedGoogle Scholar

  • Escorihuela, R.M., Fernández-Teruel, A., Gil, L., Aguilar, R., Tobeña, A., and Driscoll, P. (1999). Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors. Physiol. Behav. 67, 19–26.CrossrefPubMedGoogle Scholar

  • Esnal, A., Sánchez-González, A., Río-Álamos, C., Oliveras, I., Cañete, T., Blázquez, G., Tobeña, A., and Fernández-Teruel, A. (2016). Prepulse inhibition and latent inhibition deficits in Roman high-avoidance vs. Roman low-avoidance rats: modeling schizophrenia-related feature. Physiol. Behav. 163, 267–273.CrossrefGoogle Scholar

  • Estanislau, C., Díaz-Morán, S., Cañete, T., Blázquez, G., Tobeña, A., and Fernández-Teruel, A. (2013). Context-dependent differences in grooming behavior among the NIH heterogeneous stock and the Roman high- and low-avoidance rats. Neurosci. Res. 77, 187–201.CrossrefPubMedGoogle Scholar

  • Everitt, B.J. (1990). Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232.CrossrefPubMedGoogle Scholar

  • Everitt, B.J. and Robbins, T.W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489. Review. Erratum in: Nat. Neurosci. 9, 979.CrossrefPubMedGoogle Scholar

  • Fattore, L., Piras, G., Corda, M.G., and Giorgi, O. (2009). The Roman high- and low-avoidance rat lines differ in the acquisition, maintenance, extinction, and reinstatement of intravenous cocaine self-administration. Neuropsychopharmacology 34, 1091–1101.CrossrefPubMedGoogle Scholar

  • Febo, M. (2011). Prefrontal cell firing in male rats during approach towards sexually receptive female: interactions with cocaine. Synapse 65, 271–277.CrossrefPubMedGoogle Scholar

  • Fernandez-Guasti, A., Omana-Zapata, I., Lujan, M., and Condes-Lara, M. (1994). Actions of sciatic nerve ligature on sexual behavior of sexually experienced and inexperienced male rats: effects of frontal pole decortication. Physiol. Behav. 55, 577–581.PubMedCrossrefGoogle Scholar

  • Fernández-Teruel, A., Escorihuela, R.M., Castellano, B., González, B., and Tobeña, A. (1997). Neonatal handling and environmental enrichment effects on emotionality, novelty/reward seeking, and age-related cognitive and hippocampal impairments: focus on the Roman rat lines. Behav. Genet. 27, 13–26.Google Scholar

  • Fernández-Teruel, A., Driscoll, P., Gil, L., Aguilar, R., Tobeña, A., and Escorihuela, R.M. (2002a). Enduring effects of environmental enrichment on novelty seeking, saccharin and ethanol intake in two rat lines (RHA/Verh and RLA/Verh) differing in incentive-seeking behavior. Pharmacol. Biochem. Behav. 73, 225–231.CrossrefGoogle Scholar

  • Fernández-Teruel, A., Escorihuela, R.M., Gray, J.A., Aguilar, R., Gil, L., Giménez-Llort, L., Tobeña, A., Bhomra, A., Nicod, A., Mott, R., et al. (2002b). A quantitative trait locus influencing anxiety in the laboratory rat. Genome Res. 12, 618–626.CrossrefGoogle Scholar

  • Fibiger, H.C. and Phillips, A.G. (1988). Mesocorticolimbic dopamine systems and reward. Ann. N. Y. Acad. Sci. 537, 206–215.CrossrefPubMedGoogle Scholar

  • Flagel, S.B., Robinson, T.E., Clark, J.J., Clinton, S.M., Watson, S.J., Seeman, P., and Akil, H. (2010). An animal model of genetic vulnerability to behavioral disinhibition and responsiveness to reward-related cues: implications for addiction. Neuropsychopharmacology 35, 388–400.PubMedCrossrefGoogle Scholar

  • Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., and Akil, H. (2011). A selective role for dopamine in stimulus-reward learning. Nature 469, 53–57.PubMedCrossrefGoogle Scholar

  • Fomsgaard, L., Moreno, J.L., de la Fuente Revenga, M., Brudek, T., Adamsen, D., Rio-Alamos, C., Saunders, J., Klein, A.B., Oliveras, I., Cañete, T., et al. (2018). Differences in 5-HT2A and mGlu2 receptor expression levels and repressive epigenetic modifications at the 5-HT2A promoter region in the Roman low- (RLA-I) and high- (RHA-I) avoidance rat strains. Mol. Neurobiol. 55, 1998–2012.CrossrefPubMedGoogle Scholar

  • Frohmader, K.S., Pitchers, K.K., Balfour, M.E., and Coolen, L.M. (2010). Mixing pleasures: review of the effects of drugs on sex behavior in humans and animal models. Horm. Behav. 58, 149–162.PubMedCrossrefGoogle Scholar

  • Garcia-Fuster, M.J., Perez, J.A., Clinton, S.M., Watson, S.J., and Akil, H. (2010). Impact of cocaine on adult hippocampal neurogenesis in an animal model of differential propensity to drug abuse. Eur. J. Neurosci. 31, 79–89.CrossrefGoogle Scholar

  • Garcia-Fuster, M.J., Parks, G.S., Clinton, S.M., Watson, S.J., Akil, H., and Civelli, O. (2012). The melanin-concentrating hormone (MCH) system in an animal model of depression-like behavior. Eur. Neuropsychopharmacol. 22, 607–613.CrossrefGoogle Scholar

  • Gentsch, C., Lichtsteiner, M., Driscoll, P., and Feer, H. (1982). Differential hormonal and physiological responses to stress in Roman high- and low-avoidance rats. Physiol. Behav. 28, 259–263.CrossrefPubMedGoogle Scholar

  • Gil, M., Bhatt, R., Picotte, K.B., and Hull, E.M. (2011). Oxytocin in the medial preoptic area facilitates male sexual behavior in the rat. Horm. Behav. 59, 435–443.CrossrefPubMedGoogle Scholar

  • Gil, M., Bhatt, R., Picotte, K.B., and Hull, E.M. (2013). Sexual experience increases oxytocin receptor gene expression and protein in the medial preoptic area of the male rat. Psychoneuroendocrinology 38, 1688–1697.PubMedCrossrefGoogle Scholar

