Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Reviews in the Neurosciences

Editor-in-Chief: Huston, Joseph P.

Editorial Board: Topic, Bianca / Adeli, Hojjat / Buzsaki, Gyorgy / Crawley, Jacqueline / Crow, Tim / Gold, Paul / Holsboer, Florian / Korth, Carsten / Li, Jay-Shake / Lubec, Gert / McEwen, Bruce / Pan, Weihong / Pletnikov, Mikhail / Robbins, Trevor / Schnitzler, Alfons / Stevens, Charles / Steward, Oswald / Trojanowski, John

IMPACT FACTOR 2018: 2.157
5-year IMPACT FACTOR: 2.935

CiteScore 2017: 2.81

SCImago Journal Rank (SJR) 2017: 0.980
Source Normalized Impact per Paper (SNIP) 2017: 0.804

See all formats and pricing
More options …
Ahead of print


Modification of the gut microbiome to combat neurodegeneration

Andrew Octavian SasmitaORCID iD: https://orcid.org/0000-0001-7379-6749
Published Online: 2019-05-16 | DOI: https://doi.org/10.1515/revneuro-2019-0005


The gut microbiome was extensively researched for its biological variety and its potential role in propagating diseases outside of the gastrointestinal (GI) tract. Recently, a lot of effort was focused on comprehending the gut-brain axis and the bizarre communication between the GI system and the nervous system. Ample amount of studies being carried out also revealed the involvement of the gut microbiome in enhancing the degree of many neurological disorders, including neurodegenerative diseases. It was widely observed that there were distinct microbiome profiles and dysbiosis within patients suffering from Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis. Various approaches to re-establish the balance of the gut microbiome, from antibiotic therapy, fecal microbiota transplant, or ingestion of psychobiotics, are discussed within this review within the specific context of combating neurodegenerative diseases. Present studies and clinical trials indicate that although there is an immense potential of gut microbiome modification to be preventive or therapeutic, there are still many intercalated components of the gut-brain axis at play and thus, more research needs to be carried out to delineate microbiome factors that may potentially alleviate symptoms of neurodegeneration.

Keywords: dysbiosis; gut-brain axis; gut microbiome; neurodegenerative diseases; probiotics; psychobiotics


  • Abdollahpour, I., Nedjat, S., Mansournia, M.A., Eckert, S., and Weinstock-Guttman, B. (2018). Infectious exposure, antibiotic use, and multiple sclerosis: a population-based incident case-control study. Acta Neurol. Scand. 138, 308–314.CrossrefPubMedGoogle Scholar

  • Akbari, E., Asemi, Z., Daneshvar Kakhaki, R., Bahmani, F., Kouchaki, E., Tamtaji, O.R., Hamidi, G.A., and Salami, M. (2016). Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front. Aging Neurosci. 8, 256.PubMedGoogle Scholar

  • Allen, A.P., Dinan, T.G., Clarke, G., and Cryan, J.F. (2017). A psychology of the human brain-gut-microbiome axis. Soc. Personal. Psychol. Compass. 11, e12309.CrossrefPubMedGoogle Scholar

  • Alonso, R., Fernández-Fernández, A.M., Pisa, D., and Carrasco, L. (2018). Multiple sclerosis and mixed microbial infections. Direct identification of fungi and bacteria in nervous tissue. Neurobiol. Dis. 117, 42–61.CrossrefPubMedGoogle Scholar

  • Ananthaswamy, A. (2011). Faecal transplant eases symptoms of Parkinson’s disease. New Sci. 209, 8–9.CrossrefGoogle Scholar

  • Bailey, M.T., Dowd, S.E., Galley, J.D., Hufnagle, A.R., Allen, R.G., and Lyte, M. (2011). Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407.PubMedCrossrefGoogle Scholar

  • Bedarf, J.R., Hildebrand, F., Coelho, L.P., Sunagawa, S., Bahram, M., Goeser, F., Bork, P., and Wüllner, U. (2017). Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 9, 39.CrossrefPubMedGoogle Scholar

  • Bellono, N.W., Bayrer, J.R., Leitch, D.B., Castro, J., Zhang, C., O’Donnell, T.A., Brierley, S.M., Ingraham, H.A., and Julius, D. (2017). Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 170, 185–198.e16.CrossrefPubMedGoogle Scholar

  • Bercik, P., Park, A.J., Sinclair, D., Khoshdel, A., Lu, J., Huang, X., Deng, Y., Blennerhassett, P.A., Fahnestock, M., Moine, D., et al. (2011). The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 23, 1132–1139.CrossrefPubMedGoogle Scholar

  • Boeckxstaens, G. (2013). The clinical importance of the anti-inflammatory vagovagal reflex. Handb. Clin. Neurol. 117, 119–134.CrossrefPubMedGoogle Scholar

  • Borody, T., Leis, S., Campbell, J., Torres, M., and Nowak, A. (2011). Fecal microbiota transplantation (FMT) in multiple sclerosis (MS). Am. J. Gastroenterol. 106, S352.Google Scholar

  • Boylan, K. (2015). Familial amyotrophic lateral sclerosis. Neurol. Clin. 33, 807–830.PubMedCrossrefGoogle Scholar

  • Bravo, J.A., Forsythe, P., Chew, M.V., Escaravage, E., Savignac, H.M., Dinan, T.G., Bienenstock, J., and Cryan, J.F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 108, 16050–16055.CrossrefGoogle Scholar

  • Brenner, D., Hiergeist, A., Adis, C., Mayer, B., Gessner, A., Ludolph, A.C., and Weishaupt, J.H. (2018). The fecal microbiome of ALS patients. Neurobiol. Aging 61, 132–137.CrossrefPubMedGoogle Scholar

  • Cantarel, B.L., Waubant, E., Chehoud, C., Kuczynski, J., DeSantis, T.Z., Warrington, J., Venkatesan, A., Fraser, C.M., and Mowry, E.M. (2015). Gut microbiota in multiple sclerosis. J. Invest. Med. 63, 729–734.CrossrefGoogle Scholar

  • Cersosimo, M.G., Raina, G.B., Pecci, C., Pellene, A., Calandra, C.R., Gutiérrez, C., Micheli, F.E., and Benarroch, E.E. (2013). Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J. Neurol. 260, 1332–1338.CrossrefPubMedGoogle Scholar

  • Cruz, M.P. (2018). Edaravone (Radicava): a novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P&T. 43, 25–28.Google Scholar

  • Cudkowicz, M.E., Titus, S., Kearney, M., Yu, H., Sherman, A., Schoenfeld, D., Hayden, D., Shui, A., Brooks, B., Conwit, R., et al. (2014). Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: a multi-stage, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 13, 1083–1091.PubMedCrossrefGoogle Scholar

  • Dash, S., Clarke, G., Berk, M., and Jacka, F.N. (2015). The gut microbiome and diet in psychiatry. Curr. Opin. Psychiatry 28, 1–6.CrossrefPubMedGoogle Scholar

  • Daulatzai, M.A. (2015). Non-celiac gluten sensitivity triggers gut dysbiosis, neuroinflammation, gut-brain axis dysfunction, and vulnerability for dementia. CNS Neurol. Disord. Drug Targets 14, 110–131.PubMedCrossrefGoogle Scholar

  • Dharmadasa, T., and Kiernan, M.C. (2018). Riluzole, disease stage and survival in ALS. Lancet Neurol. 17, 385–386.CrossrefPubMedGoogle Scholar

  • Dickerson, F., Severance, E., and Yolken, R. (2017). The microbiome, immunity, and schizophrenia and bipolar disorder. Brain Behav. Immun. 62, 46–52.PubMedCrossrefGoogle Scholar

  • Dutkiewicz, J., Szlufik, S., Nieciecki, M., Charzyńska, I., Królicki, L., Smektała, P., and Friedman, A. (2015). Small intestine dysfunction in Parkinson’s disease. J. Neural Transm. 122, 1659–1661.CrossrefGoogle Scholar

  • Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., Guiot, Y., Derrien, M., Muccioli, G.G., Delzenne, N.M., et al. (2013). Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071.CrossrefGoogle Scholar

  • Fang, X., Wang, X., Yang, S., Meng, F., Wang, X., Wei, H., and Chen, T. (2016). Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front. Microbiol. 7, 1479.PubMedGoogle Scholar

  • Friedman, S. (2018). Fecal microbiota transplantation (FMT) of FMP30 in relapsing-remitting multiple sclerosis (MS-BIOME). https://clinicaltrials.gov/ct2/show/NCT03594487.