  • Giménez-Llort, L., Cañete, T., Guitart-Masip, M., Fernández-Teruel, A., and Tobeña, A. (2005). Differential apomorphine-induced locomotion, stereotypy and yawning patterns in Roman high- and low avoidance rats: revealing two singular dopaminergic phenotypes. Physiol. Behav. 86, 458–466.CrossrefGoogle Scholar

  • Giorgi, O., Orlandi, M., Escorihuela, R.M., Driscoll, P., Lecca, D., and Corda, M.G. (1994). GABAergic and dopaminergic transmission in the brain of Roman high-avoidance and Roman low-avoidance rats. Brain Res. 638, 133–138.PubMedCrossrefGoogle Scholar

  • Giorgi, O., Corda, M.G., Carboni, G., Frau, V., Valentini, V., and Di Chiara, G. (1997). Effects of cocaine and morphine in rats from two psychogenetically selected lines: a behavioral and brain dialysis study. Behav. Genet. 27, 537–546.CrossrefGoogle Scholar

  • Giorgi, O., Lecca, D., Piras, G., Driscoll, P., and Corda, M.G. (2003a). Dissociation between mesocortical dopamine release and fear-related behaviours in two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Eur. J. Neurosci. 17, 2716–2726.CrossrefGoogle Scholar

  • Giorgi, O., Piras, G., Lecca, D., Hansson, S., Driscoll, P., and Corda, M.G. (2003b). Differential neurochemical properties of central serotonergic transmission in Roman high- and low-avoidance rats. J. Neurochem. 86, 422–431.Google Scholar

  • Giorgi, O., Lecca, D., Piras, G., and Corda, M.G. (2005). Differential activation of dopamine release in the nucleus accumbens core and shell after acute or repeated amphetamine injections: a comparative study in the Roman high- and low-avoidance rat lines. Neuroscience 135, 987–998.PubMedCrossrefGoogle Scholar

  • Giorgi, O., Piras, G., and Corda, M.G. (2007). The psychogenetically selected Roman high- and low-avoidance rat lines: a model to study the individual vulnerability to drug addiction. Neurosci. Biobehav. Rev. 31, 148–163.CrossrefGoogle Scholar

  • Gonzalez-Lima, F. and Sadile, A.G. (2000). Network operations revealed by brain metabolic mapping in a genetic model of hyperactivity and attention deficit: the naples high- and low-excitability rats. Neurosci. Biobehav. Rev. 24, 157–160.CrossrefGoogle Scholar

  • Goto, Y. and Grace, A.A. (2005). Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 8, 805–812.CrossrefPubMedGoogle Scholar

  • Gresch, P.J., Sved, A.F., Zigmond, M.J., and Finlay, J.M. (1995). Local influence of endogenous norepinephrine on extracellular dopamine in rat medial prefrontal cortex. J. Neurochem. 65, 111–116.PubMedGoogle Scholar

  • Guitart-Masip, M., Johansson, B., Fernández-Teruel, A., Cañete, T., Tobeña, A., Terenius, L., and Giménez-Llort, L. (2006). Divergent anatomical pattern of D1 and D3 binding and DARPP-32 mRNA expression in the Roman rat strains. Implications for drug addiction. Neuroscience 142, 1231–1243.Google Scholar

  • Guitart-Masip, M., Johansson, B., Fernández-Teruel, A., Tobeña, A., and Giménez-Llort, L. (2008). Divergent effect of the selective D3 receptor agonist PD-128,907 on locomotor activity in Roman high- and low-avoidance rats: relationship to NGFI-A gene expression in the Calleja islands. Psychopharmacology 196, 39–49.CrossrefPubMedGoogle Scholar

  • Hernandez-Gonzales, M., Guevara, M.A., Cervantes, M., Morali, G., and Corsi-Cabrera, M. (1998). Characteristic frequency bands of the cortico-frontal EEG during the sexual interaction of the male rat as a result of factorial analysis. J. Physiol. 92, 43–50.Google Scholar

  • Hernandez-Gonzales, M., Prieto-Beracoechea, C.A., Arteaga-Silva, M., and Guevara, M.A. (2007). Different functionality of the medial and orbital prefrontal cortex during a sexually motivated task in rats. Physiol. Behav. 90, 450–458.CrossrefPubMedGoogle Scholar

  • Holmgren, B., Urbá-Holmgren, R., Trucios, N., Zermeño, M., and Eguibar, J.R. (1985). Association of spontaneous and dopaminergic-induced yawning and penile erection in the rat. Pharmacol. Biochem. Behav. 22, 31–35.PubMedCrossrefGoogle Scholar

  • Holstege, G. (2016). How the emotional motor system controls the pelvic organs. Sex. Med. Rev. 4, 303–328.PubMedCrossrefGoogle Scholar

  • Hooks, M.S. and Kalivas, P.W. (1994). Involvement of dopamine and excitatory amino acid transmission in novelty induced motor activity. J. Pharmacol. Exp. Ther. 269, 976–988.PubMedGoogle Scholar

  • Hooks, M.S., Jones, G.H., Smith, A.D., Neill, D.B., and Justice, J.B. Jr. (1991). Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine. Synapse 9, 121–128.CrossrefPubMedGoogle Scholar

  • Hooks, M.S., Juncos, J.L., Justice, J.B. Jr., Meiergerd, S.M., Povlock, S.L., Schenk, J.O., and Kalivas, P.W. (1994). Individual locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs. J. Neurosci. 14, 6144–6152.PubMedCrossrefGoogle Scholar

  • Hull, E.M. and Dominguez, J.M. (2006). Getting his act together: roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain Res. 1126, 66–75.PubMedCrossrefGoogle Scholar

  • Hull, E.M. and Dominguez, J.M. (2007). Sexual behavior in male rodents. Horm. Behav. 52, 45–55.CrossrefPubMedGoogle Scholar

  • Hull, E.M., Weber, M.S., Eaton, R.C., Dua, R., Markowski, V.P., Lumley, L., and Moses, J. (1991). Dopamine receptors in the ventral tegmental area affect motor, but not motivational or reflexive, components of copulation in male rats. Brain Res. 554, 72–76.PubMedCrossrefGoogle Scholar