  • Fröhlich, E.E., Farzi, A., Mayerhofer, R., Reichmann, F., Jačan, A., Wagner, B., Zinser, E., Bordag, N., Magnes, C., Fröhlich, E., et al. (2016). Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav. Immun. 56, 140–155.PubMedCrossrefGoogle Scholar

  • Fung, T.C., Olson, C.A., and Hsiao, E.Y. (2017). Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155.CrossrefPubMedGoogle Scholar

  • González-Lizárraga, F., Socías, S.B., Ávila, C.L., Torres-Bugeau, C.M., Barbosa, L.R.S., Binolfi, A., Sepúlveda-Díaz, J.E., Del-Bel, E., Fernandez, C.O., Papy-Garcia, D., et al. (2017). Repurposing doxycycline for synucleinopathies: remodelling of α-synuclein oligomers towards non-toxic parallel β-sheet structured species. Sci. Rep. 7, 41755.CrossrefPubMedGoogle Scholar

  • Gordon, P.H., Moore, D.H., Miller, R.G., Florence, J.M., Verheijde, J.L., Doorish, C., Hilton, J.F., Spitalny, G.M., MacArthur, R.B., Mitsumoto, H., et al. (2007). Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 1045–1053.PubMedCrossrefGoogle Scholar

  • Haghikia, A., Jörg, S., Duscha, A., Berg, J., Manzel, A., Waschbisch, A., Hammer, A., Lee, D.-H., May, C., Wilck, N., et al. (2015). Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829.PubMedCrossrefGoogle Scholar

  • Hashim, H., Azmin, S., Razlan, H., Yahya, N.W., Tan, H.J., Manaf, M.R.A., and Ibrahim, N.M. (2014). Eradication of Helicobacter pylori Infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One 9, e112330.PubMedCrossrefGoogle Scholar

  • Hefendehl, J.K., LeDue, J., Ko, R.W.Y., Mahler, J., Murphy, T.H., and MacVicar, B.A. (2016). Mapping synaptic glutamate transporter dysfunction in vivo to regions surrounding A$β$ plaques by iGluSnFR two-photon imaging. Nat. Commun. 7, 13441.CrossrefGoogle Scholar

  • Heintz-Buschart, A., Pandey, U., Wicke, T., Sixel-Döring, F., Janzen, A., Sittig-Wiegand, E., Trenkwalder, C., Oertel, W.H., Mollenhauer, B., and Wilmes, P. (2018). The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98.PubMedCrossrefGoogle Scholar

  • Houser, M.C., and Tansey, M.G. (2017). The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson Dis. 3, 3.CrossrefGoogle Scholar

  • Jahangiri, S., Rahmani, A.R., Rakhshani, M.H., Tajabadi, A., and Tadayonfar, M. (2017). The effects of synbiotic supplementation on constipation and reducing flatulence in stroke patients admitted to the ICU.J. Probiotics Heal. 5, 167.Google Scholar

  • Jangi, S., Gandhi, R., Cox, L.M., Li, N., von Glehn, F., Yan, R., Patel, B., Mazzola, M.A., Liu, S., Glanz, B.L., et al. (2016). Alterations of the human gut microbiome in multiple sclerosis. Nat. Commun. 7, 12015.PubMedCrossrefGoogle Scholar

  • Jia, S., Lu, Z., Gao, Z., An, J., Wu, X., Li, X., Dai, X., Zheng, Q., and Sun, Y. (2016). Chitosan oligosaccharides alleviate cognitive deficits in an amyloid-β1–42-induced rat model of Alzheimer’s disease. Int. J. Biol. Macromol. 83, 416–425.CrossrefGoogle Scholar

  • Kanji, S., Fonseka, T.M., Marshe, V.S., Sriretnakumar, V., Hahn, M.K., and Müller, D.J. (2017). The microbiome-gut-brain axis: implications for schizophrenia and antipsychotic induced weight gain. Eur. Arch. Psychiatry Clin. Neurosci. 268, 3–15.PubMedGoogle Scholar