  • Hull, E.M., Du, J., Lorrain, D.S., and Matuszewich, L. (1995). Extracellular dopamine in the medial preoptic area: implications for sexual motivation and hormonal control of copulation. J. Neurosci. 15, 7465–7471.CrossrefPubMedGoogle Scholar

  • Hull, E.M., Lorrain, D.S., Du, J., Matuszewich, L., Lumley, L.A., Putnam, S.K., and Moses, J. (1999). Hormone-neurotransmitter interactions in the control of sexual behavior. Behav. Brain. Res. 105, 105–116.PubMedCrossrefGoogle Scholar

  • Hull, E.M., Meisel, R.L., and Sachs, B.D. (2002). Male sexual behavior. hormones, brain and behavior. D.W. Pfaff, A.P. Arnold, A.M. Etgen, S.E. Fahrbach and R.T. Rubin, eds. (New York, USA: Academic Press), pp. 3–137.Google Scholar

  • Hull, E.M., Muschamp, J.W., and Sato, S. (2004). Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav. 83, 291–307.CrossrefPubMedGoogle Scholar

  • Kabbaj, M. and Akil, H. (2001). Individual differences in novelty-seeking behavior in rats: a c-fos study. Neuroscience 106, 535–545.PubMedCrossrefGoogle Scholar

  • Kabbaj, M., Devine, D.P., Savage, V.R., and Akil, H. (2000). Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J. Neurosci. 20, 6983–6988.PubMedCrossrefGoogle Scholar

  • Kakeyama, M., Sone, H., Miyabara, Y., and Tohyama, C. (2003). Perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters activity-dependent expression of BDNF mRNA in the neocortex and male rat sexual behavior in adulthood. Neurotoxicology 24, 207–217.PubMedCrossrefGoogle Scholar

  • Kaplan, H.S. (1979). Disorders of Sexual Desire (New York, USA: Brunner/Mazel).Google Scholar

  • Kerman, I.A., Clinton, S.M., Bedrosian, T.A., Abraham, A.D., Rosenthal, D.T., Akil, H., and Watson, S.J. (2011). High novelty-seeking predicts aggression and gene expression differences within defined serotonergic cell groups. Brain Res. 1419, 34–45.PubMedCrossrefGoogle Scholar

  • Klein, A.B., Ultved, L., Adamsen, D., Santini, M.A., Tobeña, A., Fernandez-Teruel, A., Flores, P., Moreno, M., Cardona, D., Knudsen, G.M., et al. (2014). 5-HT(2A) and mGlu2 receptor binding levels are related to differences in impulsive behavior in the Roman Low- (RLA) and High- (RHA) avoidance rat strains. Neuroscience 263, 36–45.CrossrefPubMedGoogle Scholar

  • Kulagowski, J.J., Broughton, H.B., Curtis, N.R., Mawer, I.M., Ridgill, M.P., Baker, R., Emms, F., Freedman, S.B., Marwood, R., Patel, S., et al. (1996). 3-[[4-(4-Chlorophenyl)piperazin-1-yl]-methyl]-1H-pyrrolo[2,3-b]pyridine: an antagonist with high affinity and selectivity for the human dopamine D4 receptor. J. Med. Chem. 39, 1941–1942.PubMedCrossrefGoogle Scholar

  • Lecca, D., Piras, G., Driscoll, P., Giorgi, O., and Corda, M.G. (2004). A differential activation of dopamine output in the shell and core of the nucleus accumbens is associated with the motor responses to addictive drugs: a brain dialysis study in Roman high- and low-avoidance rats. Neuropharmacology 46, 688–699.CrossrefPubMedGoogle Scholar

  • Leiblum, S.R. (1998). Definition and classification of female sexual disorders. Int. J. Impot. Res. 10, S104–S106; discussion S124–S125.Google Scholar

  • Lemaire, V., Aurousseau, C., Le Moal, M., and Abrous, D.N. (1999). Behavioural trait of reactivity to novelty is related to hippocampal neurogenesis. Eur. J. Neurosci. 11, 4006–4014.CrossrefPubMedGoogle Scholar

  • Leo, D., Sukhanov, I., Zoratto, F., Illiano, P., Caffino, L., Sanna, F., Messa, G., Emanuele, M., Esposito, A., Dorofeikova, M., et al. (2018). Pronounced hyperactivity, cognitive dysfunctions and bdnf dysregulation in dopamine transporter knockout rats. J. Neurosci. 38, 1959–1972.PubMedCrossrefGoogle Scholar

  • Levine, S.B. (2010). What is sexual addiction? J. Sex. Marital Ther. 36, 261–275.CrossrefPubMedGoogle Scholar

  • Lindvall, O., Björklund, A., and Skagerberg, G. (1984). Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res. 306, 19–30.PubMedCrossrefGoogle Scholar

  • Löber, S., Hubner, H., Utz, W., and Gmeiner, P. (2001). Rationally based efficacy tuning of selective dopamine D4 receptor ligands leading to the complete antagonist 2-[4-(4-Chlorophenyl) piperazin-1-ylmethyl]pyrazolo[1,5-a]pyridine (FAUC 213). J. Med. Chem. 44, 2691–2694.PubMedCrossrefGoogle Scholar

  • Löber, S., Hübner, H., Buschauer, A., Sanna, F., Argiolas, A., Melis, M.R., and Gmeiner, P. (2012). Novel azulene derivatives for the treatment of erectile dysfunction. Bioorg. Med. Chem. Lett. 22, 7151–7154.CrossrefPubMedGoogle Scholar

  • López-Aumatell, R., Vicens-Costa, E., Guitart-Masip, M., Martínez-Membrives, E., Valdar, W., Johannesson, M., Cañete, T., Blázquez, G., Driscoll, P., Flint, J., et al. (2009). Unlearned anxiety predicts learned fear: a comparison among heterogeneous rats and the Roman rat strains. Behav. Brain Res. 202, 92–101.CrossrefGoogle Scholar

  • Lukasiewicz, M., Neveu, X., Blecha, L., Falissard, B., Reynaud, M., and Gasquet, I. (2008). Pathways to substance-related disorder: a structural model approach exploring the influence of temperament, character, and childhood adversity in a national cohort of prisoners. Alcohol Alcohol 43, 287–295.CrossrefGoogle Scholar