  • Kelly, L.P., Carvey, P.M., Keshavarzian, A., Shannon, K.M., Shaikh, M., Bakay, R.A.E., and Kordower, J.H. (2014). Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov. Disord. 29, 999–1009.CrossrefGoogle Scholar

  • Kouchaki, E., Tamtaji, O.R., Salami, M., Bahmani, F., Daneshvar Kakhaki, R., Akbari, E., Tajabadi-Ebrahimi, M., Jafari, P., and Asemi, Z. (2017). Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double-blind, placebo-controlled trial. Clin. Nutr. 36, 1245–1249.CrossrefPubMedGoogle Scholar

  • Kremenchutzky, M. (2017). Fecal microbial transplantation in relapsing multiple sclerosis patients. https://clinicaltrials.gov/ct2/show/NCT03183869.

  • Kuruvilla, J., Sasmita, A.O., and Ling, A.P.K. (2018). Therapeutic potential of combined viral transduction and CRISPR/Cas9 gene editing in treating neurodegenerative diseases. Neurol. Sci. 39, 1827–1835.CrossrefPubMedGoogle Scholar

  • Lawrence, K., and Hyde, J. (2017). Microbiome restoration diet improves digestion, cognition and physical and emotional wellbeing. PLoS One 12, e0179017.CrossrefPubMedGoogle Scholar

  • Lebouvier, T., Neunlist, M., Bruley des Varannes, S., Coron, E., Drouard, A., N’Guyen, J.-M., Chaumette, T., Tasselli, M., Paillusson, S., Flamand, M., et al. (2010). Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 5, e12728.CrossrefPubMedGoogle Scholar

  • Leclercq, S., Mian, F.M., Stanisz, A.M., Bindels, L.B., Cambier, E., Ben-Amram, H., Koren, O., Forsythe, P., and Bienenstock, J. (2017). Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 8, 15062.CrossrefPubMedGoogle Scholar

  • Liang, S., Wang, T., Hu, X., Luo, J., Li, W., Wu, X., Duan, Y., and Jin, F. (2015). Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 310, 561–577.PubMedCrossrefGoogle Scholar

  • Liu, F.-C., Lin, H.-T., Kuo, C.-F., Hsieh, M.-Y., See, L.-C., and Yu, H.-P. (2018). Familial aggregation of Parkinson’s disease and coaggregation with neuropsychiatric diseases: a population-based cohort study. Clin. Epidemiol. 10, 631–641.CrossrefGoogle Scholar

  • Liu, Q., Duan, Z.P., Ha, D.K., Bengmark, S., Kurtovic, J., and Riordan, S.M. (2004). Synbiotic modulation of gut flora: effect on minimal hepatic encephalopathy in patients with cirrhosis. Hepatology 39, 1441–1449.PubMedCrossrefGoogle Scholar

  • Makkawi, S., Camara-Lemarroy, C., and Metz, L. (2018). Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol. Neuroimmunol. Neuroinflamm. 5, e459.CrossrefGoogle Scholar

  • Malan-Muller, S., Valles-Colomer, M., Raes, J., Lowry, C.A., Seedat, S., and Hemmings, S.M.J. (2017). The gut microbiome and mental health: implications for anxiety- and trauma-related disorders. OMICS 22, 90–107.PubMedGoogle Scholar

  • Martín-Montañez, E., Millon, C., Boraldi, F., Garcia-Guirado, F., Pedraza, C., Lara, E., Santin, L.J., Pavia, J., and Garcia-Fernandez, M. (2017). IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol. 13, 69–81.CrossrefGoogle Scholar

  • Messaoudi, M., Lalonde, R., Violle, N., Javelot, H., Desor, D., Nejdi, A., Bisson, J.-F., Rougeot, C., Pichelin, M., Cazaubiel, M., et al. (2011a). Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br. J. Nutr. 105, 755–764.CrossrefGoogle Scholar

  • Messaoudi, M., Violle, N., Bisson, J.-F., Desor, D., Javelot, H., and Rougeot, C. (2011b). Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2, 256–261.CrossrefGoogle Scholar

  • Mez, J., Daneshvar, D.H., Kiernan, P.T., Abdolmohammadi, B., Alvarez, V.E., Huber, B.R., Alosco, M.L., Solomon, T.M., Nowinski, C.J., McHale, L., et al. (2017). Clinicopathological evaluation of chronic traumatic encephalopathy in players of American football. J. Am. Med. Assoc. 318, 360–370.CrossrefGoogle Scholar

  • Minter, M.R., Zhang, C., Leone, V., Ringus, D.L., Zhang, X., Oyler-Castrillo, P., Musch, M.W., Liao, F., Ward, J.F., Holtzman, D.M., et al. (2016). Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028.CrossrefGoogle Scholar

  • Miyake, S., Kim, S., Suda, W., Oshima, K., Nakamura, M., Matsuoka, T., Chihara, N., Tomita, A., Sato, W., Kim, S.-W., et al. (2015). Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 10, e0137429.CrossrefPubMedGoogle Scholar

  • Möhle, L., Mattei, D., Heimesaat, M.M., Bereswill, S., Fischer, A., Alutis, M., French, T., Hambardzumyan, D., Matzinger, P., Dunay, I.R., et al. (2016). Ly6Chi monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Rep. 15, 1945–1956.CrossrefGoogle Scholar

  • Moos, W.H., Faller, D. V, Harpp, D.N., Kanara, I., Pernokas, J.,Powers, W.R., and Steliou, K. (2016). Microbiota and neurological disorders: a gut feeling. Biores. Open Access 5, 137–145.PubMedCrossrefGoogle Scholar

  • Niehues, M., and Hensel, A. (2009). In-vitro interaction of L-dopa with bacterial adhesins of Helicobacter pylori: an explanation for clinical differences in bioavailability? J. Pharm. Pharmacol. 61, 1303–1307.PubMedGoogle Scholar

  • Nikolaev, A., McLaughlin, T., O’Leary, D.D.M., and Tessier-Lavigne, M. (2009). APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457, 981–989.CrossrefPubMedGoogle Scholar

  • Nimgampalle, M., and Yellama, K. (2017). Anti-Alzheimer properties of probiotic, Lactobacillus plantarum MTCC 1325 in Alzheimer’s disease induced albino rats. J. Clin. Diagn. Res. 11, KC01–KC05.Google Scholar

  • Pansarasa, O., Bordoni, M., Diamanti, L., Sproviero, D., Gagliardi, S., and Cereda, C. (2018). SOD1 in amyotrophic lateral sclerosis: “ambivalent” behavior connected to the disease. Int. J. Mol. Sci. 19, 1345.CrossrefGoogle Scholar

  • Patra, S. (2016). Psychobiotics: a paradigm shift in psychopharmacology. Indian J. Pharmacol. 48, 469.PubMedCrossrefGoogle Scholar

  • Perni, M., Galvagnion, C., Maltsev, A., Meisl, G., Müller, M.B.D., Challa, P.K., Kirkegaard, J.B., Flagmeier, P., Cohen, S.I.A., Cascella, R., et al. (2017). A natural product inhibits the initiation of α-synuclein aggregation and suppresses its toxicity. Proc. Natl. Acad. Sci. USA 114, E1009–E1017.Google Scholar

  • Petrov, D., Mansfield, C., Moussy, A., and Hermine, O. (2017). ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment?. Front. Aging Neurosci. 9, 68.PubMedGoogle Scholar

  • Pierantozzi, M., Pietroiusti, A., Galante, A., Sancesario, G., Lunardi, G., Fedele, E., Giacomini, P., and Stanzione, P. (2001). Helicobacter pylori-induced reduction of acute levodopa absorption in Parkinson’s disease patients. Ann. Neurol. 50, 686–687.CrossrefPubMedGoogle Scholar

  • Printy, B.P., Verma, N., Cowperthwaite, M.C., and Markey, M.K. (2014). Effects of genetic variation on the dynamics of neurodegeneration in Alzheimer’s disease. 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE. Piscataway, New Jersey, USA. 2464–2467.Google Scholar

  • Ratzinger, F., Haslacher, H., Poeppl, W., Hoermann, G., Kovarik, J.J., Jutz, S., Steinberger, P., Burgmann, H., Pickl, W.F., and Schmetterer, K.G. (2015). Azithromycin suppresses CD4+ T-cell activation by direct modulation of mTOR activity. Sci. Rep. 4, 7438.CrossrefGoogle Scholar