  • Mabrouk, O.S., Han, J.L., Wong, J.T., Akil, H., Kennedy, R.T., and Flagel, S.B. (2018). The in vivo neurochemical profile of selectively bred high-responder and low responder rats reveals baseline, cocaine-evoked, and novelty-evoked differences in monoaminergic systems. ACS Chem. Neurosci. 9, 715–724.CrossrefPubMedGoogle Scholar

  • Maejima, S., Ohishi, N., Yamaguchi, S., and Tsukahara, S. (2015). A neural connection between the central part of the medial preoptic nucleus and the bed nucleus of the stria terminalis to regulate sexual behavior in male rats. Neurosci. Lett. 606, 66–71.CrossrefPubMedGoogle Scholar

  • Magariños, A.M. and Pfaff, D. (2016). Sexual motivation in the female and its opposition by stress. Curr. Top. Behav. Neurosci. 27, 35–49.PubMedGoogle Scholar

  • Manzo, L., Gómez, M.J., Callejas-Aguilera, J.E., Donaire, R., Sabariego, M., Fernández-Teruel, A., Cañete, A., Blázquez, G., Papini, M.R., and Torres, C. (2014). Relationship between ethanol preference and sensation/novelty seeking. Physiol. Behav. 133, 53–60.CrossrefPubMedGoogle Scholar

  • Masters, W.H. and Johnson, V.E. (1966). Human Sexual Response (Boston, USA: Little, Brown).Google Scholar

  • McKenna, K.E. (2000). Some proposals regarding the organization of the central nervous system control of penile erection. Neurosci. Biobehav. Rev. 24, 535–540.CrossrefPubMedGoogle Scholar

  • Meisel, R.L. and Sachs, B.D. (1994). The physiology of male sexual behaviour. The Physiology of Reproduction. E. Knobil and J. Neil, eds. 2nd ed., vol. 2. (New York, USA: Raven Press), pp. 3–96.Google Scholar

  • Melis, M.R. and Argiolas, A. (1995). Dopamine and sexual behavior. Neurosci. Biobehav. Rev. 19, 19–38.PubMedCrossrefGoogle Scholar

  • Melis, M.R. and Argiolas, A. (1997). Role of central nitric oxide in the control of penile erection and yawning. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 899–922.CrossrefPubMedGoogle Scholar

  • Melis, M.R. and Argiolas, A. (1999). Yawning: role of hypothalamic paraventricular nitric oxide. Acta Pharmacol. Sin. 20, 778–788.Google Scholar

  • Melis, M.R. and Argiolas, A. (2002). Reduction of drug-induced yawning and penile erection and of non contact erections in male rats by the activation of GABAA receptors in the paraventricular nucleus: involvement of nitric oxide. Eur. J. Neurosci. 15, 852–860.CrossrefGoogle Scholar

  • Melis, M.R. and Argiolas, A. (2003). Central oxytocinergic neurotransmission: a drug target for the therapy of psychogenic erectile dysfunction. Curr. Drug Targets 4, 55–66.CrossrefPubMedGoogle Scholar

  • Melis, M.R. and Argiolas, A. (2011). Central control of penile erection: a re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci. Biobehav. Rev. 35, 939–955.PubMedCrossrefGoogle Scholar

  • Melis, M.R., Argiolas, A., and Gessa, G.L. (1987). Apomorphine-induced penile erection and yawning: site of action in brain. Brain Res. 415, 98–104.PubMedCrossrefGoogle Scholar

  • Melis, M.R., Succu, S., and Argiolas, A. (1997a). Prevention by morphine of N-methyl-D-aspartic acid-induced penile erection and yawning: involvement of nitric oxide. Brain Res. Bull. 44, 689–694.CrossrefGoogle Scholar

  • Melis, M.R., Succu, S., Iannucci, U., and Argiolas, A. (1997b). Prevention by morphine of apomorphine- and oxytocin-induced penile erection and yawning: involvement of nitric oxide. Naunyn-Schmiedeberg’s Arch. Pharmacol. 355, 595–600.CrossrefGoogle Scholar

  • Melis, M.R., Succu, S., Mascia, M.S., and Argiolas, A. (2001). The activation of gamma aminobutyric acid(A) receptors in the paraventricular nucleus of the hypothalamus reduces non-contact penile erections in male rats. Neurosci. Lett. 314, 123–126.PubMedCrossrefGoogle Scholar

  • Melis, M.R., Succu, S., Mascia, M.S., Cortis, L., and Argiolas, A. (2003). Extracellular dopamine increases in the paraventricular nucleus of male rats during sexual activity. Eur. J. Neurosci. 17, 1266–1272.CrossrefPubMedGoogle Scholar

  • Melis, M.R., Succu, S., Mascia, M.S., Cortis, L., and Argiolas, A. (2004). Extracellular excitatory amino acids increase in the paraventricular nucleus of male rats during sexual activity: main role of N-methyl-d-aspartic acid receptors in erectile function. Eur. J. Neurosci. 19, 2569–2575.PubMedCrossrefGoogle Scholar

  • Melis, M.R., Succu, S., Mascia, M.S., and Argiolas, A. (2005). PD-168,077, a selective dopamine D4 receptor agonist, induces penile erection when injected into the paraventricular nucleus of male rats. Neurosci. Lett. 379, 59–62.CrossrefPubMedGoogle Scholar

  • Melis, M.R., Succu, S., Mascia, M.S., Sanna, F., Melis, T., Castelli, M.P., and Argiolas, A. (2006a). The cannabinoid receptor antagonist SR-141716A induces penile erection in male rats: involvement of paraventricular glutamic acid and nitric oxide. Neuropharmacology 50, 219–228.CrossrefGoogle Scholar

  • Melis, M.R., Succu, S., Sanna, F., Melis, T., Mascia, M.S., Enguehard-Gueiffier, C., Hubner, H., Gmeiner, P., Gueiffier, A., and Argiolas, A. (2006b). PIP3EA and PD-168077, two selective dopamine D4 receptor agonists, induce penile erection in male rats: site and mechanism of action in the brain. Eur. J. Neurosci. 24, 2021–2030.CrossrefGoogle Scholar