  • Reigstad, C.S., Salmonson, C.E., Rainey, J.F., Szurszewski, J.H., Linden, D.R., Sonnenburg, J.L., Farrugia, G., and Kashyap, P.C. (2015). Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29, 1395–1403.PubMedCrossrefGoogle Scholar

  • Rivière, A., Selak, M., Lantin, D., Leroy, F., and De Vuyst, L. (2016). Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7, 979.PubMedGoogle Scholar

  • Rogers, G.B., Keating, D.J., Young, R.L., Wong, M.-L., Licinio, J., and Wesselingh, S. (2016). From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol. Psychiatry 21, 738–748.CrossrefPubMedGoogle Scholar

  • Sampson, T.R., Debelius, J.W., Thron, T., Janssen, S., Shastri, G.G., Ilhan, Z.E., Challis, C., Schretter, C.E., Rocha, S., Gradinaru, V., et al. (2016). Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480.e12.CrossrefGoogle Scholar

  • Sasmita, A.O. (2018). Current viral-mediated gene transfer research for treatment of Alzheimer’s disease. Biotechnol. Genet. Eng. Rev. 1–20. [Epub ahead of print].Google Scholar

  • Sasmita, A.O., Methi, A., and Kislai, P. (2018). Emerging links between herpes viruses and Alzheimer’s disease pathology. J. Mol. Genet. Med. 12, 388.Google Scholar

  • Savignac, H.M., Corona, G., Mills, H., Chen, L., Spencer, J.P.E., Tzortzis, G., and Burnet, P.W.J. (2013). Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-D-aspartate receptor subunits and D-serine. Neurochem. Int. 63, 756–764.CrossrefPubMedGoogle Scholar

  • Scheer, S., Medina, T.S., Murison, A., Taves, M.D., Antignano, F., Chenery, A., Soma, K.K., Perona-Wright, G., Lupien, M., Arrowsmith, C.H., et al. (2017). Early-life antibiotic treatment enhances the pathogenicity of CD4+ T cells during intestinal inflammation. J. Leukoc. Biol. 101, 893–900.CrossrefPubMedGoogle Scholar

  • Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.-H., Hung, S.-T., Hendricks, E., Linares, G.R., Wang, Y., Son, E.Y., et al. (2018). Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313–325.PubMedCrossrefGoogle Scholar

  • Siddiqui, M.F., Rast, S., Lynn, M.J., Auchus, A.P., and Pfeiffer, R.F. (2002). Autonomic dysfunction in Parkinson’s disease: a comprehensive symptom survey. Parkinsonism Relat. Disord. 8, 277–284.CrossrefPubMedGoogle Scholar

  • Šimić, G., Babić Leko, M., Wray, S., Harrington, C., Delalle, I., Jovanov-Milošević, N., Bažadona, D., Buée, L., de Silva, R., Di Giovanni, G., et al. (2016). Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules 6, 6.CrossrefPubMedGoogle Scholar

  • Skene, N.G., and Grant, S.G.N. (2016). Identification of vulnerable cell types in major brain disorders using single cell transcriptomes and expression weighted cell type enrichment. Front. Neurosci. 10, 16.PubMedGoogle Scholar

  • Stoker, T.B., Torsney, K.M., and Barker, R.A. (2018). Pathological mechanisms and clinical aspects of GBA1 mutation-associated Parkinson’s disease. Park. Dis. Pathog. Clin. Asp. Chapter 3 (Brisbane (AU): Codon Publications).Google Scholar

  • Strati, F., Cavalieri, D., Albanese, D., De Felice, C., Donati, C., Hayek, J., Jousson, O., Leoncini, S., Renzi, D., Calabrò, A., et al. (2017). New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome 5, 24.PubMedCrossrefGoogle Scholar

  • Surwase, S.N., and Jadhav, J.P. (2011). Bioconversion of l-tyrosine to l-DOPA by a novel bacterium Bacillus sp. JPJ. Amino Acids 41, 495–506.PubMedCrossrefGoogle Scholar

  • Tan, E.K., Srivastava, A.K., Arnold, W.D., Singh, M.P., and Zhang, Y. (2015). Neurodegeneration: etiologies and new therapies. Biomed. Res. Int. 2015, 1–2.Google Scholar