  • Melis, M.R., Melis, T., Cocco, C., Succu, S., Sanna, F., Pillolla, G., Boi, A., Ferri, G.L., and Argiolas, A. (2007). Oxytocin injected into the ventral tegmental area induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur. J. Neurosci. 26, 1026–1035.CrossrefPubMedGoogle Scholar

  • Melis, M.R., Succu, S., Sanna, F., Boi, A., and Argiolas, A. (2009). Oxytocin injected into the ventral subiculum or the posteromedial cortical nucleus of the amygdala induces penile erection and increases extracellular dopamine levels in the nucleus accumbens of male rats. Eur. J. Neurosci. 30, 1349–135.CrossrefPubMedGoogle Scholar

  • Melis, M.R., Succu, S., Cocco, C., Caboni, E., Sanna, F., Boi, A., Ferri, G.L., and Argiolas, A. (2010). Oxytocin induces penile erection when injected into the ventral subiculum: role of nitric oxide and glutamic acid. Neuropharmacology. 58, 1153–1160.PubMedCrossrefGoogle Scholar

  • Melis, M.R., Sanna, F., Succu, S., Ferri, G.L., and Argiolas, A. (2012). Neuroendocrine regulatory peptide-1 and neuroendocrine regulatory peptide-2 influence differentially feeding and penile erection in male rats: sites of action in the brain. Regul. Pept. 177, 46–52.PubMedCrossrefGoogle Scholar

  • Mendelson, S.D. and Gorzalka, B.B. (1987). An improved chamber for the observation and analysis of the suxual behavior of the female rat. Physiol. Behav. 39, 67–71.CrossrefGoogle Scholar

  • Meraz-Medina, T., Hernández-González, M., Bonilla-Jaime, H., Guevara, M.A., Flores-Mancilla, L., Vigueras-Villaseñor, R.M., and Arteaga-Silva, M. (2017). Changes in hormonal levels associated with enforced interval copulation and anxiety in sexually inexperienced and experienced male rats. Physiol. Behav. 177, 74–81.CrossrefPubMedGoogle Scholar

  • Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., and Caron, M.G. (1998). Dopamine receptors: from structure to function. Physiol. Rev. 78, 189–225.CrossrefPubMedGoogle Scholar

  • Miwa, Y., Nagase, K., Oyama, N., Akino, H., and Yokoyama, O. (2011). Effect of corticotropin-releasing factor receptor antagonist on psychologically suppressed masculine sexual behavior in rats. J. Sex. Med. 8, 688–695.PubMedCrossrefGoogle Scholar

  • Moreno, M., Cardona, D., Gómez, M.J., Sánchez-Santed, F., Tobeña, A., Fernández-Teruel, A., Campa, L., Suñol, C., Escarabajal, M.D., Torres, C., et al. (2010). Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35, 1198–1208.CrossrefPubMedGoogle Scholar

  • Moses, J., Loucks, J.A., Watson, H.L., Matuszewich, L., and Hull, E.M. (1995). Dopaminergic drugs in the medial preoptic area and nucleus accumbens: effects on motor activity, sexual motivation, and sexual performance. Pharmacol. Biochem. Behav. 51, 681–686.PubMedCrossrefGoogle Scholar

  • Moss, H.B., Blackson, T.C., Martin, C.S., and Tarter, R.E. (1992). Heightened motor activity level in male offspring of substance abusing fathers. Biol. Psychiatry 32, 1135–1147.PubMedCrossrefGoogle Scholar

  • Moyaho, A., Barajas, M., Ugarte, A., and Eguibar, J. R. (2009). Genetic and littermate influences on yawning in two selectively bred strains of rats. Dev. Psychobiol. 51, 243–248.CrossrefPubMedGoogle Scholar

  • Nagoshi, C.T., Wilson, J.R., and Rodriguez, L.A. (1991). Impulsivity, sensation seeking, and behavioral and emotional responses to alcohol. Alcohol Clin. Exp. Res. 15, 661–667.CrossrefPubMedGoogle Scholar

  • Oliveras, I., Río-Álamos, C., Cañete, T., Blázquez, G., Martínez-Membrives, E., Giorgi, O., Corda, M.G., Tobeña, A., and Fernández-Teruel, A. (2015). Prepulse inhibition predicts spatial working memory performance in the inbred Roman high- and low-avoidance rats and in genetically heterogeneous NIH-HS rats: relevance for studying pre-attentive and cognitive anomalies in schizophrenia. Front. Behav. Neurosci. 9, 213.PubMedGoogle Scholar

  • Overstreet, D.H., Russell, R.W., Hay, D.A., and Crocker, A.D. (1992). Selective breeding for increased cholinergic function: biometrical genetic analysis of muscarinic responses. Neuropsychopharmacology 7, 197–204.PubMedGoogle Scholar

  • Paredes, R.G. (2014). Opioids and sexual reward. Pharmacol. Biochem. Behav. 121, 124–131.PubMedCrossrefGoogle Scholar

  • Patel, S., Freedman, S., Chapman, K.L., Emms, F., Fletcher, A.E., Knowles, M., Marwood, R., Mcallister, G., Myers, J., Curtis, N., et al. (1997). Biological profile of L 745,870, a selective antagonist with high affinity for the dopamine D4 receptor. J. Pharmacol. Exp. Ther. 283, 636–647.PubMedGoogle Scholar

  • Pedersen, C.A., Caldwell, J.D., Peterson, G., Walker, C.H., and Mason, G.A. (1992). Oxytocin activation of maternal behavior in the rat. Ann. N. Y. Acad. Sci. 652, 58–69.PubMedCrossrefGoogle Scholar

  • Perez, J.A., Clinton, S.M., Turner, C.A., Watson, S.J., and Akil, H. (2009). A new role for FGF2 as an endogenous inhibitor of anxiety. J. Neurosci. 29, 6379–6387.CrossrefPubMedGoogle Scholar

  • Pfaus, J.G. (2010). Dopamine: helping males copulate for at least 200 million years: theoretical comment on Kleitz-Nelson et al. Behav. Neurosci. 124, 877–880.PubMedCrossrefGoogle Scholar

  • Pfaus, J.G. and Everitt, B.J. (1995). Psychopharmacology: The Fourth Generation of Progress. F.E. Knobil, and D.J. Kupfer, eds. (New York, USA: Raven Press), pp. 742–758.Google Scholar

  • Pfaus, J.G. and Gorzalka, B.B. (1987). Opioids and sexual behavior. Neurosci. Biobehav. Rev. 11, 1–34.CrossrefPubMedGoogle Scholar

  • Pfaus, J.G. and Phillips, A.G. (1989). Differential effects of dopamine receptor antagonists on the sexual behaviour of male rats. Psychopharmacology 98, 363–368.CrossrefPubMedGoogle Scholar

  • Pfaus, J.G. and Phillips, A.G. (1991). Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav. Neurosci. 105, 727–747.CrossrefPubMedGoogle Scholar

  • Pfaus, J.G., Damsma, G., Nomikos, G.G., Wenkstern, D.G., Blaha, C.D., Phillips, A.G., and Fibiger, H.C. (1990). Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 530, 345–348.PubMedCrossrefGoogle Scholar

  • Piazza, P.V., Rouge-Pont, F., Deminiere, J.M., Kharoubi, M., Le Moal, M., and Simon, H. (1991). Dopaminergic activity is reduced in the prefrontal cortex and increased in the nucleus accumbens of rats predisposed to develop amphetamine self-administration. Brain Res. 567, 169–174.CrossrefPubMedGoogle Scholar

  • Piras, G., Giorgi, O., and Corda, M.G. (2010). Effects of antidepressants on the performance in the forced swim test of two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Psychopharmacology 211, 403–414.CrossrefPubMedGoogle Scholar

  • Poeppl, T.B., Langguth, B., Rupprecht, R., Laird, A.R., and Eickhoff, S.B. (2016). A neural circuit encoding sexual preference in humans. Neurosci. Biobehav. Rev. 68, 530–536.PubMedCrossrefGoogle Scholar

  • Pomerantz, S.M. (1990). Apomorphine facilitates male sexual behavior of rhesus monkeys. Pharmacol. Biochem. Behav. 35, 659–664.PubMedCrossrefGoogle Scholar

  • Pomerantz, S.M. (1991). Quinelorane (LY163502), a D2 dopamine receptor agonist, acts centrally to facilitate penile erections of male rhesus monkeys. Pharmacol. Biochem. Behav. 39, 123–128.CrossrefPubMedGoogle Scholar

  • Pomerantz, S.M., Hepner, B.C., and Wertz, J.M. (1993). Serotonergic influences on male sexual behavior of rhesus monkeys: effects of serotonin agonists. Psychopharmacology 111, 47–54.CrossrefPubMedGoogle Scholar

  • Portillo, W. and Paredes, R.G. (2003). Sexual and olfactory preference in noncopulating male rats. Physiol. Behav. 80, 155–162.CrossrefPubMedGoogle Scholar

  • Portillo, W. and Paredes, R.G. (2004). Sexual incentive motivation, olfactory preference, and activation of the vomeronasal projection pathway by sexually relevant cues in non-copulating and naive male rats. Horm. Behav. 46, 330–340.CrossrefPubMedGoogle Scholar

  • Portillo, W., Camacho, F., Eguibar, J.R., and Paredes, R.G. (2010). Behavioral characterization of non-copulating male rats with high spontaneous yawning frequency rate. Behav. Brain Res. 214, 225–230.CrossrefPubMedGoogle Scholar

  • Portillo, W., Antonio-Cabrera, E., Camacho, F.J., Diaz, N.F., and Paredes, R.G. (2013). Behavioral characterization of non-copulating male mice. Horm. Behav. 64, 70–80.CrossrefPubMedGoogle Scholar

  • Reavill, C., Taylor, S.G., Wood, M.D., Ashmeade, T., Austin, N.E., Avenell, K.Y., Boyfield, I., Branch, C.L., Cilia, J., Coldwell, M.C., et al. (2000). Pharmacological actions of a novel, high-affinity, and selective human dopamine D3 receptor antagonist, SB-277011A. J. Pharmacol. Exp. Ther. 294, 1154–1165.Google Scholar

  • Rettemberger, M., Kelin, V., and Briken, P. (2016). The relationship between hypersexual behavior, sexual excitation, sexual inhibition and personalities. Arch. Sex. Behav. 45, 219–233.CrossrefPubMedGoogle Scholar

  • Robbins, T.W. and Arnsten, A.F.T. (2009). The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Ann. Rev. Neurosci. 32, 267–287.CrossrefGoogle Scholar

  • Rosario, L.A. and Abercrombie, E.D. (1999). Individual differences in behavioral reactivity: correlation with stress induced norepinephrine efflux in the hippocampus of Sprague-Dawley rats. Brain Res. Bull. 48, 595–602.PubMedCrossrefGoogle Scholar

  • Rouge-Pont, F., Deroche, V., Le Moal, M., and Piazza, P.V. (1998). Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur. J. Neurosci. 10, 3903–3907.PubMedCrossrefGoogle Scholar

  • Sachs, B.D. (1997). Erection evoked in male rats by airborne scent from estrous females. Physiol. Behav. 62, 921–924.PubMedCrossrefGoogle Scholar

  • Sachs, B.D. and Barfield, R.J. (1976). Functional analysis of masculine copulatory behavior in the rat. Adv. Study Behav. 7, 91–154.CrossrefGoogle Scholar

  • Sachs, B.D. and Meisel, R.L. (1988). The Physiology of Reproduction, vol. 2. E. Knobil and J. Neil, eds. (New York, USA: Raven Press), pp. 1393–1485.Google Scholar

  • Sachs, B.D., Akasofu, K., Citro, J.K., Daniels, S.B., and Natoli, J.H. (1994). Non-contact stimulation from estrus females evokes penile erection in rats. Physiol. Behav. 55, 1073–1079.CrossrefGoogle Scholar

  • Sanna, F., Succu, S., Hübner, H., Gmeiner, P., Argiolas, A., and Melis, M.R. (2011). Dopamine D2-like receptor agonists induce penile erection in male rats: differential role of D2, D3 and D4 receptors in the paraventricular nucleus of the hypothalamus. Behav. Brain Res. 225, 169–176.PubMedCrossrefGoogle Scholar