  • Tankou, S.K., Regev, K., Healy, B.C., Cox, L.M., Tjon, E., Kivisakk, P., Vanande, I.P., Cook, S., Gandhi, R., Glanz, B., et al. (2018a). Investigation of probiotics in multiple sclerosis. Mult. Scler. J. 24, 58–63.CrossrefGoogle Scholar

  • Tankou, S.K., Regev, K., Healy, B.C., Tjon, E., Laghi, L., Cox, L.M., Kivisäkk, P., Pierre, I.V., Hrishikesh, L., Gandhi, R., et al. (2018b). A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann. Neurol. 83, 1147–1161.CrossrefGoogle Scholar

  • Theunis, C., Crespo-Biel, N., Gafner, V., Pihlgren, M., López-Deber, M.P., Reis, P., Hickman, D.T., Adolfsson, O., Chuard, N., Ndao, D.M., et al. (2013). Efficacy and safety of liposome-based vaccine against protein Tau, assessed in Tau.P301L mice that model tauopathy. PLoS One 8, e72301.CrossrefPubMedGoogle Scholar

  • Van Cauwenberghe, C., Van Broeckhoven, C., and Sleegers, K. (2016). The genetic landscape of Alzheimer disease: clinical implications and perspectives. Genet. Med. 18, 421–430.CrossrefPubMedGoogle Scholar

  • Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537.CrossrefPubMedGoogle Scholar

  • Wildsmith, K.R., Holley, M., Savage, J.C., Skerrett, R., and Landreth, G.E. (2013). Evidence for impaired amyloid β clearance in Alzheimer’s disease. Alzheimers. Res. Ther. 5, 33.PubMedCrossrefGoogle Scholar

  • Wing, A.C., and Kremenchutzky, M. (2018). Fecal microbial transplantation in multiple sclerosis: trial design. Neurology 90, P2.356.Google Scholar

  • Wu, S., Yi, J., Zhang, Y., Zhou, J., and Sun, J. (2015). Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol. Rep. 3, e12356.CrossrefGoogle Scholar

  • Wu, J., Zhang, Y., Yang, H., Rao, Y., Miao, J., and Lu, X. (2016). Intestinal microbiota as an alternative therapeutic target for epilepsy. Can. J. Infect. Dis. Med. Microbiol. 2016, 1–6.CrossrefGoogle Scholar

  • Yano, J.M., Yu, K., Donaldson, G.P., Shastri, G.G., Ann, P., Ma, L., Nagler, C.R., Ismagilov, R.F., Mazmanian, S.K., and Hsiao, E.Y. (2015). Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276.CrossrefPubMedGoogle Scholar

  • Zhang, J., Ke, K.-F., Liu, Z., Qiu, Y.-H., and Peng, Y.-P. (2013). Th17 cell-mediated neuroinflammation is involved in neurodegeneration of Aβ1-42-induced Alzheimer’s disease model rats. PLoS One 8, e75786.CrossrefPubMedGoogle Scholar

  • Zhang, Y., Wu, S., Yi, J., Xia, Y., Jin, D., Zhou, J., and Sun, J. (2017). Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin. Ther. 39, 322–336.CrossrefPubMedGoogle Scholar

  • Zhao, Y., and Lukiw, W.J. (2013). TREM2 signaling, miRNA-34a and the extinction of phagocytosis. Front. Cell. Neurosci. 7, 131.PubMedGoogle Scholar

  • Zhao, Y., and Lukiw, W.J. (2015). Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer’s disease (AD). J. Nat. Sci. 1, e138.PubMedGoogle Scholar

  • Zhu, D., Xiao, S., Yu, J., Ai, Q., He, Y., Cheng, C., Zhang, Y., and Pan, Y. (2017). Effects of one-week empirical antibiotic therapy on the early development of gut microbiota and metabolites in preterm infants. Sci. Rep. 7, 8025.CrossrefPubMedGoogle Scholar

About the article

Received: 2019-01-09

Accepted: 2019-02-16

Published Online: 2019-05-16

Conflict of interest statement: The author declares no conflict of interest. The publication of this manuscript is not linked to any funding or funding bodies.

Citation Information: Reviews in the Neurosciences, 20190005, ISSN (Online) 2191-0200, ISSN (Print) 0334-1763, DOI: https://doi.org/10.1515/revneuro-2019-0005.

Export Citation

©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in