  • Sanna, F., Argiolas, A., and Melis, M.R. (2012a). Oxytocin-induced yawning: sites of action in the brain and interaction with mesolimbic/mesocortical and incertohypothalamic dopaminergic neurons in male rats. Horm. Behav. 62, 505–514.CrossrefGoogle Scholar

  • Sanna, F., Succu, S., Melis, M.R., and Argiolas, A. (2012b). Dopamine agonist-induced penile erection and yawning: differential role of D₂-like receptor subtypes and correlation with nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats. Behav. Brain Res. 230, 355–364.CrossrefGoogle Scholar

  • Sanna, F., Corda, M.G., Melis, M.R., Piludu, M.A., Löber, S., Hübner, H., Gmeiner, P., Argiolas, A., and Giorgi, O. (2013). Dopamine agonist-induced penile erection and yawning: a comparative study in outbred Roman high- and low-avoidance rats. Pharmacol. Biochem. Behav. 109, 59–66.CrossrefPubMedGoogle Scholar

  • Sanna, F., Corda, M.G., Melis, M.R., Piludu, M.A., Giorgi, O., and Argiolas, A. (2014a). Male Roman high and low avoidance rats show different patterns of copulatory behaviour: comparison with Sprague-Dawley rats. Physiol. Behav. 127, 27–36.CrossrefGoogle Scholar

  • Sanna, F., Piludu, M.A., Corda, M.G., Argiolas, A., Giorgi, O., and Melis, M.R. (2014b). Dopamine is involved in the different patterns of copulatory behaviour of Roman high and low avoidance rats: studies with apomorphine and haloperidol. Pharmacol. Biochem. Behav. 124, 211–219.CrossrefGoogle Scholar

  • Sanna, F., Contini, A., Melis, M.R., and Argiolas, A. (2015a). Role of dopamine D4 receptors in copulatory behavior: studies with selective D4 agonists and antagonists in male rats. Pharmacol. Biochem. Behav. 137, 110–118.CrossrefGoogle Scholar

  • Sanna, F., Piludu, M.A., Corda, M.G., Melis, M.R., Giorgi, O., and Argiolas, A. (2015b). Involvement of dopamine in the differences in sexual behaviour between Roman high and low avoidance rats: an intracerebral microdialysis study. Behav. Brain Res. 281, 177–186.CrossrefGoogle Scholar

  • Sanna, F., Argiolas, A., and Melis, M.R. (2016). Dopamine, erectile function and sexual behavior: last discoveries and possible advances. New Developments in Dopamine Research. G. Hopkins, ed. (New York, USA: Nova Publishers, Inc.), pp. 45–84.Google Scholar

  • Sanna, F., Bratzu, J., Piludu, M.A., Corda, M.G., Melis, M.R., Giorgi, O., and Argiolas, A. (2017a). Dopamine, noradrenaline and differences in sexual behavior between Roman high and low avoidance male rats: a microdialysis study in the medial prefrontal cortex. Front. Behav. Neurosci. 11, 108.CrossrefGoogle Scholar

  • Sanna, F., Bratzu, J., Argiolas, A., and Melis, M.R. (2017b). Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis of male rats: involvement of glutamic acid, dopamine and nitric oxide. Horm. Behav. 96, 52–61.CrossrefGoogle Scholar

  • Schwegler, H., Pilz, P.K.D., Koch, M., Fendt, M., Linke, R., and Driscoll, P. (1997). The acoustic startle response in inbred Roman high and low-avoidance rats. Behav. Genet. 27, 579–582.CrossrefPubMedGoogle Scholar

  • Seeman, P. and Van Tol, H.H. (1994). Dopamine receptor pharmacology. Trends Pharmacol. Sci. 15, 264–270.CrossrefPubMedGoogle Scholar

  • Serretti, A., Mandelli, L., Lorenzi, C., Landoni, S., Calati, R., Insacco, C., and Cloninger, C.R. (2006). Temperament and character in mood disorders: influence of DRD4, SERTPR, TPH and MAO-A polymorphisms. Neuropsychobiology 53, 9–16.CrossrefPubMedGoogle Scholar

  • Siegel, J. (1997). Augmenting and reducing of visual evoked potentials in high- and low sensation seeking humans, cats, and rats. Behav. Genet. 27, 557–563.CrossrefPubMedGoogle Scholar

  • Skakoon-Sparling, S., Cramer, K.M., and Shuper, P.A. (2016). The impact of sexual arousal on sexual risk-taking and decision-making in men and women. Arch. Sex. Behav. 45, 33–42.PubMedCrossrefGoogle Scholar

  • Sokoloff, P. and Schwartz, J.C. (1995). Novel dopamine receptors half a decade later. Trends Pharmacol. Sci. 16, 270–275.CrossrefPubMedGoogle Scholar

  • Solla, P., Bortolato, M., Cannas, A., Mulas, C.S., and Marrosu, F. (2015). Paraphilias and paraphilic disorders in Parkinson’s disease: a systematic review of the literature. Mov. Disord. 30, 604–613.PubMedCrossrefGoogle Scholar

  • Stead, J.D., Clinton, S., Neal, C., Schneider, J., Jama, A., Miller, S., Vazquez, D.M., Watson, S.J., and Akil, H. (2006). Selective breeding for divergence in novelty-seeking traits: heritability and enrichment in spontaneous anxiety-related behaviors. Behav. Genet. 36, 697–712.CrossrefPubMedGoogle Scholar

  • Stedenfeld, K.A., Clinton, S.M., Kerman, I.A., Akil, H., Watson, S.J., and Sved, A.F. (2011). Novelty-seeking behaviour predicts vulnerability in a rodent model of depression. Physiol. Behav. 103, 210–216.CrossrefGoogle Scholar

  • Steimer, T. and Driscoll, P. (2003). Divergent stress responses and coping styles in psychogenetically selected Roman high-(RHA) and low-(RLA) avoidance rats: behavioural, neuroendocrine and developmental aspects. Stress 6, 87–100.PubMedCrossrefGoogle Scholar

  • Steimer, T. and Driscoll, P. (2005). Inter-individual vs. kine/strain differences in psychogenetically selected Roman High-(RHA) and low-(RLA) avoidance rats: neuroendocrine and behavioural aspects. Neurosci. Biobehav. Rev. 29, 99–112.CrossrefGoogle Scholar

  • Steimer, T., la Fleur, S., and Schulz, P.E. (1997). Neuroendocrine correlates of emotional reactivity and coping in male rats from the Roman high (RHA/Verh)- and low (RLA/Verh)-avoidance lines. Behav. Genet. 27, 503–512.PubMedCrossrefGoogle Scholar

  • Stemp, G., Ashmeade, T., Branch, C.L., Hadley, M.S., Hunter, A.J., Johnson, C.N., Nash, D.J., Thewlis, K.M., Vong, A.K., Austin, N.E., et al. (2000). Design and synthesis of trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): a potent and selective dopamine D(3) receptor antagonist with high oral bioavailability and CNS penetration in the rat. J. Med. Chem. 43, 1878–1885.PubMedCrossrefGoogle Scholar

  • Succu, S., Sanna, F., Melis, T., Boi, A., Argiolas, A., and Melis, M.R. (2007). Stimulation of dopamine receptors in the paraventricular nucleus of the hypothalamus of male rats induces penile erection and increases extra-cellular dopamine in the nucleus accumbens: involvement of central oxytocin. Neuropharmacology 52, 1034–1043.PubMedCrossrefGoogle Scholar

  • Succu, S., Sanna, F., Cocco, C., Melis, T., Boi, A., Ferri, G.L., Argiolas, A., and Melis, M.R. (2008). Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur. J. Neurosci. 28, 813–821.CrossrefPubMedGoogle Scholar

  • Succu, S., Sanna, F., Argiolas, A., and Melis, M.R. (2011). Oxytocin injected into the hippocampal ventral subiculum induces penile erection in male rats by increasing glutamatergic neurotransmission in the ventral tegmental area. Neuropharmacology 61, 181–188.CrossrefPubMedGoogle Scholar

  • Tournier, B.B., Steimer, T., Millet, P., Moulin-Sallanon, M., Vallet, P., Ibañez, V., and Ginovart, N. (2013). Innately low D2 receptor availability is associated with high novelty-seeking and enhanced behavioural sensitization to amphetamine. Int. J. Neuropsychopharmacol. 16, 1819–1834.PubMedCrossrefGoogle Scholar

  • Ugarte, A., Eguibar, J.R., Cortés Mdel, C., León-Chávez, B.A., and Melo, A.I. (2011). Comparative analysis of maternal care in the high-yawning (HY) and low-yawning (LY) sublines from Sprague-Dawley rats. Dev. Psychobiol. 53, 105–117.CrossrefPubMedGoogle Scholar

  • Urbá-Holmgren, R., Trucios, N., Holmgren, B., Eguibar, J.R., Gavito, A., Cruz, G., and Santos, A. (1990). Genotypic dependency of spontaneous yawning frequency in the rat. Behav. Brain Res. 40, 29–35.PubMedCrossrefGoogle Scholar

  • Van Laere, K., Goffin, K., Bormans, G., Casteels, C., Mortelmans, L., de Hoon, J., Grachev, I., Vandenbulcke, M., and Pieters, G. (2009). Relationship of type 1 cannabinoid receptor availability in the human brain to novelty-seeking temperament. Arch. Gen. Psychiatry 66, 196–204.CrossrefPubMedGoogle Scholar

  • Veening, J.G., de Jong, T.R., Waldinger, M.D., Korte, S.M., and Olivier, B. (2015). The role of oxytocin in male and female reproductive behavior. Eur. J. Pharmacol. 753, 209–228.CrossrefPubMedGoogle Scholar

  • Viggiano, D., Ruocco, L.A., and Sadile, A.G. (2003a). Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci. Biobehav. Rev. 27, 623–627.CrossrefGoogle Scholar

  • Viggiano, D., Vallone, D., Ruocco, L.A., and Sadile, A.G. (2003b). Behavioural, pharmacological, morpho-functional molecular studies reveal a hyperfunctioning mesocortical dopamine system in an animal model of attention deficit and hyperactivity disorder. Neurosci. Biobehav. Rev. 27, 683–689.CrossrefGoogle Scholar

  • Walker, C.D., Rivest, R.W., Meaney, M.J., and Aubert, M.L. (1989). Differential activation of the pituitary–adrenocortical axis after stress in the rat: use of two genetically selected lines (Roman low- and high-avoidance rats) as a model. J. Endocrinol. 123, 477–485.PubMedCrossrefGoogle Scholar

  • Walusinski, O. (2010a). Historical perspectives. Front. Neurol. Neurosci. 28, 1–21.CrossrefGoogle Scholar

  • Walusinski, O. (2010b). Popular knowledge and beliefs. Front. Neurol. Neurosci. 28, 22–25.CrossrefGoogle Scholar

  • Walusinski, O. (2010c). Fetal yawning. Front. Neurol. Neurosci. 28, 32–41.CrossrefGoogle Scholar

  • Westernik, B.H.C., De Boer, P., De Vries, J.B., and Long, S. (1998). Antipsychotic drugs induce similar effects on the release of dopamine and noradrenaline in the medial prefrontal cortex of the rat brain. Eur. J. Pharmacol. 361, 27–33.CrossrefPubMedGoogle Scholar

  • Will, R.G., Hull, E.M., and Dominguez, J.M. (2014). Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacol. Biochem. Behav. 121, 115–123.CrossrefPubMedGoogle Scholar

  • Wise, R.A. and Romprè, P.P. (1989). Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–225.PubMedCrossrefGoogle Scholar

  • White, D.A., Kalinichev, M., and Holtzman, S.G. (2007). Locomotor response to novelty as a predictor of reactivity to aversive stimuli in the rat. Brain Res. 1149, 141–148.PubMedCrossrefGoogle Scholar

  • Zeier, H., Baettig, K., and Driscoll, P. (1978). Acquisition of DRL-20 behavior in male and female, Roman high- and low-avoidance rats. Physiol. Behav. 20, 791–793.CrossrefPubMedGoogle Scholar

About the article

Received: 2018-06-13

Accepted: 2018-07-26

Published Online: 2018-10-06


Conflict of interest statement: The authors declare no conflicts of interest in this work.


Citation Information: Reviews in the Neurosciences, 20180058, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2018-0058.

Export Citation

©2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in